JPS6231078B2 - - Google Patents

Info

Publication number
JPS6231078B2
JPS6231078B2 JP16927084A JP16927084A JPS6231078B2 JP S6231078 B2 JPS6231078 B2 JP S6231078B2 JP 16927084 A JP16927084 A JP 16927084A JP 16927084 A JP16927084 A JP 16927084A JP S6231078 B2 JPS6231078 B2 JP S6231078B2
Authority
JP
Japan
Prior art keywords
tin
amount
phosphorus
plating
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16927084A
Other languages
Japanese (ja)
Other versions
JPS6148591A (en
Inventor
Mitsuo Azuma
Mitsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16927084A priority Critical patent/JPS6148591A/en
Publication of JPS6148591A publication Critical patent/JPS6148591A/en
Publication of JPS6231078B2 publication Critical patent/JPS6231078B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は溶接性能にすぐれ、且つ耐食性能にす
ぐれた低コスト錫鍍金鋼板に関するもので、さら
に詳しくは食缶、雑缶等の容器胴部を溶接で接合
する溶接缶用を主用途とするメツキ鋼板に関する
ものである。 従来の技術 従来から、容器の低コスト化のために種々の技
術開発が進められているが(例えば、特開昭57−
169098、57−200592等)、低コスト化の主な方向
は製缶技術と素材技術の開発、改良に大別され
る。 発明が解決すべき問題点 溶接接合は主に多量の錫を使用するハンダ接合
にかわるものとして開発されたもので、ハンダ接
合に必要とされる約25番メツキ材(錫付着量2.8
g/m2−片面)より少ない錫付着量で良好な接合
部を得る事ができる。錫はスードロニツク溶接
(商品名)によつて代表されるワイヤーシーム溶
接に極めて有効であり、溶接時にβ−Sn(フリ
ーSnと通称されている)がメツキ鋼板表面に0.1
〜0.3g/m2以上存在すれば、良好な高速ワイヤ
ーシーム溶接性の得られる事が一般に知られてい
る。3ピース容器用材料は製缶前に塗装され、そ
の後缶胴部を接合する場合が多い。この塗装焼付
過程で下地の鋼板と錫メツキ層の錫が合金化反応
を生じ、FeSn2を主体とする合金層が生成する。
この合金層はβ−Snに比して溶接性能に劣るの
で、塗装焼付時に生成するFe−Sn合金の生成量
を可及的に抑制する事が溶接性能の向上に有効な
β−Sn量を多く保持する事につながるのであ
る。この事は特に缶材の低コスト化をめざした低
目付錫メツキ鋼板(以下LTSと略称する)にお
いて特に重要である。 本発明は、このようなLTSにおいて優れた溶
接性をもたらすメツキ鋼板を提供するものであ
る。 問題点を解決すべき手段・作用 本発明はこの鉄〜錫合金層の生成を有効に抑制
する技術を提供するもので、その特徴は、錫メツ
キに先立ち鋼板表面にリン又はリン〜鉄合金を析
出せしめ、その後に錫メツキ、更にクロメート皮
膜又は金属クロムの上にクロメート皮膜を施すも
のである。 尚、本発明ではこのりんめつき下地鋼板につい
て詳細に述べるが、鉄〜リンめつき鋼板を下地に
しても、またリンをめつき後加熱拡散によりFe
−P合金化を行なつても、同じく目的を達成する
事ができる。 塗装焼付過程で生成する鉄〜錫合金層の生成を
抑制するメカニズムについては不明な点が多い
が、メツキした段階でのβ−Sn結晶の配向性に
ついて、Pプレメツキでは(101)面、Fe−Pプ
レメツキでは(200)面が優先方位になりやすい
が、加熱による鉄〜錫合金化抑制効果程度は、原
板鋼板表面に存在しているリン付着量によつてほ
ぼ定まり、前述のメツキ方法の相異により抑制効
果の差は認められない、従つて、この場合β−
Sn結晶の配向性は直接の関係はないと思われ
る。一方、鋼板表面上に析出したリンは、塗装焼
付後においても、ほぼ焼付前の位置に存在し、錫
層側への拡散は少ない。このことから、Pは鉄〜
錫の間に存在して、鉄の熱拡散反応の何等かの障
壁になるものと認められる。 更に本発明について詳述する。まず常法に従が
い、電解脱脂後、硫酸溶液中で電解、あるいは浸
漬にて酸洗した板厚0.21mmのローモ板(連鋳アル
ミキルド鋼)を用いて以下の処理を行なつた。リ
ンめつきはリン酸20g/、次亜リン酸ソーゾ20
g/の水溶液、浴温80℃にて、被処理板を陰極
にし、炭素電極を陽極として、電流密度30A/d
m2、通電時間1秒にて5〜6mg/m2のリンを析出
せしめる。又鉄〜リンめつきは、硫酸第一鉄150
g/、塩化第一鉄45g/、リン酸50g/、
亜リン酸40g/の水溶液を用い、浴温60℃、被
処理板を陰極とし、陽極には板を用い、電流密度
30A/dm2、通電時間1.5〜3秒にてリン量とし
て2.7〜6.0mg/m2になるFe−P合金メツキを得ら
れる。 以上の方法でリン系の下地処理を行なつた鋼板
に、公知のフエロスタン浴で錫メツキを行なつ
た。メツキ浴の温度は45℃、鋼板を陰極とし、陽
極に錫板を用い、電流密度5A/dm2で3秒間電
解して、約1.0g/m2の錫メツキ板を得た。 更にその上にクロム系の処理を行なうが、例え
ば無水クロム酸100g/、硫酸0.6g/の水溶
液を用い、浴温43℃、板を陰極とし、陽極に鉛〜
錫合金板を用いて、電流密度30A/dm2、通電時
間0.1秒にて、金属クロム0.5〜2.5mg/m2、クロム
水和酸化物7.7〜10.8mg/m2(クロムとして)の
クロム系皮膜を得ることができる。 この様な手順で得られた本発明による極薄錫メ
ツキ鋼板を電気オーブン中で205℃×10分の熱処
理を3回行ない、熱処理による合金化錫量を電解
剥離法にて測定した。図にその結果を示す。合金
錫はFeSn2を主体とするもので、図より明らかな
様に、リンのプレメツキ量がふえるに従つて合金
錫の生成量が減少し、本発明の効果が認められ
る。 リン付着量は、合金化抑制作用の期待代によつ
て、個々に最適範囲を設定すれば良いが、通常、
最適範囲は3〜6mg/m2である。0.5mg/m2未満
では発明の効果が殆んど期待できない。一方リン
の付着量をふやしていけば、合金化抑制効果は明
確に認められるが、錫メツキ層と鋼板との密着性
が劣化する。このことはリン付着量が30mg/m2
超えると特に著しくなる。 錫メツキ量の下限は、空焼後のフリー錫量を最
低限0.1g/m2を安定して確保するためには0.3
g/m2以上を必要とする。この上限値は技術的に
は特に限定されるものではないが、本発明の主な
目的がコストダウンの見地から、低メツキ量の錫
を用いて塗装時の空焼における錫の合金化量を少
なくする事により溶接性に有利に作用するフリー
錫を少なくとも0.1g/m2以上確保する事にある
ので、錫付着量の上限を1.5g/m2とする。1.5
g/m2超では、特に本発明の処理を行なわなくて
も、空焼後のフリー錫量を0.3g/m2以上にする
事は容易である。 本発明における錫メツキは、基本的にはメツキ
後の溶融化処理(通常、リフロー処理と称す
る。)を行なわないが、錫量が約1.0g/m2〜1.5
g/m2の範囲では、リフロー処理によりメツキ表
面が鏡面状の光沢を呈し、塗装焼付を想定した空
焼後のフリー錫量を0.1g/m2以上にする事も容
易に可能であり、本発明の応用として充分実用可
能である。 最上層のクロム層は(金属クロム+クロム水和
酸化物)またはクロム水和酸化物皮膜から構成さ
れるもので、その付着量はクロム量として1〜30
mg/m2、更にこのましくは5〜15mg/m2が適当で
ある。1mg/m2未満では、クロム層の被覆性に乏
しく、クロム層に期待する耐食性能、塗料密着性
能が不良である。30mg/m2超ではフリー錫量が
0.3g/m2以上存在しても高速シーム溶接時に溶
接チリが発生するので好ましくない。クロム系皮
膜を得るには無水クロム酸、無水クロム酸〜硫
酸、硫酸塩、スルフオン酸類、弗化物、塩化物等
からなる電解クロム酸浴、あるいは通常のブリキ
のケミカル工程で広く利用されている重クロム酸
塩系の浴が好適である。 次に本発明の実施例と比較例とともに示す。 溶接に先立ち、サンプルは全て205℃×10分の
空焼きを3回行なつたものを使用した。シーム溶
接性はスードロニツク溶接機(商品名)を用い、
溶接速度50m/分、溶接電流の周波数400Hz、加
圧力45Kg、ラツプ巾0.5mmで行なつた。散りの発
生がなく、接合部強度がデユポン衝撃に耐えうる
溶接条件範囲の十分広いものを〇、非常に狭い溶
接条件範囲で可能なものを△、適正溶接条件範囲
の見出せないものを×と表示した(注:デユポン
衝撃条件500g、φ6.3mm×50cm)。 UCC性(アンダーカツトフイルム腐食性)
は、めつき板にエポキシフエノール系塗料を55
mg/dm2塗布し、210℃で10分間焼付けた後に、
サンプル板表面にクロス状に巾10μ、深さ15μの
ナイフカツトを入れ、クエン酸1.5%、食塩1.5%
から成る腐食液中に50℃で3日間浸漬し、カツト
部からの錆の拡がり程度をみたが、錆の全く認め
られないものを〇、錆の拡がりが全面に広く生じ
ているものを×、その中間を△とした。 結果を第1表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a low-cost tin-plated steel sheet with excellent welding performance and corrosion resistance. This relates to plated steel sheets, which are mainly used. Conventional Technology Various technological developments have been carried out to reduce the cost of containers (for example, Japanese Patent Application Laid-Open No. 1983-1999).
169098, 57-200592, etc.), and the main directions for cost reduction can be broadly divided into the development and improvement of can manufacturing technology and material technology. Problems to be solved by the invention Welding joints were developed mainly as an alternative to soldering joints, which use a large amount of tin.
Good joints can be obtained with a smaller amount of tin deposited (g/m 2 - one side). Tin is extremely effective for wire seam welding, typified by Sudronik welding (trade name), and during welding, 0.1% of β-Sn (commonly known as free Sn) is applied to the surface of the plated steel plate.
It is generally known that good high-speed wire seam weldability can be obtained if the content is 0.3 g/m 2 or more. Three-piece container materials are often painted before can manufacturing, and then the can body is joined. During this paint baking process, an alloying reaction occurs between the base steel plate and the tin in the tin plating layer, producing an alloy layer mainly composed of FeSn2 .
This alloy layer has inferior welding performance compared to β-Sn, so suppressing the amount of Fe-Sn alloy generated during paint baking as much as possible will increase the amount of β-Sn, which is effective in improving welding performance. This leads to holding more. This is particularly important for low-density tin-plated steel sheets (hereinafter abbreviated as LTS), which aim to reduce the cost of can stock. The present invention provides a plated steel plate that provides excellent weldability in such LTS. Means and Effects to Solve the Problems The present invention provides a technique for effectively suppressing the formation of this iron-tin alloy layer, and its feature is that phosphorus or a phosphorus-iron alloy is applied to the surface of the steel sheet prior to tin plating. This is followed by tin plating and then applying a chromate film or a chromate film on top of metallic chromium. In the present invention, this phosphor-plated base steel sheet will be described in detail, but even if an iron to phosphor-plated steel plate is used as the base, Fe will be applied by heating and diffusion after phosphorus plating.
-P alloying also achieves the same objective. Although there are many unknowns about the mechanism that suppresses the formation of the iron-tin alloy layer generated during the paint baking process, the orientation of β-Sn crystals at the plating stage is (101) plane in P pre-plating, Fe- In P pre-plating, the (200) plane tends to be the preferred orientation, but the degree of suppression of iron-tin alloying by heating is almost determined by the amount of phosphorus deposited on the surface of the original steel sheet, and the above-mentioned plating method is compatible. Therefore, in this case, β-
There seems to be no direct relationship between the orientation of Sn crystals. On the other hand, the phosphorus precipitated on the surface of the steel plate remains almost at the position before baking even after the coating is baked, and there is little diffusion toward the tin layer side. From this, P is iron~
It is recognized that it exists between tin and serves as some kind of barrier to the thermal diffusion reaction of iron. Further, the present invention will be explained in detail. First, following a conventional method, a Romo plate (continuously cast aluminum killed steel) with a thickness of 0.21 mm was electrolytically degreased and then pickled by electrolysis or immersion in a sulfuric acid solution, and the following treatments were performed. Phosphoric acid 20g/, hypophosphorous acid Sozo 20
g/aqueous solution at a bath temperature of 80°C, with the plate to be treated as the cathode and the carbon electrode as the anode, with a current density of 30A/d.
m 2 , 5 to 6 mg/m 2 of phosphorus is deposited at 1 second of current application time. Also, for iron to phosphorus plating, use ferrous sulfate 150
g/, ferrous chloride 45g/, phosphoric acid 50g/,
Using an aqueous solution of 40 g of phosphorous acid, bath temperature 60℃, the plate to be treated as a cathode, the plate as an anode, and current density.
Fe-P alloy plating with a phosphorus content of 2.7 to 6.0 mg/m 2 can be obtained at 30 A/dm 2 and a current application time of 1.5 to 3 seconds. The steel plate that had been subjected to the phosphorous base treatment using the above method was then tin-plated using a known ferrostan bath. The temperature of the plating bath was 45° C., a steel plate was used as a cathode, a tin plate was used as an anode, and electrolysis was carried out for 3 seconds at a current density of 5 A/dm 2 to obtain a tin-plated plate of approximately 1.0 g/m 2 . Furthermore, chromium-based treatment is carried out on top of this, for example, using an aqueous solution of 100 g of chromic anhydride and 0.6 g of sulfuric acid, the bath temperature is 43°C, the plate is used as a cathode, and lead to anode is used as an anode.
Using a tin alloy plate, at a current density of 30 A/dm 2 and a current application time of 0.1 seconds, chromium-based metal chromium 0.5 to 2.5 mg/m 2 and chromium hydrated oxide 7.7 to 10.8 mg/m 2 (as chromium) A film can be obtained. The ultra-thin tin-plated steel sheet according to the present invention obtained by such a procedure was heat-treated three times at 205° C. for 10 minutes in an electric oven, and the amount of tin alloyed by the heat treatment was measured by electrolytic peeling method. The results are shown in the figure. The tin alloy is mainly composed of FeSn2 , and as is clear from the figure, as the amount of phosphorus preplated increases, the amount of tin alloy produced decreases, and the effect of the present invention is recognized. The amount of phosphorus deposited can be set individually to the optimum range depending on the expected level of alloying suppression effect, but usually,
The optimal range is 3-6 mg/ m2 . If it is less than 0.5 mg/m 2 , little effect of the invention can be expected. On the other hand, if the amount of phosphorus attached is increased, the effect of suppressing alloying is clearly recognized, but the adhesion between the tin plating layer and the steel sheet deteriorates. This becomes particularly noticeable when the amount of phosphorus attached exceeds 30 mg/m 2 . The lower limit of the amount of tin plating is 0.3 in order to stably secure the amount of free tin after dry firing at a minimum of 0.1 g/ m2 .
g/m 2 or more is required. This upper limit is not technically limited, but from the viewpoint of cost reduction, the main purpose of the present invention is to reduce the alloying amount of tin in the dry firing during painting by using a low plating amount of tin. Since the purpose is to secure at least 0.1 g/m 2 or more of free tin, which has an advantageous effect on weldability by reducing the amount, the upper limit of the amount of tin deposited is set to 1.5 g/m 2 . 1.5
When the amount of tin exceeds 0.3 g/m 2 , it is easy to make the amount of free tin after firing to 0.3 g/m 2 or more even without performing the treatment of the present invention. Tin plating in the present invention basically does not involve melting treatment (usually referred to as reflow treatment) after plating, but the amount of tin is about 1.0 g/m 2 to 1.5
In the range of g/m 2 , the plating surface exhibits a mirror-like luster through reflow treatment, and it is easily possible to increase the amount of free tin to 0.1 g/m 2 or more after dry firing, assuming paint baking. This is fully practical as an application of the present invention. The top chromium layer is composed of (metallic chromium + chromium hydrated oxide) or chromium hydrated oxide film, and the amount of deposited chromium is 1 to 30%.
mg/m 2 , more preferably 5 to 15 mg/m 2 . If it is less than 1 mg/m 2 , the coverage of the chromium layer is poor, and the corrosion resistance and paint adhesion performance expected of the chromium layer are poor. If it exceeds 30mg/m2, the amount of free tin will increase.
Even if it exists in excess of 0.3 g/m 2 , welding dust will occur during high-speed seam welding, which is undesirable. To obtain a chromium-based film, an electrolytic chromic acid bath consisting of chromic anhydride, chromic anhydride to sulfuric acid, sulfate, sulfonic acids, fluoride, chloride, etc., or a heavy metal bath widely used in the chemical process of ordinary tinplate. Chromate based baths are preferred. Next, examples of the present invention and comparative examples will be shown. Prior to welding, all samples were air-baked three times at 205°C for 10 minutes. Seam weldability was performed using a Sudronik welding machine (trade name).
The welding speed was 50 m/min, the welding current frequency was 400 Hz, the applied force was 45 kg, and the lap width was 0.5 mm. Welding conditions that are sufficiently wide to withstand the Dupont impact without splintering are marked with 〇, those that are possible within a very narrow welding condition range are marked with △, and those where an appropriate welding condition range cannot be found are marked with ×. (Note: Dupont impact condition 500g, φ6.3mm x 50cm). UCC property (undercut film corrosion)
Apply 55% epoxy phenol paint to the plated board.
After applying mg/dm 2 and baking at 210℃ for 10 minutes,
Place a cross-shaped knife cut of 10μ in width and 15μ in depth on the surface of the sample plate, and add 1.5% citric acid and 1.5% salt.
The specimens were immersed in a corrosive solution at 50°C for 3 days, and the degree of rust spreading from the cut portion was examined.The specimens with no rust at all were marked as ○, and the specimens with widespread rust spread over the entire surface were marked as ×. The middle point was marked as △. The results are shown in Table 1.

【表】【table】

【表】 発明の効果 本発明によれば、溶接性を向上し、かつ耐腐食
性にも優れた缶材料となる等の効果が得られる。
[Table] Effects of the Invention According to the present invention, effects such as improved weldability and a can material having excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、リン含有量と合金錫生成量の関係を示
す説明図表である。
The drawing is an explanatory chart showing the relationship between phosphorus content and alloy tin production amount.

Claims (1)

【特許請求の範囲】 1 鋼帯表面に、リンまたはリン〜鉄合金メツキ
を行ない、次いで極薄錫メツキ層を形成せしめ、
更にその上にクロメート皮膜又は金属クロムの上
にクロメート皮膜を形成せしめる事を特徴とする
溶接性にすぐれた錫メツキ鋼板。 2 リンまたはリン〜鉄合金メツキ皮膜の量がリ
ン付着量として0.5〜30mg/m2、錫メツキ皮膜の
量が錫付着量として300mg/m2〜1500mg/m2、ク
ロムおよびまたはクロメート皮膜の厚みがクロム
量として1〜30mg/m2である特許請求の範囲第1
項記載の溶接性にすぐれた錫メツキ鋼板。
[Claims] 1. Plating the surface of the steel strip with phosphorus or a phosphorus-iron alloy, and then forming an extremely thin tin plating layer,
Furthermore, a tin-plated steel sheet with excellent weldability is characterized in that a chromate film is formed thereon or a chromate film is formed on metallic chromium. 2 The amount of phosphorus or phosphorus-iron alloy plating film is 0.5 to 30 mg/m 2 as phosphorus adhesion amount, the amount of tin plating film is 300 mg/m 2 to 1500 mg/m 2 as tin adhesion amount, and the thickness of chromium and or chromate film Claim 1 in which the amount of chromium is 1 to 30 mg/m 2
A tin-plated steel plate with excellent weldability as described in Section 1.
JP16927084A 1984-08-15 1984-08-15 Very thin tinned steel sheet having superior weldability Granted JPS6148591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16927084A JPS6148591A (en) 1984-08-15 1984-08-15 Very thin tinned steel sheet having superior weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16927084A JPS6148591A (en) 1984-08-15 1984-08-15 Very thin tinned steel sheet having superior weldability

Publications (2)

Publication Number Publication Date
JPS6148591A JPS6148591A (en) 1986-03-10
JPS6231078B2 true JPS6231078B2 (en) 1987-07-06

Family

ID=15883390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16927084A Granted JPS6148591A (en) 1984-08-15 1984-08-15 Very thin tinned steel sheet having superior weldability

Country Status (1)

Country Link
JP (1) JPS6148591A (en)

Also Published As

Publication number Publication date
JPS6148591A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
CA1230954A (en) Surface-treated steel strips seam weldable into cans
EP0184115B1 (en) Surface-treated steel strip having improved weldability and process for making
JPH0216397B2 (en)
CA1253451A (en) Process for preparing surface-treated steel strips adapted for electric resistance welding
JPH0649933B2 (en) Plated steel plate for cans
JPS6136595B2 (en)
JPS6231078B2 (en)
JPS6144158B2 (en)
JPH0434636B2 (en)
JPS63277794A (en) Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint
JPH0368949B2 (en)
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH0431039B2 (en)
JPH0434630B2 (en)
JPH0210879B2 (en)
JPH0428796B2 (en)
JPH0425350B2 (en)
JPS6379994A (en) Production of steel sheet for welded can
JPH11117085A (en) Steel sheet for welded can, excellent in weldability, corrosion resistance, and adhesion
JPH0434631B2 (en)
JPH0340115B2 (en)
JPS6318676B2 (en)
JPH07166398A (en) Production of steel sheet for welded can excellent in high speed seam weldability, corrosion resistance and coating adhesion
JPH0441694A (en) Production of thinly tinned steel sheet having superior weldability
JPS63105991A (en) Production of high quality surface treated steel sheet for vessel having superior corrosion resistance, weldability and paintability