JPS6230829A - 磁気冷凍作業物質及びその製造方法 - Google Patents

磁気冷凍作業物質及びその製造方法

Info

Publication number
JPS6230829A
JPS6230829A JP60169789A JP16978985A JPS6230829A JP S6230829 A JPS6230829 A JP S6230829A JP 60169789 A JP60169789 A JP 60169789A JP 16978985 A JP16978985 A JP 16978985A JP S6230829 A JPS6230829 A JP S6230829A
Authority
JP
Japan
Prior art keywords
magnetic
tape
alloy
magnetic refrigeration
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60169789A
Other languages
English (en)
Other versions
JPS6335703B2 (ja
Inventor
Hiroshi Maeda
弘 前田
Michinori Sato
佐藤 充典
Hideo Kimura
秀夫 木村
Kyoji Tachikawa
恭治 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP60169789A priority Critical patent/JPS6230829A/ja
Publication of JPS6230829A publication Critical patent/JPS6230829A/ja
Publication of JPS6335703B2 publication Critical patent/JPS6335703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気冷凍機の磁気冷凍作業物質及びその製造方
法に関する。
従来技術 近年、低温利用の範囲が著しく広が9、効率のよい冷凍
機の開発が要望されている。
従来の気体の圧縮−膨張を繰返す冷凍法では、低温にな
るほど効率が低下する。そこで、全く新しい原理に基づ
く磁気冷凍法が注目されるようになった。
一般に、磁性体を強磁界中に挿入し、磁気スピンを整列
状態にすると発熱が起こる。この熱を外部に取去った後
、強磁界中から磁性体を引出して、磁気スピンを擾乱状
態にすると吸熱が起こり、外部の冷凍対象物から熱を奪
い冷凍する。磁気冷凍法はこの原理を利用するもので、
機構的には気体冷凍における気体の圧縮−膨張に対応す
る。20K (ケルビン)より低い温度では、逆カルノ
ーサイクルが利用できるが、20ければならない。
これらの磁気冷凍法は、従来の気体冷凍法に比べて、高
い冷凍効率が得られ、かつ圧縮機が不要となるため振動
や騒音が減り、小型軽量化やコンピュータ制御ができる
などの多くの優れた特徴をもっている。このような優れ
た磁気冷凍法ヲ実用化するためには、高性能の磁気冷凍
作業物質の開発が不可欠である。
現在、20により低い温度領域における磁気冷凍作業物
質としては、Gd5GasOu s Gd5(Gdt−
xAlx)io+zなどのガーネット単結晶が優れた特
性を持つとされ、これを用いた磁気冷凍試験が行われて
いる。
前記のガーネゾト系では、反強磁性7常磁性転移のネー
ル温度がIK近傍にあり、20に未満ではこの転移が利
用できるが、20に以上になると、外部磁界による磁気
エントロピー変化が小さくなり、冷凍能力が著しく低下
する。
20に〜300にの温度領域の磁気冷凍機では、強磁性
−常磁性転移のキュリ一温度近傍の外部磁界による大き
な磁気エントロピー変化全利用するのが有利になる。こ
の磁気冷凍作業物質には、キュリ一温度が作業温度の範
囲にあるものが要求される。
さらに、磁気モーメントが大きいこと、格子比熱が小さ
いこと及び熱伝導率が大きいことが要求される。
特に熱伝導率は磁気冷凍サイクルの動作速度を決定する
重要な因子であり、現在この温度域で優れた特性を持つ
物質のWが行6.i3.c−いる。
発明の目的 本発明は20〜300にの温度領域にお:゛四七−磁気
エントロピーが大きく、熱伝導率の高い優れた磁気冷凍
性能を持つ磁気冷凍作業物質及びその製造方法を提供す
るにある。
発明の構成 本発明者らは前記目的を達成すべく研究の結果、磁気モ
ーメントの大きい希土類元素のGd1Tbs DYlH
o、 Erの単独もしくは2種以上を含む合金の融体を
、真空中あるいは不活性ガス雰囲気中で、温度を制御し
たCuあるいはAgテープで急冷して、非晶質合金ある
いは多層の微結晶集合合金とCuまたはAgテープとを
一体化させると、広い温度領域に亘って磁気エントロピ
ーが犬きく、シかも熱伝導率の高い磁気冷凍性能の優れ
た作業物質が得られることを究明し得た。この知見に基
いて本発明を完成した。
本発明の要旨は、 1)  Gdt Tbx D7% HO及びErから選
ばれた単独または2種以上の希土類元素を含む非晶質合
金あるいは多相の微結晶集合合金と、CuまたはAgテ
ープとを複合一体化したことを特徴とする磁気冷凍作業
物質。
2)また、Gd % Tb s Dy% Ho及びEr
から選ばれた単独または2種以上の希土類元素を含む融
体を、真空中あるい、は不活性ガス雰囲J硲、移動する
室温〜600℃のCuまたはAgテープに接触急冷させ
、非晶質合金あるいは多相の微結晶集合合金と、Cut
たはAgf−一一一−を複合一体化することを特徴とす
る磁気冷凍作業物質の製造方法にある。
Gd、 Tb% D7s Ha及びErの希土類元素は
磁気モーメントが大きいため、これを含む合金は磁気冷
凍作業物質として優れている。これら元素の単独または
2種以上を20〜80原子チ含む合金が好ましい。この
希土類元素成分が80原子チを超えると非晶質合金ある
いは多相の微結晶集合合金が得られず、はぼ単相の結晶
組織になり、冷凍能力が著しく低下する。一方その量が
20原子チよう少ないと磁気モーメントが小さくなるた
め磁気エントロピーが急激に小さくなり、冷凍能力を発
揮しなくなるので、20〜80原子チであることが好ま
しい。
テープの温度は組成によっては室温でもよいが、加熱す
ると、融体とのぬれ性が改善されるため、合金との密接
性が向上して熱伝導性がよくなシ、また均一な厚さとな
る。
従って、50〜600℃とするのが好ましい。
50〜400℃では非晶質合金とCu、またはAgテー
プとが一体となった複合テープが得られ、400〜60
0℃では、高密度で多相の微結晶の集合からなる合金と
Cu、またはAgテープとが一体化した複合テープが得
られる。
前者の複合テープは非晶質合金の組成によってキュリ一
温度を容易に制御することができ、キュリ一温度を中心
とした広い温度領域に亘って磁気エントロピーが大きく
、さらにCutたはAgテープ部分を熱が伝導し、熱伝
導率が高く、磁気冷凍性能に優れ、特に冷凍サイクル効
率の高い磁気冷凍作業物質となる。
また、後者の複合テープは、多相の微結晶集合合金の組
成によって各相のキュリ一温度を300〜20Kに分布
するように制御でき、この温度領域で磁気エントロピー
が大きく、磁気エントロピーの温度による変化がゆるや
かで、さらにCuまたはAgテープ部分を熱が伝導し、
熱伝導率が高く、磁気冷凍性能に優れ、特に冷凍サイク
ル効率の高い磁気冷凍作業物質となる。
なお、テープの温度が600℃を超えると、結晶粒が粗
大化し、もろくなるので好ましくない。
磁気冷凍作業物質、即ち合金の厚さはCuまたはAgテ
ープの移動速度によって制御できる。この移動速度の大
きいほど合金の厚さは薄くなる。合金とテープの厚さの
割合は、磁気冷凍機の設計仕様に基いて選定することが
できる。一般的に、テープの移動速度は5〜30m/s
で、厚さは10〜10011rnであることが好ましい
。10μm未満では複合テープとしての安定性が不十分
となり、一方100μmを超えると渦電流損が大きくな
って磁気冷凍効率を低下させる。
実施例1゜ あらかじめアーク溶解法で作製した表1に示す組成のイ
ンゴットをレビテーション法で真空中で溶解し、その融
体を細孔ノズルから室温のCu冷却体上に急冷して非晶
質合金を作製した。
つぎに、融体を細孔ノズルから、室温で速度20m/s
で移動する厚さ20μmのCuテープ上に急冷し、厚さ
約20μmの非晶質合金を付着させて複合テープを作製
した。
表1 得られた非晶質合金および複合テープの磁化の温度によ
る変化を7.5T(テスラ)までの磁界H中で測定し、
主要な磁気冷凍性能である磁気エントロピーΔSMを求
めた。磁気エントロピーの最大値ΔS M maX s
ΔSMmaxを示す温度T m a x sΔSMma
xに対して63Mが60%以上の値を示す温度範囲ΔT
6(1sおよび熱伝導率λを表2に示す。
表2 63Mの温度による変化はゆるやかで、ΔTeaは非常
に広い。また、ΔSMmax s T max 、ΔT
uは、希土類元素の種類やその含有量を変化させること
によって容易に制御できる。非晶質合金と複合テープの
ΔSMmaX%  λを比較すると、Cuテープとの複
合によって、ΔSMmaxは2/3程度に低下するが、
λは著しく高くなる。
この非晶質合金複合テープを磁気冷凍作業物質として用
いると、広い温度領域で高い冷凍能力を発揮し、す・f
クル効率の高い磁気冷凍機が可能になる。
実施例2゜ 表3 あらかじめアーク溶解法で作製した表3に示fm成のイ
ンゴットをレビテーション法で真空中で溶解し、その融
体を細孔ノズルから、480℃に加熱したCu冷却体上
に急冷して多相の微結晶集合合金を作製した。つぎに、
融体を細孔ノズルから、480℃に加熱した速度20m
/sで移動する厚さ20μmのCuテープ上に急冷し、
厚さ約20μmの多相の微結晶集合合金を付着させて複
合テープを作製した。
多相の微結晶集合合金および複合テープのΔSMmax
v Tmax、 ΔTao1およびλを表4に示す。
この多相の微結晶集合合金は、キュリ一温度Tcの異な
るGdCu (Tc = 90K ) 、  GdCu
A1(Tc=67K)、Gd Alz (Tc = 1
68K )、Gd5i(Tc=50K)および、DyN
1(Tc=48K)、DyNiA1 (Tc=39K)
、D)’A12 (TO= 68 K )、Dy5iz
 (Tc = 17 K )などの微結晶からなるため
、68Mの温度による変化が非常にゆるやかになり、Δ
Tuは広い。また、Tmax、 ΔTsoは、希土類元
素の種類やその含有量を変化させることによって容易に
制御できる。多相の微結晶集合合金と複合テープのΔS
Mmax、  λを比較すると、 Cuテープとの複合
によって、68M maxは2/3程度に低下するが、
λは著しく高くなる。この多相の微結晶集合合金複合テ
ープを磁気冷凍作業物質として用いると、広い温度領域
で高い冷凍能力を発揮し、サイクル効率の高い磁気冷凍
機が可能になる。
実施例1.2において、Cu基板温度を100℃以上に
加熱した場合、合金の厚さの均一性や、合金とCu基板
との密接性の改善が認められた。
なお、実施例ではCuテープを使用した場合を示したが
、これに代えAgテープを使用した場合も幸同様な結果
が得られた。
発明の効果 合テープは、組成によってキュリ一温度を容易に制御す
ることができ、キュリ一温度を中心とした広い温度領域
にわたって磁気エントロピーが大きく、かつ磁気エント
ロピーの温度による変化がゆるやかで磁気熱量効果が大
きく、熱伝導率の高い、優れた磁気冷凍作業物質である
したがって、室温から20にの低温環境発生用磁気冷凍
機が可能になる。この磁気冷凍機は効率が従来のガス冷
凍機のそれより高くなるとともに小形化、軽量化するこ
とができる。
特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  −

Claims (1)

  1. 【特許請求の範囲】 1) Gd、Tb、Dy、Ho及びErから選ばれた単
    独または2種以上の希土類元素を含む非晶質合金あるい
    は多相の微結晶集合合金と、CuまたはAgテープを複
    合一体化したことを特徴とする磁気冷凍作業物質。 2) Gd、Tb、Dy、Ho及びErから選ばれた単
    独または2種以上の希土類元素を含む融体を、真空中あ
    るいは不活性ガス雰囲気中で、移動する室温〜600℃
    のCuまたはAgテープに接触急冷させ、非晶質合金あ
    るいは多相の微結晶集合合金と、CuまたはAgテープ
    とを複合一体化することを特徴とする磁気冷凍作業物質
    の製造方法。
JP60169789A 1985-08-02 1985-08-02 磁気冷凍作業物質及びその製造方法 Granted JPS6230829A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60169789A JPS6230829A (ja) 1985-08-02 1985-08-02 磁気冷凍作業物質及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169789A JPS6230829A (ja) 1985-08-02 1985-08-02 磁気冷凍作業物質及びその製造方法

Publications (2)

Publication Number Publication Date
JPS6230829A true JPS6230829A (ja) 1987-02-09
JPS6335703B2 JPS6335703B2 (ja) 1988-07-15

Family

ID=15892906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169789A Granted JPS6230829A (ja) 1985-08-02 1985-08-02 磁気冷凍作業物質及びその製造方法

Country Status (1)

Country Link
JP (1) JPS6230829A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411591A3 (en) * 1989-07-31 1991-10-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
US5074935A (en) * 1989-07-04 1991-12-24 Tsuyoshi Masumoto Amorphous alloys superior in mechanical strength, corrosion resistance and formability
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
US5462610A (en) * 1993-07-08 1995-10-31 Iowa State University Research Foundation, Inc. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
CN103334043A (zh) * 2013-03-22 2013-10-02 中国科学院物理研究所 一种可用作磁制冷材料的磁性合金

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074935A (en) * 1989-07-04 1991-12-24 Tsuyoshi Masumoto Amorphous alloys superior in mechanical strength, corrosion resistance and formability
EP0411591A3 (en) * 1989-07-31 1991-10-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
EP0774522A3 (en) * 1989-07-31 1997-06-04 Kabushiki Kaisha Toshiba A method of manufacturing a cold accumulating material and a refrigerator using the cold accumulating material
US5362339A (en) * 1991-03-14 1994-11-08 Honda Giken Kogyo Kabushiki Kaisha Magnetic refrigerant and process for producing the same
US5462610A (en) * 1993-07-08 1995-10-31 Iowa State University Research Foundation, Inc. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
CN103334043A (zh) * 2013-03-22 2013-10-02 中国科学院物理研究所 一种可用作磁制冷材料的磁性合金

Also Published As

Publication number Publication date
JPS6335703B2 (ja) 1988-07-15

Similar Documents

Publication Publication Date Title
Zhang et al. Review on the materials and devices for magnetic refrigeration in the temperature range of nitrogen and hydrogen liquefaction
Sahashi et al. New magnetic material R 3 T system with extremely large heat capacities used as heat regenerators
Annaorazov et al. Alloys of the Fe Rh system as a new class of working material for magnetic refrigerators
US5887449A (en) Dual stage active magnetic regenerator and method
JP6465884B2 (ja) Bを含む磁気熱量材料
Gschneidner Jr et al. Rare earths and magnetic refrigeration
CN106350690B (zh) 用于室温磁制冷材料的稀土钆基非晶合金条带及其制备方法
JPS6230840A (ja) 磁気冷凍作業物質及びその製造方法
JP6480933B2 (ja) Bを含む磁気熱量材料
KR101804062B1 (ko) Mn계 자기열량합금 및 이의 제조 방법
Shao et al. Magnetic entropy in nanocomposite binary gadolinium alloys
Fujieda et al. Enhancements of magnetocaloric effects in La (Fe0. 90Si0. 10) 13 and its hydride by partial substitution of Ce for La
Li et al. Phase constitution, microstructure evolution and magnetocaloric properties of LaFe11. 8Si1. 2 strip-casting flakes
JPS6230829A (ja) 磁気冷凍作業物質及びその製造方法
CN103668008B (zh) 铥基金属玻璃、制备方法及应用
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
Bin et al. Effect of proportion change of aluminum and silicon on magnetic entropy change and magnetic properties in La0. 8Ce0. 2Fe11. 5Al1. 5-xSix compounds
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
US5435137A (en) Ternary Dy-Er-Al magnetic refrigerants
Gschneidner Jr et al. Magnetic refrigeration
Cui et al. Effect of Cu doping on the magnetic and magnetocaloric properties in the HoNiAl intermetallic compound
CN103334043B (zh) 一种可用作磁制冷材料的磁性合金
JP2004225920A (ja) 蓄冷器
CN110983207B (zh) 一种不含Fe、Co、Ni的非晶复合材料及其制备方法和应用
Fujieda et al. Control of Working Temperature of Large Isothermal Magnetic Entropy Change in La (FexTMySi1− x− y) 13 (TM= Cr, Mn, Ni) and La1− zCez (FexMnySi1− x− y) 13

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term