JPS6230253B2 - - Google Patents

Info

Publication number
JPS6230253B2
JPS6230253B2 JP1205184A JP1205184A JPS6230253B2 JP S6230253 B2 JPS6230253 B2 JP S6230253B2 JP 1205184 A JP1205184 A JP 1205184A JP 1205184 A JP1205184 A JP 1205184A JP S6230253 B2 JPS6230253 B2 JP S6230253B2
Authority
JP
Japan
Prior art keywords
porous metal
metal body
easily water
soluble salt
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1205184A
Other languages
Japanese (ja)
Other versions
JPS60159136A (en
Inventor
Sumio Osada
Kazuhide Kaneiwa
Takashi Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shachihata Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Shachihata Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shachihata Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1205184A priority Critical patent/JPS60159136A/en
Priority to GB08501351A priority patent/GB2154252B/en
Priority to DE19853502504 priority patent/DE3502504A1/en
Publication of JPS60159136A publication Critical patent/JPS60159136A/en
Publication of JPS6230253B2 publication Critical patent/JPS6230253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、印字体、石油ストーブの燈芯、軸
受、フイルター、防音材、金型などとして有用な
連通気孔を有する多孔質金属体の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous metal body having communicating holes, which is useful as a printed body, a light wick for an oil stove, a bearing, a filter, a soundproofing material, a mold, and the like.

これまで、連通気孔を有する多孔質金属体の製
造方法としては、金属粉末を型に入れ、これを金
属の融点以下の温度に加熱して、金属粒子相互間
を部分的に焼結させる、いわゆる粉末や金法、発
泡樹脂に液状セツコウを流し込み冷却固化後、加
熱して樹脂部分を焼成除去し、次いで空隙部分に
溶融金属を流し込み冷却後セツコウを除去する、
いわゆる鋳造法、立体網目構造を有する発泡樹脂
に、金属めつきを施すことにより外観上多孔質金
属体に類似した複合体とする、いわゆるめつき法
などが知られている。
Up until now, the method for manufacturing porous metal bodies with communicating pores has been to place metal powder into a mold, heat it to a temperature below the melting point of the metal, and partially sinter the metal particles. Using the powder or metal method, liquid metal is poured into foamed resin, cooled and solidified, and then heated to remove the resin part by firing. Next, molten metal is poured into the void and the metal is removed after cooling.
The so-called casting method and the so-called plating method, in which a foamed resin having a three-dimensional network structure is plated with metal to form a composite body similar in appearance to a porous metal body, are known.

しかしながら、粉末や金法は、得られる気孔率
がせいぜい20〜30%と低く、高い気孔率のものを
得る方法としては不適当であるし、また鋳造法は
工程数が多い上に、やはり気孔率に限度がある。
他方、めつき法は気孔率の高いものを得ることは
できるが、機械的強度や耐熱性を欠くという致命
的な欠点がある。
However, the powder and metal methods yield low porosity of 20-30% at most, making them unsuitable as methods for obtaining high porosity.Furthermore, the casting method requires a large number of steps and still has porosity. There is a limit to the rate.
On the other hand, although it is possible to obtain a material with high porosity using the plating method, it has the fatal drawback of lacking mechanical strength and heat resistance.

このように、従来の多孔質金属体の製造方法
は、いずれもなんらかの欠点を有し、高い気孔
率、優れた機械的強度や耐熱性をもつ多孔質金属
体を得ることができなかつた。
As described above, all of the conventional methods for producing porous metal bodies have some drawbacks, and it has not been possible to obtain porous metal bodies with high porosity, excellent mechanical strength, and heat resistance.

本発明者らは、このような従来方法のもつ欠点
を克服し、品質の優れた多孔質金属体が容易に得
られる方法を開発すべく鋭意研究を重ね、先に易
水溶性塩粉末の焼結体に溶融金属を圧入したの
ち、易水溶性塩を溶解除去することにより多孔質
金属体を得る方法を提案したが、さらに研究を続
けた結果、上記のようにして得た多孔質金属体を
引き続き機械的又は静水圧的に圧縮することによ
り、より微細な、しかも制御された孔径の連通気
孔をもつ多孔質金属体が得られることを見出し、
この知見に基づいて本発明をなすに至つた。
The inventors of the present invention have conducted extensive research in order to overcome the drawbacks of such conventional methods and develop a method that can easily produce a porous metal body of excellent quality. We proposed a method to obtain a porous metal body by press-fitting molten metal into a compact and then dissolving and removing the easily water-soluble salts, but as a result of further research, we found that the porous metal body obtained as described above It has been discovered that by subsequently mechanically or hydrostatically compressing the metal, a porous metal body having finer, moreover, interconnected pores with a controlled pore size can be obtained.
Based on this knowledge, the present invention was accomplished.

すなわち、本発明は、 (イ) 金型に、粒径10〜150μmの範囲内にある易
水溶性塩粉末を充填する工程、 (ロ) この易水溶性塩粉末を充填した金型を加熱し
てその中の易水溶性塩粉末を焼結する工程、 (ハ) このようにして得た易水溶性塩焼結体を予熱
し、これに溶融金属を圧入する工程、 (ニ) 溶融金属を冷却固化する工程、 (ホ) 易水溶性塩を洗浄除去し多孔質金属体を得る
工程、及び (ヘ) このようにして得た多孔質金属体を機械的又
は静水圧的に圧縮し、より縮小された孔径をも
つ多孔質金属体とする工程 から成る多孔質金属体の製造方法を提供するもの
である。
That is, the present invention includes (a) filling a mold with easily water-soluble salt powder having a particle size within the range of 10 to 150 μm; (b) heating the mold filled with this easily water-soluble salt powder. (c) Preheating the easily water-soluble salt sintered body thus obtained and press-fitting the molten metal into it; (d) Cooling the molten metal. (e) a step of washing and removing easily water-soluble salts to obtain a porous metal body; and (f) mechanically or hydrostatically compressing the porous metal body thus obtained to further reduce the size of the porous metal body. The present invention provides a method for manufacturing a porous metal body, which comprises a step of forming a porous metal body having a pore size of a certain amount.

本発明方法において焼結を形成させるために使
用される易水溶性塩とは、常温又は加温した水に
容易に溶解しうる非熱分解性金属塩のことであつ
て、このようなものとしては、例えば塩化第一ス
ズ、塩化亜鉛、塩化第二銅、塩化マグネシウム、
塩化カリウム、塩化ナトリウム、塩化バリウム、
硫酸マグネシウム、リン酸カリウムなどを挙げる
ことができる。
The readily water-soluble salt used to form the sinter in the method of the present invention refers to a non-thermally decomposable metal salt that can be easily dissolved in water at room temperature or in heated water. For example, stannous chloride, zinc chloride, cupric chloride, magnesium chloride,
Potassium chloride, sodium chloride, barium chloride,
Examples include magnesium sulfate and potassium phosphate.

本発明方法において用いる易水溶性塩粉末とし
ては、粒径10〜150μmの範囲のものを用いる必
要がある。
The easily water-soluble salt powder used in the method of the present invention must have a particle size in the range of 10 to 150 μm.

本発明方法において、易水溶性塩粉末を焼結す
るために用いる金型は、必ずしも金属で作られた
ものである必要はなく、所要の強度をもつ耐火材
料、例えば黒鉛などで作られたものであつてもよ
い。また、この型の形状として角柱状、円柱状、
角錐台状、円錐台状、立方体状等任意の形状を選
ぶことができる。
In the method of the present invention, the mold used for sintering the easily water-soluble salt powder is not necessarily made of metal, but may be made of a refractory material with the required strength, such as graphite. It may be. In addition, the shapes of this type include prismatic, cylindrical,
Any shape can be selected, such as a truncated pyramid, a truncated cone, or a cube.

この金型に易水溶性塩粉末を充填する場合、最
終的に得られる多孔質金属の気孔率が60〜80%程
度になるように充填するのが望ましい。このため
には、易水溶性塩粉末の充填率を50〜70%の範囲
で選択するのがよい。
When filling this mold with easily water-soluble salt powder, it is desirable to fill the mold so that the porous metal finally obtained has a porosity of about 60 to 80%. For this purpose, the filling rate of the easily water-soluble salt powder is preferably selected in the range of 50 to 70%.

この金型に易水溶性塩粉末を充填する場合印字
部分には粒径10〜150μmの粉末を充填し、イン
キ吸蔵部分にはさらに大きい粒径のもの、例えば
100〜1000μmのものを充填することができる。
When filling this mold with easily water-soluble salt powder, the printing area is filled with powder with a particle size of 10 to 150 μm, and the ink storage area is filled with powder with a larger particle size, e.g.
Can be filled with 100 to 1000 μm.

次に、易水溶性塩粉末の焼結工程は、易水溶性
塩粉末を充填した金型をそのまま加熱装置例えば
電気炉に入れ、例えば塩化ナトリウムの場合650
〜800℃に加熱することによつて行われる。この
焼結に要する間は通常2〜10時間程度ある。この
焼結処理により、焼結前は点接触していた各粉末
粒子は面接触するようになり、溶融金属を圧入
し、易水溶性塩を洗浄除去した後、ほぼ完全な連
続気孔が形成されることになる。この際、加熱時
間が長ければ長いほど各粒子間の接触面積割合は
増加するが、あまり長くすると独立した空隙部が
生成しはじめる状態、いわゆる過焼結状態が生
じ、後続工程で溶融金属を圧入することができな
くなるので好ましくない。この過焼結状態を生じ
ないようにするには易水溶性塩焼結体の空隙率を
15〜50%の範囲内に制御するのが有利である。
Next, in the sintering process of the easily water-soluble salt powder, the mold filled with the easily water-soluble salt powder is placed in a heating device, such as an electric furnace, and the
This is done by heating to ~800°C. This sintering usually takes about 2 to 10 hours. Through this sintering process, the powder particles, which were in point contact before sintering, now come into surface contact, and after molten metal is injected and easily water-soluble salts are washed away, almost completely continuous pores are formed. That will happen. At this time, the longer the heating time, the more the contact area ratio between each particle increases, but if the heating time is too long, a state where independent voids begin to form, a so-called oversintered state, will occur, and molten metal will be press-fitted in the subsequent process. This is not desirable because it makes it impossible to do so. In order to prevent this over-sintered state from occurring, the porosity of the easily water-soluble salt sintered body should be adjusted.
It is advantageous to control it within a range of 15-50%.

次いで、このようにして易水溶性塩焼結体に溶
融金属を圧入するが、この工程は、前工程で用い
た金型が耐圧性のものであればそれをそのまま用
いて行つてもよいし、また別の適当な耐圧金型に
焼結体を移して行つてもよい。この際に用いる溶
融金属としては、易水溶性塩よりも低い融点をも
つ金属又は合金であれば任意のものを用いること
ができる。このようなものとしては、例えばス
ズ、亜鉛、マグネシウム又はそれらの合金を挙げ
ることができる。
Next, the molten metal is press-fitted into the easily water-soluble salt sintered body in this way, but this step may be carried out using the mold used in the previous step as it is if it is pressure resistant, or Alternatively, the sintered body may be transferred to another suitable pressure-resistant mold. As the molten metal used in this case, any metal or alloy can be used as long as it has a melting point lower than that of the readily water-soluble salt. Examples of such materials include tin, zinc, magnesium, and alloys thereof.

本発明方法において、均質でかつ完全な連続気
孔を有する印字体を得るには、この溶融金属を圧
入する際、前記の焼結体を予熱することが必要で
ある。この予熱温度としては、溶融金属の凝固点
よりも低く、次式で示される臨界予熱温度TC
(℃)よりも高い温度が用いられる。
In the method of the present invention, in order to obtain a printed body having homogeneous and completely continuous pores, it is necessary to preheat the sintered body when press-fitting the molten metal. This preheating temperature is lower than the freezing point of the molten metal, and is a critical preheating temperature T C expressed by the following equation.
(°C) is used.

C=TM−0.25H/V 〔式中のTM、HM及びDMはそれぞれ溶融金属の凝
固点(℃)、凝固潜熱(cal/g)及び密度(g/
cm3)であり、VP、CP及びDPはそれぞれ塩化ナ
トリウム粒子の空間占有率又は充填率、該粒子の
比熱(cal/g/℃)及び密度(g/cm3)であ
る〕。
T C = T M −0.25H M D M /V P C P D P [In the formula, T M , H M and D M are the freezing point (°C), latent heat of solidification (cal/g), and density of the molten metal, respectively. (g/
cm 3 ), and V P , C P and D P are the space occupancy or filling rate of the sodium chloride particles, the specific heat (cal/g/° C.) and density (g/cm 3 ) of the particles, respectively].

この溶融金属の圧入圧力は、焼結体の空隙を流
れる溶融金属の流体抵抗よりも大きくする必要が
あるが、通常は30Kg/cm2又はそれ以上の圧力が用
いられる。またこの圧入に要する時間は、目的と
する印字体の大きさによつて異なるが、通常は数
秒ないし数分の範囲である。このようにして、溶
融金属を圧入したのち、冷却し、金型から内容物
を取り出せば、金属−塩化ナトリウム複合体が得
られる。
The press-in pressure of this molten metal needs to be higher than the fluid resistance of the molten metal flowing through the voids of the sintered body, and usually a pressure of 30 Kg/cm 2 or more is used. Further, the time required for this press-fitting varies depending on the size of the intended print body, but is usually in the range of several seconds to several minutes. After the molten metal is press-fitted in this manner, the metal-sodium chloride composite is obtained by cooling and removing the contents from the mold.

次いで水好ましくは熱水によりその中の易水溶
性塩を溶かし出して除去する。これは、通常、水
又は、熱湯中に複合体を浸せきして行われる。こ
の際、溶出を促進するために、かきまぜたり、振
りまぜることもできる。
Next, easily water-soluble salts therein are dissolved out and removed with water, preferably hot water. This is usually done by immersing the composite in water or boiling water. At this time, it may be stirred or shaken to promote elution.

このようにして得られた多孔質金属体を乾燥し
たのち、機械的又は静水圧的手段を用いて圧縮す
る。
After drying the porous metal body thus obtained, it is compressed using mechanical or hydrostatic means.

この圧縮工程は、例えば万能試験機、静水圧機
などを用い、上方、下方又は上下両方向、あるい
は上下左右方向から、100〜500Kg/cm2の圧力で均
一に圧縮することにより行われる。この圧縮によ
り、多孔質金属体は全体的に縮小され、気孔率及
び気孔の孔径は小さくなるが、気孔の連通状態は
そのまま維持されるので、使用目的にはなんら悪
影響を及ぼすことはない。
This compression step is carried out by uniformly compressing the material at a pressure of 100 to 500 Kg/cm 2 from above, below, both vertically, or vertically and horizontally, using a universal testing machine, a hydrostatic pressure machine, etc., for example. Due to this compression, the porous metal body is reduced in size as a whole, and the porosity and the pore diameter of the pores are reduced, but the communication state of the pores is maintained, so there is no adverse effect on the intended use.

したがつて、本発明方法によれば、あらかじめ
(イ)ないし(ホ)工程で高い気孔率、例えば約70%又は
それ以上の気孔率の多孔質金属体を形成させてお
き、次いでこれを圧縮することにより気孔率70%
未満の任意の多孔質金属体を製造することができ
る。また、圧縮工程において全体的に圧縮するだ
けでなく、所要の部分のみ、部分的に圧縮するこ
ともできる。このように、全体的又は部分的な圧
縮にもかかわらず、連通気孔の閉塞を生じること
なく任意に制御された気孔率の連通した気孔をも
つ多孔質金属体が得られたことは、全く意外なこ
とであつた。
Therefore, according to the method of the present invention, in advance
A porous metal body with a high porosity, for example, about 70% or more is formed in the steps (a) to (e), and then compressed to achieve a porosity of 70%.
Any porous metal body can be manufactured with less than Furthermore, in the compression step, it is possible not only to compress the entire body, but also to partially compress only a required portion. Thus, it is quite surprising that a porous metal body with interconnected pores with arbitrarily controlled porosity was obtained without causing blockage of interconnecting pores despite total or partial compression. It was a matter of fact.

さらに、本発明方法によれば、多孔質金属体が
全体的に均一に圧縮されるため、その硬度を増大
しうるという効果も奏される。
Further, according to the method of the present invention, since the porous metal body is compressed uniformly as a whole, the hardness of the porous metal body can be increased.

本発明方法により得られる多孔質金属体は、連
通した気孔を有するものであるから、インキを吸
蔵させた印字体、例えば筆記具、タイプライター
活字、印判など、石油ストーブの燈芯や燃焼補助
カバー、潤滑剤を含浸させた軸受、ガス抜き金型
等として、またその遮断性を利用して防音材その
他の建築材料等として広く使用することができ
る。
Since the porous metal body obtained by the method of the present invention has communicating pores, it can be used for printing bodies that store ink, such as writing instruments, typewriter type, stamps, kerosene stove lamp wicks, combustion auxiliary covers, lubricants, etc. It can be widely used as bearings impregnated with agents, degassing molds, etc., and as soundproofing materials and other building materials by utilizing its insulation properties.

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 平均粒径50μmの塩化ナトリウム粉末を、ラバ
ープレスにより径100mm、長さ100mmの円柱状に予
備成形したのち、黒鉛製容器に装入し、電気炉中
で780℃において4時間加熱し、径95mm、長さ96
mmの円柱状塩化ナトリウム焼結体を得た。
Example 1 Sodium chloride powder with an average particle size of 50 μm was preformed into a cylindrical shape with a diameter of 100 mm and a length of 100 mm using a rubber press, and then charged into a graphite container and heated at 780° C. for 4 hours in an electric furnace. , diameter 95mm, length 96
A cylindrical sodium chloride sintered body of mm was obtained.

次いで、この焼結体を鋳鉄製容器に移し、500
℃に加熱したのち、12%Si−Al合金を40Kg/cm2
圧力で圧入し、Al合金−塩複合体を製造した。
この複合体から厚さ8mmの円板状試片10個をスラ
イスし、旋盤仕上げしたのち、流水中で3時間、
超音波洗浄し、続いて30分間真空脱気し、さらに
30分間超音波再洗浄することにより完全に塩を溶
解除去し、乾燥する。
Next, this sintered body was transferred to a cast iron container and heated for 500 min.
After heating to ℃, 12% Si-Al alloy was press-fitted at a pressure of 40 kg/cm 2 to produce an Al alloy-salt composite.
Ten disk-shaped specimens with a thickness of 8 mm were sliced from this composite, finished with a lathe, and then placed in running water for 3 hours.
Ultrasonic cleaning followed by vacuum degassing for 30 min and further
Completely dissolve and remove the salt by ultrasonic rewashing for 30 minutes and dry.

このようにして、気孔率68〜70%の連通気孔を
有する多孔質Al合金が得られた。
In this way, a porous Al alloy having continuous pores with a porosity of 68 to 70% was obtained.

次に、この試料を万能試験機により、100Kg/
cm2、200Kg/cm2、300Kg/cm2、400Kg/cm2及び500Kg/cm2
の各圧力で圧縮した。この際の圧力と気孔率との
関係をグラフとして第1図に示す。
Next, this sample was tested at 100 kg/kg using a universal testing machine.
cm 2 , 200Kg/cm 2 , 300Kg/cm 2 , 400Kg/cm 2 and 500Kg/cm 2
It was compressed at each pressure. The relationship between pressure and porosity at this time is shown as a graph in FIG.

このグラフから明らかなように、圧縮の際の圧
力と得られる多孔質金属体の気孔率との間には、
ほぼ一定した相関関係があるので、圧力を加減す
ることにより、気孔率を任意に制御することがで
きる。
As is clear from this graph, there is a difference between the pressure during compression and the porosity of the resulting porous metal body.
Since there is a substantially constant correlation, the porosity can be controlled as desired by adjusting the pressure.

実施例 2 平均粒径300μmの塩化バリウム粉末を径30
mm、深さ100mmのくぼみをもつ黒鉛製鋳型内にタ
ツプ充填し、大気中、950℃で3時間加熱するこ
とにより、径29mm、長さ97mmの円柱状塩化バリウ
ム焼結体を製造した。次いで、これをステンレス
鋼製金型に装入し、850℃に予熱したのち、溶融
したCu−30%Zn、合金を30Kg/cm2のプレス圧力に
より圧入し、銅合金−塩化バリウム複合体を得
た。この試料を約10mmの厚さにスライスし、水
洗、真空脱気、超音波洗浄を繰り返すことにより
完全に塩分を除去したのち、乾燥した。このよう
にして、気孔率65〜67%の連通気孔を有する多孔
質銅合金が得られた。
Example 2 Barium chloride powder with an average particle size of 300 μm was
A cylindrical barium chloride sintered body with a diameter of 29 mm and a length of 97 mm was produced by filling a tap into a graphite mold with a depression of 100 mm in diameter and 100 mm in depth, and heating it in the atmosphere at 950°C for 3 hours. Next, this was charged into a stainless steel mold and preheated to 850℃, and then molten Cu-30% Zn and alloy were press-fitted with a press pressure of 30Kg/cm 2 to form a copper alloy-barium chloride composite. Obtained. This sample was sliced to a thickness of approximately 10 mm, and salt was completely removed by repeated washing with water, vacuum degassing, and ultrasonic cleaning, and then dried. In this way, a porous copper alloy having continuous pores with a porosity of 65 to 67% was obtained.

次に、これを200〜1000Kg/cm2の間で圧力を変え
て実施例1と同様にして圧縮した。この際の圧力
と気孔率との関係をグラフとして第2図に示す。
Next, this was compressed in the same manner as in Example 1, changing the pressure between 200 and 1000 Kg/cm 2 . The relationship between pressure and porosity at this time is shown as a graph in FIG.

このようにして得た多孔質銅合金の一方の側か
ら他方の側へ向つて空気を圧入したところ、空気
は完全に通過し、この多孔質銅合金を連通した気
孔を有することが分つた。
When air was forced into the porous copper alloy thus obtained from one side to the other, it was found that the air completely passed through the porous copper alloy, and the porous copper alloy had pores that communicated with it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明方法における圧縮
の際の圧力と得られる多孔質金属体の気孔率との
関係を示すグラフである。
FIGS. 1 and 2 are graphs showing the relationship between the pressure during compression and the porosity of the obtained porous metal body in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 (イ) 金型に、粒径10〜150μmの範囲内にあ
る易水溶性塩粉末を充填する工程、 (ロ) この易水溶性塩粉末を充填した金型を加熱し
てその中の易水溶性塩粉末を焼結する工程、 (ハ) このようにして得た易水溶性塩焼結体を予熱
し、これに溶融金属を圧入する工程、 (ニ) 溶融金属を冷却固化する工程、 (ホ) 易水溶性塩を洗浄除去し多孔質金属体を得る
工程、及び (ヘ) このようにして得た多孔質金属体を機械的又
は静水圧的に圧縮し、より縮小された孔径をも
つ多孔質金属体とする工程 から成る多孔質金属体の製造方法。
[Claims] 1. (a) Filling a mold with easily water-soluble salt powder having a particle size in the range of 10 to 150 μm; (b) Heating the mold filled with this easily water-soluble salt powder. (c) Preheating the easily water-soluble salt sintered body thus obtained and press-fitting molten metal into it; (d) Sintering the molten metal. (e) a step of washing and removing easily water-soluble salts to obtain a porous metal body; and (f) mechanically or isostatically compressing the porous metal body thus obtained, and further A method for producing a porous metal body, comprising the steps of forming a porous metal body with a reduced pore diameter.
JP1205184A 1984-01-27 1984-01-27 Production of porous metallic body Granted JPS60159136A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1205184A JPS60159136A (en) 1984-01-27 1984-01-27 Production of porous metallic body
GB08501351A GB2154252B (en) 1984-01-27 1985-01-18 A method for the preparation of a spongy metallic body
DE19853502504 DE3502504A1 (en) 1984-01-27 1985-01-25 METHOD FOR PRODUCING A SPONGE-LIKE METAL MOLDED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205184A JPS60159136A (en) 1984-01-27 1984-01-27 Production of porous metallic body

Publications (2)

Publication Number Publication Date
JPS60159136A JPS60159136A (en) 1985-08-20
JPS6230253B2 true JPS6230253B2 (en) 1987-07-01

Family

ID=11794795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205184A Granted JPS60159136A (en) 1984-01-27 1984-01-27 Production of porous metallic body

Country Status (1)

Country Link
JP (1) JPS60159136A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279861B2 (en) * 2006-09-13 2009-06-17 浦谷商事株式会社 Stamping device
CN105382245B (en) * 2015-11-19 2019-02-12 山西振华创新科技有限公司 For making the filler material of porous metals and the fill method of the filler material
JPWO2023281841A1 (en) * 2021-07-05 2023-01-12

Also Published As

Publication number Publication date
JPS60159136A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
Banhart et al. Production methods for metallic foams
JP3757165B2 (en) Decomposable core for high pressure casting, method for producing the same, and method for extracting the same
EP1755809B1 (en) Method of production of porous metallic materials
US5927373A (en) Method of constructing fully dense metal molds and parts
US3853635A (en) Process for making carbon-aluminum composites
CN1101478C (en) Process for preparing foam metal
JP3497461B2 (en) Method for producing porous metal
US5897943A (en) Metal matrix composite including homogeneously distributed fly ash, binder, and metal
US7290586B2 (en) Bicontinuous composites
DE19725210C1 (en) Method for producing metal sponge
JPS6230253B2 (en)
US4556096A (en) Method for the preparation of a spongy metallic body
US3210166A (en) Cast porous metal
US4101624A (en) Method of casting silicon
US3902861A (en) Composite material
JPS6230254B2 (en)
US3907514A (en) Aluminum carbon composite seal material
JPH0440104B2 (en)
GB2154252A (en) A method for the preparation of a spongy metallic body
US3440708A (en) Method of making gradated fiber metal structures
JP4126366B2 (en) Method for producing foamed inorganic powder
KR100367655B1 (en) Process for Making Porous Metals and Alloys
JPS6049703B2 (en) Method for manufacturing breathable metal materials
RU2056973C1 (en) Method of making builtup articles
JPH01215932A (en) Metallic porous body and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term