JPS6049703B2 - Method for manufacturing breathable metal materials - Google Patents

Method for manufacturing breathable metal materials

Info

Publication number
JPS6049703B2
JPS6049703B2 JP14878882A JP14878882A JPS6049703B2 JP S6049703 B2 JPS6049703 B2 JP S6049703B2 JP 14878882 A JP14878882 A JP 14878882A JP 14878882 A JP14878882 A JP 14878882A JP S6049703 B2 JPS6049703 B2 JP S6049703B2
Authority
JP
Japan
Prior art keywords
metal
sintered body
particles
metal salt
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14878882A
Other languages
Japanese (ja)
Other versions
JPS5938343A (en
Inventor
純夫 長田
耕治 今川
晃 北原
英俊 上野
茂 秋山
公扶 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14878882A priority Critical patent/JPS6049703B2/en
Publication of JPS5938343A publication Critical patent/JPS5938343A/en
Publication of JPS6049703B2 publication Critical patent/JPS6049703B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は通気性金属材料の製造方法に関し、さらに詳し
くは、溶剤可溶性無機化合物の焼結体を用いて、機能性
材料として優れた性質を有する気孔率の高い通気性金属
材料を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an air-permeable metal material, and more specifically, to a method for manufacturing an air-permeable metal material, using a sintered body of a solvent-soluble inorganic compound to produce a metal material with high porosity and excellent properties as a functional material. The present invention relates to a method for manufacturing metal materials.

一般に多孔質金属は、その中に含まれる気孔の存在形態
によつて独立気孔型と連続気孔型に分けられ、独立気孔
型は通気性がないが、連続気孔型゜は気孔が外気に通じ
ているため通気性を有している。
In general, porous metals are divided into independent pore types and continuous pore types depending on the form of the pores contained therein.The closed pore type has no air permeability, but the continuous pore type has pores that are open to the outside air. It has breathability.

この連続気孔型の通気性金属は、高機能性材料として、
例えば食油軸受、フィルター、熱交換器、電極、触媒、
特殊物質の貯蔵用などに幅広く用いられている。従来、
通気性金属材料は主として金属粉末粒子を焼結すること
によつて製造されてきた。
This continuous pore type breathable metal is a highly functional material.
For example, edible oil bearings, filters, heat exchangers, electrodes, catalysts,
Widely used for storing special substances. Conventionally,
Breathable metallic materials have primarily been produced by sintering metal powder particles.

しかしながら、この焼結法においては、得られた通気性
金属材料の気孔率は、金属粉末粒子の充てん率によつて
ほぼ規定されるのて40%前後といつた低い値であるこ
と、該通気性金属材料を切削加工や塑性加工をすると、
必ず目詰りを生じ通気性を損ねるのて機械加工がほとん
ど不可能てあること、したがつて型成形品が最終製品形
状となるので、比較的単純形状製品しか得られないこと
などの欠点がある。ところで、気孔率の高い通気性金属
材料を得る方法として、金型に塩化ナトリウム粉末を充
填して、その上に低融点金属の溶湯をつぎ込み、該溶湯
を塩化ナトリウム粉末間隙中に圧入し、凝固させて金属
一塩化ナトリウム粒子複合体を作製し、次いでこの複合
体中の塩化ナトリウム粒子を水中で溶出させる方法(特
公昭39−365鏝公報)が提案されている。
However, in this sintering method, the porosity of the obtained breathable metal material is approximately determined by the filling rate of the metal powder particles, and is a low value of around 40%. When cutting or plastic working metal materials,
Disadvantages include that machining is almost impossible as it always causes clogging and impairs air permeability, and that only relatively simple shaped products can be obtained since the final product shape is formed by molding. . By the way, as a method for obtaining an air-permeable metal material with high porosity, a mold is filled with sodium chloride powder, a molten metal of a low melting point metal is poured on top of the mold, and the molten metal is forced into the gap between the sodium chloride powder and solidified. A method has been proposed (Japanese Patent Publication No. 39-365) in which a metal sodium monochloride particle composite is prepared and then the sodium chloride particles in this composite are eluted in water.

しかしながら、この方法においては、使用する低融点金
属が塩化ナトリウムの融点(80rc)より低い融点を
有する金属であり、また得られた製品の形状については
、塩化ナトリウム粒子の圧縮が前提となるため、複雑形
状を有するものや大型なものが得られないなどの問題が
ある。
However, in this method, the low melting point metal used is a metal with a melting point lower than the melting point of sodium chloride (80rc), and the shape of the obtained product is based on compression of the sodium chloride particles. There are problems such as the inability to obtain products with complex shapes or large sizes.

さらにこの方法においては、塩化ナトリウム粒子の予熱
温度が常に圧入される溶湯の凝固点以上に予熱されてい
るが、このことは以下に述べる理由で明らかなように、
実用的に溶湯を圧入する際の致命的欠陥となり、その特
許が出願されて約2咋が経過しているにもかかわらず鋳
造法による通気性金属が実用化されていない原因でもあ
る。加圧鋳造法により金属一無機塩粒子複合体を製造す
る場合、金属の溶湯が狭あいな粒子充てん層の間隙を縫
つて流れるためには、その凝固防止が必要である。
Furthermore, in this method, the preheating temperature of the sodium chloride particles is always higher than the freezing point of the molten metal to be press-injected, which is clear for the reasons described below.
This is a fatal flaw when press-fitting molten metal in practice, and is also the reason why breathable metals made by casting have not been put into practical use, even though about 2 years have passed since the patent was filed. When producing a metal-inorganic salt particle composite by a pressure casting method, in order for the molten metal to flow through the narrow gap between the particle-filled layers, it is necessary to prevent it from coagulating.

前記発明が粒子層の予熱温度を流入する金属溶湯の凝固
点以上に保持するのはこのためてある。しかし、この予
熱温度条件では以下のような問題を解決することができ
ない。すなわち、溶湯には数10k9/d以上の静水圧
が負荷され.ているので、型とパンチのクリアランス部
や型に設けられた空気抜きから激しく飛散し、さらに加
圧を続けるとパンチは下降を続け、ついには粒子層を圧
縮し始めて粒子の破壊や塑性変形が起る。そこで、この
ような現象を避けるためには湯漏れ.と同時に加圧を停
止する必要があるが、加圧を停止すると加圧凝固の効果
が得られず、複合材内部に収縮巣が発生して良好な材質
が得られない。さらに凝固させるために鋳型外表面から
の強制冷却が必要となつて著しく作業性を阻害する。以
上の問題を一挙に解決する方法は粒子層温度を溶湯の凝
固点以下に保ち、粒子層及び型をヒートシンク(熱の逃
げ場)として利用することである。
This is why the invention maintains the preheating temperature of the particle layer above the freezing point of the inflowing molten metal. However, under these preheating temperature conditions, the following problems cannot be solved. In other words, a hydrostatic pressure of tens of k9/d or more is applied to the molten metal. As a result, particles are violently scattered from the clearance between the mold and punch and the air vent provided in the mold, and as pressure is continued, the punch continues to descend, eventually starting to compress the particle layer, causing particle destruction and plastic deformation. Ru. Therefore, in order to avoid such a phenomenon, water leakage should be avoided. At the same time, it is necessary to stop the pressurization, but if the pressurization is stopped, the effect of pressure solidification will not be obtained, and shrinkage cavities will occur inside the composite material, making it impossible to obtain a good material. Furthermore, forced cooling from the outer surface of the mold is required for solidification, which significantly impedes workability. A method to solve the above problems all at once is to keep the temperature of the particle layer below the freezing point of the molten metal and use the particle layer and mold as a heat sink (heat escape).

ただし、低過ぎると先述のように溶湯の凝固が先行し圧
入することができない。このように加圧鋳造法により金
属一無機塩粒子複合体を製造する場合、粒子層の予熱温
度はある一定の温度(臨界温度)以上金属溶湯の凝固点
以下の範囲であることが必要十分条件である。
However, if the temperature is too low, the molten metal will solidify first and cannot be press-fitted as described above. When producing a metal-inorganic salt particle composite by the pressure casting method in this way, it is necessary and sufficient that the preheating temperature of the particle layer is in the range above a certain temperature (critical temperature) and below the freezing point of the molten metal. be.

本発明者らは、このような事情に鑑み、加圧鋳造法によ
り金属一無機化合物粒子複合体を作成し、次いで該複合
体中の無機化合物粒子を溶剤で処理し、溶出させて気孔
率の高い通気性金属材料ノを製造する方法について鋭意
研究を重ねた結果、まず適当な溶剤で溶解する無機化合
物の焼結体を作成したのち、この焼結体を金属溶湯の凝
固点以下臨界温度以上に予熱し、次いで焼結体の空隙内
に金属溶湯を圧入し、これを冷却凝固させたのち、無機
化合物を溶解除去させることにより、50%以上という
従来の焼結法ではとうてい得ることのできない高い気孔
率を有する通気性金属材料が経済的かつ安全に得られる
こと、さらに複雑な形状を有するものや大形状のものを
製造しうることを見出し、この知見に基づいて本発明を
完成するに至つた。すなわち、本発明は溶剤可溶性無機
化合物を、所定の形状に成形して焼結したのち、得られ
た焼結体をその融点未満であり、かつ式〔式中のTPは
焼結体の予熱温度(℃)、TCは臨界予熱温度(゜C)
、TM,HM及びDMはそれぞれ溶融金属又は合金の凝
固点(℃)、凝固潜熱(Cal/y)及び密度(y/a
l)であり、VP,CP及びDPはそれぞれ溶剤可溶性
無機化合物粒子の空間を占める体積割合又は充てん率、
該粒子の比熱(Cal/g/゜C)及び密度(f/d)
である〕で表わされる温度範囲に予熱し、次いで該焼結
体の空隙部に溶融した金属又は合金を圧入し、凝固させ
たのち、溶剤で処理して前記無機化合物を溶出させるこ
とを特徴とする通気性金属材料の製造方法を提供するも
のである。
In view of these circumstances, the present inventors created a metal-inorganic compound particle composite by a pressure casting method, and then treated the inorganic compound particles in the composite with a solvent to dissolve them and reduce the porosity. As a result of extensive research into methods for manufacturing highly breathable metal materials, we first created a sintered body of an inorganic compound that can be dissolved in an appropriate solvent, and then heated this sintered body to a temperature below the freezing point of molten metal and above the critical temperature. By preheating, then press-fitting the molten metal into the voids of the sintered body, cooling it and solidifying it, and then dissolving and removing the inorganic compounds, the molten metal can be heated to 50% or more, which is impossible to achieve with conventional sintering methods. It was discovered that a breathable metal material having porosity can be obtained economically and safely, and that it is also possible to manufacture materials with complicated shapes and large shapes, and based on this knowledge, the present invention was completed. Ivy. That is, the present invention involves molding a solvent-soluble inorganic compound into a predetermined shape and sintering the resulting sintered body, which has a temperature below its melting point and a formula [where TP is the preheating temperature of the sintered body]. (°C), TC is critical preheating temperature (°C)
, TM, HM and DM are the freezing point (°C), latent heat of solidification (Cal/y) and density (y/a) of the molten metal or alloy, respectively.
l), where VP, CP and DP are the volume proportion or filling rate occupying the space of the solvent-soluble inorganic compound particles, respectively;
Specific heat (Cal/g/°C) and density (f/d) of the particles
The sintered body is preheated to a temperature range expressed by , and then a molten metal or alloy is press-fitted into the voids of the sintered body, solidified, and then treated with a solvent to elute the inorganic compound. The present invention provides a method for manufacturing an air-permeable metal material.

本発明の通気性金属材料の素材としては、通常の金属材
料に用いられている金属又は合金の中から任意に選ぶこ
とができる。
The material for the breathable metal material of the present invention can be arbitrarily selected from metals or alloys used in ordinary metal materials.

このようなものの例としては、鋳鉄、鉛、亜鉛、スズ、
アルミニウム、金、銀、銅、ニッケル及びこれらの合金
などを挙げることができる。また、本発明の通気性金属
材料を製造する際に使用される溶剤可溶性無機化合物と
しては、適当な溶剤例えば水、アルカリ、酸アルコール
、アセトン、ジメチルホルムアミドなどに溶解しうる無
機化合物を用いることができるが、好ましいものは水溶
性無機塩であり、特にアルカリ金属塩又はアルカリ土類
金属塩が好適である。
Examples of these include cast iron, lead, zinc, tin,
Examples include aluminum, gold, silver, copper, nickel, and alloys thereof. Furthermore, as the solvent-soluble inorganic compound used in manufacturing the breathable metal material of the present invention, inorganic compounds that can be dissolved in a suitable solvent such as water, alkali, acid alcohol, acetone, dimethylformamide, etc. can be used. However, water-soluble inorganic salts are preferred, particularly alkali metal salts or alkaline earth metal salts.

次に、本発明の通気性高気孔率金属材料の製造方法の好
適な実施態様について説明すると、まず塩化ナトリウム
や塩化カリウムなどのアルカリ金属塩、又は塩化バリウ
ムなどのアルカリ土類金属塩を溶解し、型に流し込んで
インゴットを得、このインゴットを破砕し分級して前記
金属塩粒子を得る。
Next, a preferred embodiment of the method for producing the breathable high-porosity metal material of the present invention will be described. First, an alkali metal salt such as sodium chloride or potassium chloride, or an alkaline earth metal salt such as barium chloride is dissolved. The ingot is poured into a mold to obtain an ingot, and the ingot is crushed and classified to obtain the metal salt particles.

次に使用目的に応じて所定のサイズを有する金属塩粒子
を所定の形状を有する耐熱性容器に充てんし、大気中で
該金属塩の融点直下において数時間熱処理し、金属塩の
焼結体を得る。第1図は焼結前の金属塩粒子1と空隙部
2のミクロ構造の模式図、第2図は焼結後の金属塩粒子
1″と空隙部2″のミクロ構造の模式図であつて、これ
らの図から分るように焼結前に点接触していた各粒子1
は、焼結後には面接触に変化している。この場合、熱処
理時間が長ければ長いほど各粒子間の接触面積割合は増
すが、長すぎると独立した空隙部が生成し始める状態、
いわゆる過焼結状態となつて、次の工程において溶融金
属を外部から圧入することができないので、過焼結状態
にならないように注意を要する。この過焼結にならない
ための金属塩焼結体における空隙率の下限は15%であ
−リ、したがつて熱処理時間の調整によつて該焼結体の
空隙率を15〜50%の範囲に制御する。なお、第2図
において空隙部が独立しているようにみえるが、これは
二次元的に示されてあるためであつて、紙面の上下方向
で空隙部は連続しているもの.である。次に、第3図は
加圧鋳造装置の断面説明図であつて、前記のようにして
得られた金属塩焼結体を、加圧鋳造装置の金型3に装て
んし、電気又はガスによつて所定の温度に予熱したのち
、目的の−溶融金属又は合金4を該焼結体5の上部に注
ぎ、加圧用パンチ6で加圧して溶融金属又は合金を焼結
体空隙部に浸透させる。
Next, metal salt particles having a predetermined size depending on the purpose of use are filled into a heat-resistant container having a predetermined shape, and heat-treated in the atmosphere for several hours just below the melting point of the metal salt to form a sintered body of the metal salt. obtain. FIG. 1 is a schematic diagram of the microstructure of metal salt particles 1 and voids 2 before sintering, and FIG. 2 is a schematic diagram of the microstructures of metal salt particles 1'' and voids 2'' after sintering. , as can be seen from these figures, each particle 1 that was in point contact before sintering
changes to surface contact after sintering. In this case, the longer the heat treatment time, the more the contact area ratio between each particle increases; however, if the heat treatment time is too long, independent voids begin to form.
Since this results in a so-called over-sintered state, and molten metal cannot be press-fitted from the outside in the next step, care must be taken to avoid over-sintered state. The lower limit of the porosity in the metal salt sintered body to avoid oversintering is 15%, so by adjusting the heat treatment time, the porosity of the sintered body can be adjusted to a range of 15 to 50%. Control. Although the voids appear to be independent in Figure 2, this is because they are shown two-dimensionally, and the voids are continuous in the vertical direction of the page. It is. Next, FIG. 3 is an explanatory cross-sectional view of the pressure casting apparatus, in which the metal salt sintered body obtained as described above is loaded into the mold 3 of the pressure casting apparatus, and is heated by electricity or gas. After preheating to a predetermined temperature, the desired molten metal or alloy 4 is poured onto the top of the sintered body 5 and pressurized with a pressure punch 6 to cause the molten metal or alloy to penetrate into the voids of the sintered body.

この場合、圧入圧力は焼結体の空隙を流れる溶融金属又
は合金の流動抵抗よりも大きくする必要があるが、通常
30k9/al以上の圧力であれば十分である。また予
熱温度TPは焼結体の融点未満であり、かつ次式(1)
で示される範囲内で選定される。ここでTCは臨界予熱
温度(℃)、TM,HM及びDMはそれぞれ溶融金属又
は合金の凝固点(℃)、”凝固潜熱(CaI/fl)及
び密度(f/al)であり、VP,CP及びDPはそれ
ぞれ金属塩粒子の空間を占める体積割合又は充てん率、
該粒子の比熱(Cal/ダ/℃)及び密度(y/d)で
ある。
In this case, the press-in pressure needs to be higher than the flow resistance of the molten metal or alloy flowing through the voids of the sintered body, but a pressure of 30k9/al or higher is usually sufficient. In addition, the preheating temperature TP is below the melting point of the sintered body, and the following formula (1)
Selected within the range shown in . Here, TC is the critical preheating temperature (°C), TM, HM and DM are the freezing point (°C) of the molten metal or alloy, the latent heat of solidification (CaI/fl) and the density (f/al), respectively, and VP, CP and DP is the volume ratio or filling rate that occupies the space of metal salt particles, respectively;
These are the specific heat (Cal/da/°C) and density (y/d) of the particles.

次に、このようにして得られた金属塩と金属から成る複
合体を水洗し、金属塩のみを溶出して目的とする通気性
金属材料を得る。この場合、金属塩の水に対する溶解度
は比較的大きいので、流水のみでも十分であるが、超音
波洗浄仕上げを行うとさらに効果的である。第4図及び
第5図はこのようにして得れた通気性金属材料のミクロ
構造の模式図であつて、金属部7,7″と空隙部8,8
″から成つている。第4図は点接触している金属塩粒子
から得られた通気性金属材料で、第1図における素材と
空隙部を入れ替えた構造になつており、また第5図は面
接触している金属塩粒子から得られた通気性金属材料で
、第2図における素材と空隙部を入れ替えた構造になつ
ている。すなわち、通常の焼結金属をポジとすれば本発
明の通気性金属体はネガに相当するものであつて、この
ことは本発明品が50〜85%の高い気孔率を有する所
以てもある。なお、第1図のように金属塩粒子が点接触
していると、金属塩を溶出する工程において溶出に長時
間を要するが、本発明方法によると金属塩粒子は面接触
しているので、溶出時間は短かくてすむ。
Next, the thus obtained composite consisting of the metal salt and the metal is washed with water, and only the metal salt is eluted to obtain the desired air-permeable metal material. In this case, since the metal salt has a relatively high solubility in water, running water alone is sufficient, but finishing by ultrasonic cleaning is more effective. FIGS. 4 and 5 are schematic diagrams of the microstructure of the breathable metal material obtained in this way, showing metal parts 7, 7'' and void parts 8, 8.
Figure 4 shows an air-permeable metal material obtained from point-contact metal salt particles, with a structure in which the material and voids in Figure 1 are replaced, and Figure 5 shows This is an air-permeable metal material obtained from metal salt particles that are in surface contact with each other, and has a structure in which the voids are replaced with the material shown in Figure 2.In other words, if ordinary sintered metal is used as a positive material, the structure of the present invention is The air-permeable metal body corresponds to the negative, and this is also the reason why the product of the present invention has a high porosity of 50 to 85%.As shown in Figure 1, the metal salt particles are in point contact with each other. However, according to the method of the present invention, since the metal salt particles are in surface contact, the elution time is short.

しかし、この面接触が進行すると空隙率が減少するので
、使用目的によつて空隙率をあまり下げたくない場合は
面接触の割合を少なくすることもできる。本発明に用い
る溶剤可溶性無機化合物としては、アルカリ金属塩はア
ルカリ土類金属塩が好ましく、例えば塩化ナトリウム、
亜硝酸ナトリウム、又は塩化バリウムなどが好適であり
、また圧入金属としては融点が約1500℃以下の金属
及び合金がすべて好ましく適用できる。
However, as this surface contact progresses, the porosity decreases, so if you do not want to reduce the porosity too much depending on the purpose of use, you can reduce the surface contact ratio. As the solvent-soluble inorganic compound used in the present invention, the alkali metal salt is preferably an alkaline earth metal salt, such as sodium chloride,
Sodium nitrite, barium chloride, etc. are suitable, and all metals and alloys having a melting point of about 1500° C. or less can be preferably used as the press-fitting metal.

例えば、塩化金属として最高の融点(962′C)を有
する塩化バリウムを用いたときの各種金属における塩化
バリウム粒子の充てん率と臨界予熱温度との関係を表に
示す。
For example, the table shows the relationship between the filling ratio of barium chloride particles and the critical preheating temperature for various metals when barium chloride, which has the highest melting point (962'C) as a metal chloride, is used.

臨界予熱温度は金属塩の融点より低くなければならず、
したがつて表から判るように金属塩として塩化バリウム
を用いた場合、気孔率60%の通気性ニッケルまで製造
可能である。
The critical preheating temperature must be lower than the melting point of the metal salt,
Therefore, as can be seen from the table, when barium chloride is used as the metal salt, it is possible to produce breathable nickel with a porosity of up to 60%.

なお表における0の部分は臨界予熱温度が塩化バリウム
の融点以上なので、塩化バリウムを用いて製造すること
はできない。本発明方法によると、従来の焼結金属に比
べて気孔率が2〜3倍以上に達する高気孔率の通気性金
属材料を極めて容易に得ることができる。
Note that the portion marked 0 in the table cannot be manufactured using barium chloride because the critical preheating temperature is higher than the melting point of barium chloride. According to the method of the present invention, it is possible to extremely easily obtain a high-porosity, air-permeable metal material with a porosity that is two to three times higher than that of conventional sintered metals.

さらに本発明方法は次の特徴を有している。すなわち、
(1)金属塩粒子のサイジングが容易であるので、最終
的に得られる通気性金属材料の気孔径を容易に制御しう
る。(2)金属塩粒子の形状を予めコントロールするこ
とによつて通気性金属材料の気孔の形状をコントロール
しうる。(3)金属塩焼結体に穴を開けたり、切り込み
を入れておくと、最終製品に棒、バイブ、仕切板などを
鋳括んだことと同じ効果を有する。もちろん予め用意し
た棒、バイブ、仕切用板および金網な″どを金属塩粒子
とともに充てんし、焼結してもよい。(4)低融点通気
性金属材料を得る場合は、低融点金属塩を用いることに
よつて、焼結に要するエネルギーを節約しう−る。(5
)金属塩の溶出が容易であつて、そのリサイクルが可能
である。(6)高融点の金属塩を用いることによつて、
多孔質鋳鉄の製造も可能である。(7)粉末治金法では
得られにくい通気性アルミニウムや通気性マグネシウム
が容易に製造できる。本発明の通気性高気孔率金属材料
は、その気孔率が50〜85%と従来品に比べて極めて
高く、したがつて表面積も極めて大きな画期的な通気性
材料であり、特に大きな表面積が要求される熱交換器、
フィルター、触媒などの用途に好適である。次に実施例
によつて本発明をさらに詳細に説明する。実施例1 冫 亜硝酸ナトリウムを融解し、凝固させたのち破砕分
級して350〜590μの亜硝酸ナトリウム粒子を得た
Furthermore, the method of the present invention has the following features. That is,
(1) Since the metal salt particles can be easily sized, the pore diameter of the finally obtained breathable metal material can be easily controlled. (2) By controlling the shape of the metal salt particles in advance, the shape of the pores in the breathable metal material can be controlled. (3) Drilling holes or making notches in the metal salt sintered body has the same effect as casting rods, vibrators, partition plates, etc. into the final product. Of course, a rod, vibrator, partition plate, wire mesh, etc. prepared in advance may be filled with metal salt particles and sintered. (4) When obtaining a low melting point breathable metal material, a low melting point metal salt may be used. By using it, the energy required for sintering can be saved. (5
) Metal salts can be easily eluted and recycled. (6) By using a metal salt with a high melting point,
It is also possible to produce porous cast iron. (7) Breathable aluminum and breathable magnesium, which are difficult to obtain by powder metallurgy, can be easily produced. The air-permeable high-porosity metal material of the present invention has a porosity of 50 to 85%, which is extremely high compared to conventional products, and therefore has an extremely large surface area. heat exchanger required,
Suitable for applications such as filters and catalysts. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Sodium nitrite was melted and solidified, and then crushed and classified to obtain sodium nitrite particles of 350 to 590μ.

この粒子を内径25?、高さ30TfUTLの黒鉛容器
にタップ充てんし、270℃で5時間大気中で熱処理し
て、亜硝酸ナトリウム焼結体を得た。この焼j結体を内
径30wun、高さ5−の鋳鉄製鋳型に装てんし、電気
炉て150゜Cに予熱した(臨界予熱温度135℃)。
この鋳型上部に融点232゜Cの純スズを注入し、30
k9/C!lの圧力で溶融スズをパンチで加圧した。こ
のようにして得られた亜硝酸ナトリウムとノスズの複合
体を水洗して、気孔率74%の通気性多孔質スズを得た
。実施例2 実施例1と同様にして1190〜1680μの塩化ナト
リウム粒子を用意し、これを内径307Trm1高さ1
00?の黒鉛容器にタップ充てんしたのち、800℃で
3時間大気中で熱処理して塩化ナトリウムの焼結体を得
た。
This particle has an inner diameter of 25? A graphite container with a height of 30 TfUTL was filled with a tap, and heat treated at 270° C. for 5 hours in the air to obtain a sodium nitrite sintered body. This sintered body was placed in a cast iron mold with an inner diameter of 30 mm and a height of 5 mm, and preheated to 150°C in an electric furnace (critical preheating temperature: 135°C).
Pure tin with a melting point of 232°C was poured into the upper part of this mold, and
k9/C! The molten tin was pressurized with a punch at a pressure of 1 liter. The composite of sodium nitrite and tin tin thus obtained was washed with water to obtain an air-permeable porous tin having a porosity of 74%. Example 2 Sodium chloride particles with a size of 1190 to 1680μ were prepared in the same manner as in Example 1, and the particles had an inner diameter of 307Trm and a height of 1
00? After filling a graphite container with a tap, the mixture was heat-treated at 800° C. for 3 hours in the air to obtain a sintered body of sodium chloride.

これを内径30醋、高さ12077177!の鋳鉄製鋳
型に装てんし、480℃に予熱したのち(臨界予熱温度
410℃)、12%Si−N合金を実施例1と同じ方法
で圧入した。このようにして得られた複合体を水洗し、
さらに超音波洗浄器にかけて気孔率60%の通気性多孔
質アルミニウム合金を得た。実施例3実施例2と同じ方
法によつて得られた塩化バリウム粒子焼結体を950℃
に予熱したのち(臨界予熱温度803℃)、純銅を実施
例2と同じ方法で圧入し、直径29mm1高さ90Tn
I!&の通気性多孔質純銅を得た。
This has an inner diameter of 30cm and a height of 12077177! After being preheated to 480°C (critical preheating temperature 410°C), a 12% Si-N alloy was press-fitted in the same manner as in Example 1. The complex thus obtained was washed with water,
Further, the aluminum alloy was subjected to ultrasonic cleaning to obtain an air-permeable porous aluminum alloy with a porosity of 60%. Example 3 A barium chloride particle sintered body obtained by the same method as Example 2 was heated at 950°C.
(critical preheating temperature 803°C), pure copper was press-fitted in the same manner as in Example 2, and the diameter was 29mm and the height was 90Tn.
I! & Obtained breathable porous pure copper.

このものの気孔率は69%であつた。The porosity of this material was 69%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結前の金属塩粒子のミクロ構造模式図、第2
図は焼結後の金属塩粒子のミクロ構造模式図、第3図は
加圧鋳造装置の模式図、第4図は点接触している金属塩
粒子から得られた通気性金属材料のミクロ構造模式図、
第5図は面接触している金属塩粒子から得られた通気性
金属材料のミクロ構造模式図である。 図中符号1,1″は金属塩、2,2″,8,8″は空孔
部、3は金型、4は溶融金属、5は金属塩焼結体、6は
加工用パンチ、7,7″は金属である。
Figure 1 is a schematic diagram of the microstructure of metal salt particles before sintering, Figure 2
The figure is a schematic diagram of the microstructure of metal salt particles after sintering, Figure 3 is a schematic diagram of a pressure casting apparatus, and Figure 4 is the microstructure of an air-permeable metal material obtained from metal salt particles in point contact. Pattern diagram,
FIG. 5 is a schematic diagram of the microstructure of an air-permeable metal material obtained from metal salt particles in surface contact. In the figure, 1 and 1'' are metal salts, 2, 2'', 8, and 8'' are hole parts, 3 is a mold, 4 is a molten metal, 5 is a metal salt sintered body, 6 is a processing punch, 7, 7″ is metal.

Claims (1)

【特許請求の範囲】 1 溶剤可溶性無機化合物を、所定の形状に焼結して成
形したのち、得られた焼結体をその融点未満で、かつ式
T^M>T^P>T^CただしT^C=T^M−〔0.
25H^MD^M〕/V^PC^PD^P〔式中のT^
Pは焼結体の予熱温度(℃)、T^Cは臨界予熱温度(
℃)、T^M、H^M及びD^Mはそれぞれ溶融金属又
は合金の凝固点(℃)、凝固潜熱(cal/g)及び密
度(g/cm^3)であり、V^P、C^P及びD^P
はそれぞれ溶剤可溶性無機化合物粒子の空間を占める体
積割合又は充てん率、該粒子の比熱(cal/g/℃)
及び密度(g/cm^3)である〕で表わされる温度範
囲に予熱し、次いで該焼結体の空隙部に溶融した金属又
は合金を圧入し、凝固させたのち、溶剤で処理して前記
無機化合物を溶出させることを特徴とする通気性金属材
料の製造方法。 2 溶剤可溶性無機化合物が水溶性無機塩である特許請
求の範囲第1項記載の方法。 3 水溶性無機塩がアルカリ金属塩又はアルカリ土類金
属塩である特許請求の範囲第2項記載の方法。
[Scope of Claims] 1. After sintering and molding a solvent-soluble inorganic compound into a predetermined shape, the obtained sintered body is formed at a temperature below its melting point and has the formula T^M>T^P>T^C However, T^C=T^M-[0.
25H^MD^M]/V^PC^PD^P [T^ in the formula
P is the preheating temperature of the sintered body (℃), T^C is the critical preheating temperature (
℃), T^M, H^M and D^M are the freezing point (℃), latent heat of solidification (cal/g) and density (g/cm^3) of the molten metal or alloy, respectively, and V^P, C ^P and D^P
are the volume ratio or filling rate occupying the space of the solvent-soluble inorganic compound particles, and the specific heat of the particles (cal/g/°C), respectively.
and density (g/cm^3)], then the molten metal or alloy is press-fitted into the voids of the sintered body, solidified, and treated with a solvent to form the above-mentioned A method for producing a breathable metal material, which comprises eluting an inorganic compound. 2. The method according to claim 1, wherein the solvent-soluble inorganic compound is a water-soluble inorganic salt. 3. The method according to claim 2, wherein the water-soluble inorganic salt is an alkali metal salt or an alkaline earth metal salt.
JP14878882A 1982-08-26 1982-08-26 Method for manufacturing breathable metal materials Expired JPS6049703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14878882A JPS6049703B2 (en) 1982-08-26 1982-08-26 Method for manufacturing breathable metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14878882A JPS6049703B2 (en) 1982-08-26 1982-08-26 Method for manufacturing breathable metal materials

Publications (2)

Publication Number Publication Date
JPS5938343A JPS5938343A (en) 1984-03-02
JPS6049703B2 true JPS6049703B2 (en) 1985-11-05

Family

ID=15460695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14878882A Expired JPS6049703B2 (en) 1982-08-26 1982-08-26 Method for manufacturing breathable metal materials

Country Status (1)

Country Link
JP (1) JPS6049703B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186435A (en) * 1985-02-13 1986-08-20 Kubota Ltd Porous metallic molding and its production
JPWO2023281841A1 (en) * 2021-07-05 2023-01-12

Also Published As

Publication number Publication date
JPS5938343A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
US3616841A (en) Method of making an inorganic reticulated foam structure
EP1755809B1 (en) Method of production of porous metallic materials
Goodall et al. Porous metals
US2893102A (en) Article fabrication from powders
JPH10311246A (en) Manufacture of object having cavity
JPS6324042B2 (en)
CN105648260B (en) A kind of method that copper-iron alloy removal alloying prepares micron porous metal copper billet body
US6254998B1 (en) Cellular structures and processes for making such structures
RU2400552C2 (en) Foam aluminium obtaining method
CN107695318B (en) A kind of foam magnesium sandwich plate and its Semi-Solid Thixoforming Seepage Foundry method
JP4048251B2 (en) Method for producing porous metal body, porous metal body and porous metal body structure
JPH02185904A (en) Hot pressing of powder and granule
JPS6049703B2 (en) Method for manufacturing breathable metal materials
US4556096A (en) Method for the preparation of a spongy metallic body
JPS60184651A (en) Manufacture of porous metallic body
JP3487315B2 (en) Die casting method
JPH057099B2 (en)
JP2005163145A (en) Composite casting, iron based porous body for casting, and their production method
JP2000104130A (en) Manufacture of porous metal
JPS603958A (en) Forging method of molten metal
JPS60159136A (en) Production of porous metallic body
JP2004050225A (en) Method for producing metal-made formed material
JP4621938B2 (en) Method for producing porous metal body
DE10104340A1 (en) Process for the production of metal foam and metal body produced thereafter
GB2154252A (en) A method for the preparation of a spongy metallic body