JPS6230810A - Dephosphorizing method for high-manganese alloy - Google Patents

Dephosphorizing method for high-manganese alloy

Info

Publication number
JPS6230810A
JPS6230810A JP60169686A JP16968685A JPS6230810A JP S6230810 A JPS6230810 A JP S6230810A JP 60169686 A JP60169686 A JP 60169686A JP 16968685 A JP16968685 A JP 16968685A JP S6230810 A JPS6230810 A JP S6230810A
Authority
JP
Japan
Prior art keywords
slag
mno
oxidizing
flux
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60169686A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kajioka
梶岡 博幸
Hideki Ishikawa
英毅 石川
Hiroyuki Katayama
裕之 片山
Masatoshi Kuwabara
桑原 正年
Takashi Shimanuki
嶋貫 孝
Yoshinori Koga
古賀 懿徳
Yoshiaki Tamura
田村 芳昭
Masaki Fujita
正樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Nippon Steel Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP60169686A priority Critical patent/JPS6230810A/en
Publication of JPS6230810A publication Critical patent/JPS6230810A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To easily execute a dephosphorization treatment at a low cost by adding a specific ratio of BaCO3 as a flux to high-carbon ferromanganese contg. P at a high rate and oxidizing part of Mn to MnO by the CO2 formed by the decomposition thereof thereby incorporating MnO into molten slag. CONSTITUTION:The melt of the high-carbon ferromanganese of the high P content contg. >20-% Mn is subjdcted to a preliminary desiliconization treatment in a ladle and thereafter BaCO is added as the flux at 2-9% ratio thereto. An inert gas or oxidizing gas such as Ar, N2 or CO2 in then added to the melt and the melt is stirred. The operation in this stage is executed at a relatively low operating temp. of 1,250-1,400 deg.C and part Mn is oxidized to MnO by the gaseous CO2 formed by the thermal decomposition of BaCO3 so that the molten slag is made strongly basic by BaO and the oxidizing slag incorporated with 2-40% MnO is obtd. The P in the high-carbon ferromaganese is oxidized to P2O5 and is converted to slag by the above-mentioned slag. The dephosphorization refining is thus easily and surely executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高マンガン鉄合金(Mn含有率≧20%)の脱
りん方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for dephosphorizing high manganese iron alloys (Mn content ≧20%).

(従来の技術) 高マンガン鉄合金は鉄鋼精錬において、鉄鋼の品質を向
上させる目的で溶鋼の脱酸剤として、またマンガン分の
添加剤として使用されるものでおるが、その際高マンガ
ン鉄合金中に不純物として含まれているりんは、最終製
品である鉄鋼の品質に悪影響を及ぼすから、最近特に出
来るだけシん含有量の低い高マンガン鉄合金が要望され
てきている。
(Prior art) High manganese iron alloys are used in steel refining as deoxidizers for molten steel and as manganese additives for the purpose of improving the quality of steel. Since the phosphorus contained as an impurity in the steel has a negative effect on the quality of the final product, iron and steel, there has recently been a demand for high manganese iron alloys with as low a phosphorus content as possible.

一方、高マンガン鉄合金は通常マンガン鉱石を電気炉で
炭素還元して製造されるが原料(マンガン鉄鉱石、炭材
など)中のりん酸化物の90チ以上が同時に還元され、
マンガン鉄合金中のりん含有率は、例えば(Mn) :
 74 ’Aの7エロマンガンでハ(P) =0.10
−0.20 %と高い。また最近提案された上底吹き転
炉を用いた溶融還元製錬方法(%顧昭59−10814
3号)が安価な高マンガン鉄合金製造方法として注目さ
れているが、この場合には、製錬に必要なエネルギーの
全てを炭材の燃焼熱に依存するため電気炉製錬の場合よ
りも、炭材使用量の多い分だけ成品中のりんは高くなる
On the other hand, high manganese iron alloys are usually manufactured by reducing manganese ore with carbon in an electric furnace, but more than 90% of the phosphorus oxides in the raw materials (manganese iron ore, carbonaceous material, etc.) are reduced at the same time.
The phosphorus content in the manganese iron alloy is, for example, (Mn):
74 'A's 7eromangan Ha (P) = 0.10
-0.20%, which is high. In addition, a recently proposed smelting reduction smelting method using a top-bottom blowing converter (%Kusho 59-10814
No. 3) is attracting attention as an inexpensive method for producing high manganese iron alloys, but in this case, all of the energy required for smelting depends on the combustion heat of the carbonaceous material, so it is more expensive than electric furnace smelting. The higher the amount of carbon used, the higher the phosphorus content in the product.

これに対し、従来シんの低い高マンガン鉄合金を製造す
る方法として、シリコン含有率の高い高マンガン鉄合金
(シリコマンガン、5i35%)ラミ気炉で製造し除滓
後攪拌機能(スターラー、シェーカー)を有する反応容
器に入れ、上部よシ脱シん剤(CaOr CaC2+ 
Ca5t t CaF2等)を装入攪拌して脱シん処理
を行い、更に電気炉などでマンガン鉱石を用いて脱珪処
理を行って低シん高マンガン鉄合金とする方法が行われ
てきたが、製造工程が複雑で高価なものとなっている。
On the other hand, as a conventional method for manufacturing high manganese iron alloys with low slag, high manganese iron alloys with high silicon content (silicomanganese, 5i35%) are manufactured in a laminar furnace with stirring functions (stirrer, shaker) after sludge removal. ) into a reaction vessel with a desintering agent (CaOr CaC2+
A method has been used in which a low-density, high-manganese iron alloy is produced by charging and stirring silica (Ca5t t CaF2, etc.) and performing a desulfurization treatment, and then performing a desiliconization treatment using manganese ore in an electric furnace or the like. , the manufacturing process is complicated and expensive.

高マンガン鉄合金のシん除去方法について過去にいくつ
かの還元脱シん方法が提案されてきたが、いずれも工業
的規模で実施された例は数少ない。
Several reductive desulfurization methods have been proposed in the past for removing silane from high manganese iron alloys, but there are only a few examples of any of them being implemented on an industrial scale.

その中で最も工業的に有力とみられる方法は、CaC2
−Car2フラックスを用いて非酸化性雰囲気中で攪拌
する方法であるが、この方法も通常安価に得られる高マ
ンガン鉄合金は炭素含有率が高く、事前に脱炭処理を必
要とすること、脱シん効率が雰囲気の影りを受けやすい
こと、下記(1) 、 (2)式の脱シん反応によって
生成したC a s P 2は(3)式の如くに容易に
大気中のH2Oと反応して有毒なフォスフイン(PH,
)を発生するなどの問題を有している。
Among them, the most industrially promising method is CaC2
- This is a method of stirring in a non-oxidizing atmosphere using Car2 flux, but this method also has the disadvantage that high manganese iron alloys, which are usually obtained at low cost, have a high carbon content and require decarburization treatment in advance. The synchronization efficiency is easily influenced by the atmosphere, and the C a s P 2 generated by the desynthesis reaction of equations (1) and (2) below can easily be combined with H2O in the atmosphere as shown in equation (3). Reacts with toxic phosphine (PH,
).

30aC2+ 14Mn→3[Ca :l + 2Mn
 7C3−(1)3〔Ca〕+2P−+Ca3P2・・
・(2)Ca 、P 2+ a■x2o −+ 3Ca
O+ 2PH,−(3)一方、第3版鉄鋼便覧、第■巻
、「製銑、製鋼」丸善発行のP473にちるように、C
oo r Na 20などの塩基性酸化物及びそのハロ
ダン化物と鉄の酸化物などの酸化剤とから成るフラック
スを用いる酸化脱りん方法は、炭素含有率が高い方が脱
りんには有利であること、大気雰囲気中で処理できるこ
と、スラグ中のP2O5は安定化するので、スラグの後
処理に問題を残さないこと、低温程脱りんには有利であ
るので耐火物に負担が少ないことなど糧々の利点がある
が、あいに(、Mn含有率の高い鉄合金を脱りんする場
合にはP酸化よりもMnの酸化が優先し、高マンガン鉄
合金の脱りんを工業的に行うことはほとんど不可能とさ
れていた。
30aC2+ 14Mn→3[Ca:l + 2Mn
7C3-(1)3[Ca]+2P-+Ca3P2...
・(2) Ca, P 2+ a■x2o −+ 3Ca
O+ 2PH, - (3) On the other hand, as per page 473 of the 3rd edition Steel Handbook, Volume ■, "Pigmaking, Steelmaking" published by Maruzen, C
In the oxidative dephosphorization method using a flux consisting of a basic oxide such as Na 20 and its halide and an oxidizing agent such as iron oxide, a higher carbon content is more advantageous for dephosphorization. , it can be processed in the air, P2O5 in the slag is stabilized, so there are no problems with post-treatment of the slag, and lower temperatures are more advantageous for dephosphorization, so there is less stress on refractories. However, when dephosphorizing iron alloys with a high Mn content, Mn oxidation takes precedence over P oxidation, and it is almost impossible to dephosphorize high manganese iron alloys industrially. It was considered possible.

2[P)+−0゜→(P2O5)      ・・・(
4)(発明が解決しようとする問題点) 本発明は上述の利点をもつ安価で操業の容易な、しかし
ながら従来不可能とされてきた高マンガン鉄合金の酸化
脱りん方法を提供するものである。
2[P)+-0゜→(P2O5)...(
4) (Problems to be Solved by the Invention) The present invention provides an oxidative dephosphorization method for high manganese iron alloys that has the above-mentioned advantages and is inexpensive and easy to operate, but which has been considered impossible in the past. .

(問題点を解決するための手段) 本発明者らは、核目的を達成するために種々の成分の7
ラツクスを用いて、鋭意研究した結果。
(Means for Solving the Problems) The present inventors have proposed that seven of the various components be used to achieve the nuclear objective.
The result of intensive research using Lux.

Ba CO5を使用した場合、ある最適条件で、きわめ
て効果的な脱りんが行われることを見出した。本発明は
この知見に基づくもので、その要旨とする処は、Mnを
20%以上含有する溶融合金に、バリウム炭酸塩を主体
とするフラックスを添加し、発生する酸化性ガスにより
溶融合金中のMn分を酸化して、生成するスラグ中のM
nOを2〜40%の範囲にすることを特徴とする高マン
ガン合金の脱りん方法に套る。
It has been found that when Ba CO5 is used, very effective dephosphorization occurs under certain optimum conditions. The present invention is based on this knowledge, and its gist is that a flux mainly consisting of barium carbonate is added to a molten alloy containing 20% or more of Mn, and the generated oxidizing gas causes the molten alloy to become oxidized. M in the slag produced by oxidizing the Mn component
A method for dephosphorizing high manganese alloys is described, which is characterized in that nO is in the range of 2 to 40%.

(発明の構成及び作用) 本発明の方法が特に炭素含有率の高い高マンガン鉄合金
に対して有効である理由は次の3点と考えられる。
(Structure and operation of the invention) The following three reasons are considered to be the reasons why the method of the present invention is particularly effective for high manganese iron alloys with a high carbon content.

第1点は金属中のりんの活量は炭素の存在によって非常
に高められることでら)、第2点は強塩基性のBaO(
BaCO5は分解してBaOとCO□に変わる)がスラ
グ中のMnOの活量係数を高くする一方、P2O5の活
量係数を低下させること、すなわちMOの酸化を抑制し
つつ、分配比(P2O,)/〔P〕を犬にすることで6
D、第3点は、BaO自体の融点は高い(1923℃)
が、Mnの一部酸化によって生成するMnOがスラグの
溶融温度及び粘性を低下させ反応の進行に有利な物理的
状態をつくることである。
The first point is that the activity of phosphorus in metals is greatly increased by the presence of carbon), and the second point is that the activity of phosphorus in metals is greatly increased by the presence of carbon.
BaCO5 decomposes and turns into BaO and CO□) increases the activity coefficient of MnO in the slag, while decreasing the activity coefficient of P2O5, that is, suppressing the oxidation of MO, and increasing the distribution ratio (P2O, )/[P] becomes 6 by making it a dog.
D. The third point is that the melting point of BaO itself is high (1923°C)
However, MnO produced by partial oxidation of Mn lowers the melting temperature and viscosity of the slag, creating a physical state favorable to the progress of the reaction.

本発明者らがB aCO5フラックスを用いて高マンガ
ン鉄合金の脱シん実験を行った結果の一列を第1図に示
すが、短時間で十分な脱りんが終結していることがわか
る。
Figure 1 shows a series of results of dephosphorization experiments of high manganese iron alloys conducted by the present inventors using BaCO5 flux, and it can be seen that sufficient dephosphorization was completed in a short time.

第2図は、高マンガン鉄合金の炭素含有率C%C〕(飽
和値(%C)satに対する比で表わす)と脱シん率及
びスラグのMnO濃度(%Mn0)との関係について実
験した結果を示したものである。
Figure 2 shows the relationship between the carbon content (C%C) of a high manganese iron alloy (expressed as a ratio to the saturation value (%C) sat), desynchronization rate, and slag MnO concentration (%Mn0). This shows the results.

ここで、脱シん率とは次の式で定義される値である。Here, the desulfurization rate is a value defined by the following formula.

また高マンガン鉄合金の炭素含有率の飽和値[%C″l
5atは〔%Mn)と温度T (℃)との関数として(
5)式で表わされる。
In addition, the saturation value of carbon content of high manganese iron alloy [%C″l
5at as a function of [%Mn) and temperature T (℃) (
5) It is expressed by the formula.

〔%C)sat=o、0451JMn:]+0.002
T +1.2  ・i5)〔チC〕が飽和値に近いほど
(MnO)は低く、また脱すん率は高い。しかし、〔チ
C〕が低くなると(6)式の平衡反応によって決まる(
チM口O)が高くなシ、相対的にBaOの活量が低下し
、スラグの脱りん能が低下することになる。本図による
と、効率的な脱シん反応(脱シん率≧50チ)を生じさ
せるだめの〔チリ/〔チリsat比の適正範囲は0.7
〜1.0でこれに対応する(%MnO)の範囲は2〜4
0チである。この範囲ではスラグの流動性は良好で、反
応の進行に有利な物理的状態が維持される。
[%C)sat=o,0451JMn:]+0.002
T +1.2 ・i5) The closer C is to the saturation value, the lower (MnO) and the higher the desulfurization rate. However, when [C] becomes low, (
When the temperature (O) is high, the activity of BaO is relatively reduced, and the dephosphorizing ability of the slag is reduced. According to this figure, the appropriate range of the [chile/[chile sat ratio] for the tank to produce an efficient desulfurization reaction (desynthesis rate ≧ 50%) is 0.7.
~1.0 and the corresponding range of (%MnO) is 2 to 4
It is 0chi. In this range, the slag has good fluidity and maintains a physical state favorable to the progress of the reaction.

第3図は、他成分であるSiの含有率と脱シん率との関
係を示すが、[%81)が高いと、Slの酸化が優先す
る上に生成する酸化性酸化物StO□は、スラグの塩基
度を低下させ、その結果脱りん率が低下する。従って脱
りん処理を行う前に脱硼処理を行って〔チS1)を例え
ば0.3チ以下に低下させておく必要がある。
Figure 3 shows the relationship between the content of Si, which is another component, and the desulfurization rate. When [%81] is high, the oxidation of Sl takes priority and the oxidizing oxide StO□ produced , lowers the basicity of the slag, resulting in a lower dephosphorization rate. Therefore, before performing the dephosphorization treatment, it is necessary to perform a deboronic treatment to reduce the [chi S1) to, for example, 0.3 chi or less.

フラックスの添加量の最適範囲は1〜12チ、好ましく
は2〜9チである。フランクス添加量が1%未満では脱
シん率は低く、また12チを超えるとフラックスの単位
使用量当りの脱りん効率が急激に低下することとなる。
The optimal range for the amount of flux added is 1 to 12 inches, preferably 2 to 9 inches. If the amount of flux added is less than 1%, the dephosphorization efficiency will be low, and if it exceeds 12%, the dephosphorization efficiency per unit amount of flux used will drop sharply.

使用するフラックスの性状は固体粒状あるいは粉末状の
もので、その添加方法は上置きおよび/あるいは溶湯中
へのインジェクションでのいずれでもよいが、粉末状フ
ラックスのインジェクションが攪拌時間の短縮及び脱9
ん効率の向上に効果的である〇 攪拌はメタル−スラグ間反応を速めるのが目的でその方
法についてはガス攪拌、スターラー、シェーカーなどを
用いる方法のいずれでもよいが、ガス攪拌が単位エネル
ギー当シの攪拌強度が最も大きく、攪拌時間の短縮に効
果的でるる。ガス攪拌の場合には用いるガスの種類は酸
化性ガス、不活性ガスのいずれでもよいが特に好ましく
はArtN2.CO2などである。
The flux used may be in the form of solid particles or powder, and the method of adding it may be by placing it on top and/or by injecting it into the molten metal. However, injection of powdered flux reduces stirring time and removes 90%.
The purpose of stirring is to speed up the reaction between metal and slag, and the method for this can be gas stirring, a stirrer, a shaker, etc., but gas stirring The stirring intensity is the highest and is effective in shortening the stirring time. In the case of gas stirring, the type of gas used may be either an oxidizing gas or an inert gas, but ArtN2. CO2, etc.

反応容器は攪拌手段に応じて転炉型おるいは取鍋型のい
ずれかの方式が用いられる。また、その耐火物の材質は
スラグが高塩基性であるゆえK、アグネシアレンカ、マ
グクロレンが、マグネシアカーダンレンガなどとするこ
とが望ましい。
The reaction vessel used is either a converter type or a ladle type depending on the stirring means. Further, since slag is highly basic, the material of the refractory is preferably K, agnesia brick, magnesia cardan brick, or the like.

まだこの工程の操業温度九ついては(4)式の平衡によ
って定まる分配比(P2O3)/[:P]は低温程有利
であるかスラグ及びメタルの液相線温度の制約から12
50〜14000が最適温度範囲である。
Regarding the operating temperature of this process, the distribution ratio (P2O3)/[:P] determined by the equilibrium of equation (4) is more advantageous at lower temperatures.
50-14000 is the optimum temperature range.

実施例1 電気炉で製造した溶融高炭素フェロマンガン10tを取
鍋に装入し、工業用試薬のB aCOsを500に!9
投入し、スターラーで15分間攪拌した後スラグを分離
し、メタルを鋳造した。攪拌中の溶湯の温度は1350
〜1280t:であった。
Example 1 10 tons of molten high carbon ferromanganese produced in an electric furnace was charged into a ladle, and the BaCOs of the industrial reagent was raised to 500! 9
The slag was separated after stirring for 15 minutes using a stirrer, and metal was cast. The temperature of the molten metal during stirring is 1350
~1280t:.

処理前後のメタルの成分を表1に示す。Table 1 shows the metal components before and after treatment.

表  1 実施例2 高周波誘導溶解炉で溶解した高マンガン鉄合金溶湯50
0V%9を底吹のポーラスプラグからAt200 N1
7分を吹き込んでいる反応容器に装入し、工業用試薬の
BaCO530’fJiを添加し、ガス攪拌を7分間続
けた。この間の溶湯温度は1400−・1330℃であ
った。処理後スラグを除去してメタルを鋳込んだ。
Table 1 Example 2 High manganese iron alloy molten metal 50 melted in a high frequency induction melting furnace
0V%9 from bottom-blown porous plug At200 N1
The reaction vessel was charged with bubbling for 7 minutes, the industrial reagent BaCO530'fJi was added, and gas stirring was continued for 7 minutes. The temperature of the molten metal during this period was 1400-1330°C. After treatment, the slag was removed and the metal was cast.

処理前後のメタル成分を表2に示す。Table 2 shows the metal components before and after treatment.

実施例3 5を上底吹転炉を用いてマンガン鉱石を溶融還元製錬し
た後、スラグを全量除去し、工業用試薬のBaCO56
0’!9を浸漬ノズルを用いてN2ガスをキャリアーと
して15分間で吹き込んだ。底吹きの2重管の内管から
はArを150 N11分、外管がらはCO□を70 
N17分吹き込み、攪拌を続けた・この間の溶湯の温度
は1370〜1320℃であった。処理後、スラグを分
離除去しメタルは全量鋳型に鋳込んで冷却後秤量したと
ころ、成品重量は1350ゆであった。
Example 3 After smelting manganese ore using a top-bottom blowing converter, the entire amount of slag was removed, and the industrial reagent BaCO56
0'! No. 9 was blown into the sample using a submerged nozzle for 15 minutes using N2 gas as a carrier. Ar from the inner tube of the bottom-blown double tube for 11 minutes, and CO□ from the outer tube for 70 minutes.
N was blown in for 17 minutes and stirring was continued. During this period, the temperature of the molten metal was 1370 to 1320°C. After the treatment, the slag was separated and removed, and the entire metal was cast into a mold, cooled, and weighed, and the weight of the finished product was 1,350 yuan.

処理前後のメタル成分を表3に示す。Table 3 shows the metal components before and after treatment.

宍 3 (発明の効果) 以上説明したように、本発明の脱シん方法によれば、従
来の多段方式を用いなくても、安価な炭素含有率の高い
高マンガン鉄合金中のシんを効率よく、しかもスラグの
後処理に問題を残さすに容易に低下せしめることができ
る。
3 (Effects of the Invention) As explained above, according to the desynthesis method of the present invention, desynthesis can be removed from an inexpensive high manganese iron alloy with a high carbon content without using the conventional multi-stage method. It can be efficiently and easily reduced without leaving any problems in the post-treatment of the slag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高マンガン鉄合金の脱りん挙動の1例を示す図
、第2図は高マンガン鉄合金の炭素含有率と脱9ん率及
びスラグ中のMn01度の関係を示す図、第3図は高マ
ンガン鉄合金のSt含有率と脱シん率との関係を示す図
である。 第1図 時 間 (今) 第2図 C%C本。〕よ4..。
Figure 1 is a diagram showing an example of the dephosphorization behavior of high manganese iron alloys, Figure 2 is a diagram showing the relationship between carbon content and de9ization rate of high manganese iron alloys, and Mn01 degree in slag. The figure is a diagram showing the relationship between the St content and the dessinization rate of a high manganese iron alloy. Figure 1 Time (now) Figure 2 C%C book. ]Yo4. .. .

Claims (1)

【特許請求の範囲】[Claims] Mnを20%以上含有する溶融合金に、バリウム炭酸塩
を主体とするフラックスを添加し、発生する酸化性ガス
により溶融合金中のMn分を酸化して生成するスラグ中
のMnOを2〜40%の範囲にすることを特徴とする高
マンガン合金の脱りん方法。
A flux mainly consisting of barium carbonate is added to a molten alloy containing 20% or more of Mn, and the Mn content in the molten alloy is oxidized by the generated oxidizing gas, reducing the MnO in the slag by 2 to 40%. A method for dephosphorizing high manganese alloys.
JP60169686A 1985-08-02 1985-08-02 Dephosphorizing method for high-manganese alloy Pending JPS6230810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60169686A JPS6230810A (en) 1985-08-02 1985-08-02 Dephosphorizing method for high-manganese alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169686A JPS6230810A (en) 1985-08-02 1985-08-02 Dephosphorizing method for high-manganese alloy

Publications (1)

Publication Number Publication Date
JPS6230810A true JPS6230810A (en) 1987-02-09

Family

ID=15891019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169686A Pending JPS6230810A (en) 1985-08-02 1985-08-02 Dephosphorizing method for high-manganese alloy

Country Status (1)

Country Link
JP (1) JPS6230810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036317B1 (en) * 2008-12-19 2011-05-23 주식회사 포스코 Dephosphorous flux for FeMn, Recycling method of byproduct from dephosphorizing for FeMn, Recalling method of byproduct from dephosphorizing for FeMn and Dephosphorous flux for steel making
KR101036321B1 (en) * 2008-12-26 2011-05-23 주식회사 포스코 Apparatus for Dephosphorization of Ferromanganese and a Method for Dephosphorization of Ferromanganese
KR101259370B1 (en) 2010-12-22 2013-04-30 주식회사 포스코 Method for processing ferromanganese

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036317B1 (en) * 2008-12-19 2011-05-23 주식회사 포스코 Dephosphorous flux for FeMn, Recycling method of byproduct from dephosphorizing for FeMn, Recalling method of byproduct from dephosphorizing for FeMn and Dephosphorous flux for steel making
KR101036321B1 (en) * 2008-12-26 2011-05-23 주식회사 포스코 Apparatus for Dephosphorization of Ferromanganese and a Method for Dephosphorization of Ferromanganese
KR101259370B1 (en) 2010-12-22 2013-04-30 주식회사 포스코 Method for processing ferromanganese

Similar Documents

Publication Publication Date Title
JPS6230810A (en) Dephosphorizing method for high-manganese alloy
JP2897640B2 (en) Dephosphorization method of high chromium high manganese molten alloy iron
RU2566230C2 (en) Method of processing in oxygen converter of low-siliceous vanadium-bearing molten metal
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPS61272312A (en) Method for dephosphorizing high-manganese iron alloy
JPH05148525A (en) Treatment of molten iron
JP4461495B2 (en) Dephosphorization method of hot metal
JP2000044298A (en) Method for preventing powdering of reduction slag
JPH07103416B2 (en) High carbon steel wire manufacturing method
JPH1161221A (en) Method for melting low manganese steel
JP2555727B2 (en) Dephosphorization method of high manganese molten iron
JPS5934767B2 (en) Method for removing impurities from metals or alloys
JPS6212301B2 (en)
SU821501A1 (en) Method of steel production
JPH02163310A (en) Method for removing cr in molten iron
SU821503A1 (en) Method of steel smelting
JPH11217246A (en) Prevention of powdering of reduced slag
JPH10102120A (en) Steelmaking method
JPH0676613B2 (en) Dephosphorization method of high manganese molten iron
JPH06145767A (en) Method for removing manganese in molten iron and production of pure iron for industrial purpose
SU1092187A1 (en) Method for decarbonizing high-carbon ferrochrome or ferromanganese
JPH08260015A (en) Pretreatment of molten iron
CN115989324A (en) Method for producing low-phosphorus iron liquid
JPH111714A (en) Steelmaking method
JPH0568532B2 (en)