JPS6229132A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPS6229132A
JPS6229132A JP16870985A JP16870985A JPS6229132A JP S6229132 A JPS6229132 A JP S6229132A JP 16870985 A JP16870985 A JP 16870985A JP 16870985 A JP16870985 A JP 16870985A JP S6229132 A JPS6229132 A JP S6229132A
Authority
JP
Japan
Prior art keywords
semiconductor layer
gas
type semiconductor
reaction
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16870985A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邊 金雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16870985A priority Critical patent/JPS6229132A/en
Priority to US06/888,474 priority patent/US4755483A/en
Publication of JPS6229132A publication Critical patent/JPS6229132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To facilitate the decomposition while reducing the kinds and consumption of reaction gas, and realizing high dark conductivity and photoconductivity, low resistance and wide optical band gap, by means of using trimethyl boron as reaction gas. CONSTITUTION:A glass-made substrate 7 with a transparent electrode formed thereon is arranged between upper and lower electrodes 2u and 2d in a reaction furnace 1 to be heated by a high frequency power supply up to specified tempera ture. Material gas disilane and trimethyl boron respectively contained in gas cylinders 4 and 5 are mixed with each other at specified ratio to be fed to the reaction furnace 1. The mixed material gas is decomposed by glow discharge to form a P-type semiconductor layer, in the concrete, an amorphous silicon carbide layer on the surface of semiconductor 7. Through these procedures, trimethyl boron can be used as P-type dopant of P-type semiconductor layer and the material gas for wide gap material to facilitate decomposition while reducing the kinds and consumption of applicable reaction gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグロー放電法を用いた半導体の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor using a glow discharge method.

〔従来技術〕[Prior art]

通常非晶質半導体は高真空度の反応炉内に収容した基板
を所定の温度に加熱しつつ所要の比率で混合した原料ガ
スをグロー放電によって分解し、反応炉内に導入し、基
板上に順次的に薄膜を積層形成して製造される。この非
晶質半導体中のp型半導体層、例えばp型アモルファス
シリコンカーバイト層の成膜に際しては原料ガスとして
従来シラン、並びにp型ドーパントとしてのシボラン及
びバンドギャップを大き(する、戸Fg胃ワイドギャッ
プ材料としてのメタンを用いるのが普通である(特願昭
57−95677号)。
Normally, amorphous semiconductors are produced by heating a substrate housed in a high-vacuum reactor to a predetermined temperature, decomposing the raw material gases mixed at the desired ratio by glow discharge, introducing them into the reactor, and then dissolving them onto the substrate. It is manufactured by sequentially layering thin films. When forming a p-type semiconductor layer in this amorphous semiconductor, for example, a p-type amorphous silicon carbide layer, conventional silane is used as a raw material gas, ciborane is used as a p-type dopant, and bandgap is increased (to increase the band gap). It is common to use methane as the gap material (Japanese Patent Application No. 57-95677).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでこのp型半導体履用の原料ガスとして用いるジ
ボラン、メタンはいずれもグロー放電分解に大きなエネ
ルギーを必要とし、膜中への導入が1しく、低抵抗なワ
イドギャップのp型半導体層、即ちp型アモルファスシ
リコンカーバイト層を得鮨いという問題があった。
By the way, both diborane and methane, which are used as raw material gases for this p-type semiconductor, require a large amount of energy to decompose by glow discharge. There was a problem that the mold amorphous silicon carbide layer was difficult to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる事情に迄みなされたものであって、そ、
の目的とするところは反応ガスとしてトリメチルボロン
を用いることによって分解が容易で反応ガスが少量且つ
少品種で済むことは勿論、暗導電率、光導電率が大きく
、低抵抗で且つ光学的ハンドギャップの大きいn型半導
体層を得られる半導体の製造方法を提供するにある。
The present invention has been considered under such circumstances, and
By using trimethylboron as a reactive gas, it is easy to decompose and only a small amount and variety of reactive gases are required, as well as high dark conductivity, high photoconductivity, low resistance, and optical hand gap. It is an object of the present invention to provide a method for manufacturing a semiconductor that can obtain an n-type semiconductor layer with a large value.

本発明に係る半導体の製造方法は、グロー放電法を用い
てn型半導体層を形成する過程で、反応ガスとしてトリ
メチルボロンを用いることを特徴とする。
The semiconductor manufacturing method according to the present invention is characterized in that trimethylboron is used as a reactive gas in the process of forming an n-type semiconductor layer using a glow discharge method.

〔実施例〕〔Example〕

以下本発明の実施状態を図面に基づき具体的に説明する
。第1゛図は本発明方法におけるp型非晶質半導体層の
形成態様を示す模式図であり、図中1は反応炉、2u、
2dはグロー放電電極、3は高周波電源、4.5は原料
ガスタンク、6はロークリポンプ、7は基板を示してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The implementation state of the present invention will be specifically described below based on the drawings. FIG. 1 is a schematic diagram showing the formation mode of a p-type amorphous semiconductor layer in the method of the present invention, in which 1 is a reactor, 2u is
2d is a glow discharge electrode, 3 is a high-frequency power source, 4.5 is a raw material gas tank, 6 is a low-pressure pump, and 7 is a substrate.

基板7はガラス製であって予めその表面には透明電極を
形成した後、反応炉1内における上、下の電極2u、2
d間に配設され、所要の温度に高周波加熱されるように
なっている。原料ガラスタンク4にはジシランが、また
原料ガラスタンク5にはトリメチルボロンが夫々収容さ
れており、所定の割合に混合されて反応炉1内に導入さ
れ、ここでグロー放電により分解されて基板7表面にn
型半導体層、具体的にはアモルファスシリコンカーバイ
Il’tfを形成するようになっている。
The substrate 7 is made of glass, and after forming transparent electrodes on its surface in advance, upper and lower electrodes 2u, 2 in the reactor 1 are formed.
d, and is heated by high frequency to a required temperature. Disilane is stored in the raw material glass tank 4, and trimethylboron is stored in the raw material glass tank 5, and these are mixed at a predetermined ratio and introduced into the reactor 1, where they are decomposed by glow discharge to form the substrate 7. n on the surface
A type semiconductor layer, specifically, an amorphous silicon carbide Il'tf is formed.

続いて原料ガラスを適宜に選択してi型半導体層、I2
1Jら水素を含むi型アモルファスシリコン屑(a−5
i : H) 、n型半導体層、即ち水素を含むn型ア
モルファスシリコンa (a−5i : H)を順次[
層形成し、n型半導体層上には別途へ1等を蒸着して裏
面電極を接層形成するようになっている。
Next, an i-type semiconductor layer, I2, is formed by appropriately selecting raw material glass.
1J, i-type amorphous silicon scrap containing hydrogen (a-5
i : H), an n-type semiconductor layer, i.e., an n-type amorphous silicon a (a-5i : H) containing hydrogen, is sequentially [
A layer is formed on the n-type semiconductor layer, and a back electrode is formed in contact with the n-type semiconductor layer by separately depositing a layer such as No. 1 on the n-type semiconductor layer.

次に前述した如き本発明方法によって得たp型非晶質半
導体層と、従来方法である原料ガラスにジボラン、メタ
ン及びシランを用いて製作したp型非晶質半導体層との
特性についての比較試験結果を示す。なお本発明方法に
あっては反応ガラスとしてジシランとトリメチルボロン
を用いて下記の条件でp型非晶質半導体層を形成した。
Next, we will compare the characteristics of the p-type amorphous semiconductor layer obtained by the method of the present invention as described above and the p-type amorphous semiconductor layer produced by the conventional method using diborane, methane, and silane as raw material glass. Show the test results. In the method of the present invention, a p-type amorphous semiconductor layer was formed using disilane and trimethylboron as the reaction glass under the following conditions.

基板温度:200℃ 反応圧カニ 0.3torr ジシラン量:20〜50SCCM トリメチルボロン流量:0.1〜2 SCCM高周波出
力=20W 形成された両p型非晶質半導体層の特性を示すと第2〜
5図に示すとおりである。第2.3図は本発明方法に依
って得た、また第4,5図は従来方法に依って得たp型
非晶質半導体層の結果である。
Substrate temperature: 200°C Reaction pressure: 0.3 torr Disilane amount: 20 to 50 SCCM Trimethyl boron flow rate: 0.1 to 2 SCCM high frequency output = 20 W The characteristics of both p-type amorphous semiconductor layers formed are as follows.
As shown in Figure 5. 2.3 shows the results of a p-type amorphous semiconductor layer obtained by the method of the present invention, and FIGS. 4 and 5 show the results of a p-type amorphous semiconductor layer obtained by the conventional method.

第2図は横軸ニB (CH3) 3 /5i2Hsを、
一方第4図は横軸にCH4/Si2 H6を、また縦軸
にはいずれも光学的バンドギャップ(eV)をとって示
しである。
In Figure 2, the horizontal axis dB (CH3) 3 /5i2Hs,
On the other hand, in FIG. 4, the horizontal axis represents CH4/Si2 H6, and the vertical axis represents the optical band gap (eV).

また第3図は横軸にB (CH3) 3 /Si2 H
6を、一方第5図は横軸にCf13 / Si2 H6
を、また縦軸にはいずれも導電率(Ω−’cm’)をと
って示しである。第3,5図中白丸でプロットしである
のは光導電率を、また黒丸でプロットしであるのは暗4
電率を夫々示している。
In addition, in Figure 3, the horizontal axis shows B (CH3) 3 /Si2 H
6, whereas in Fig. 5, the horizontal axis shows Cf13/Si2 H6.
, and the conductivity (Ω-'cm') is plotted on the vertical axis. In Figures 3 and 5, the white circles plot the photoconductivity, and the black circles plot the dark 4.
Each shows the electric rate.

これら各グラフを比較すれば明らかな如く本発明方法に
依って得たp型非晶質半導体層は従来方法に依って得た
p型非晶質半導体層と比較して光学的バンドギャップが
大きくなっていることば勿論、光学導電率はlXl0−
5Ω−1cm−1からlXl0−’Ω−’e1m−’に
また暗導電率はlXl0−6Ω−1cm−1から5X1
0−6Ω″′Icff1−!に夫々改善されているのが
解る。
As is clear from comparing these graphs, the p-type amorphous semiconductor layer obtained by the method of the present invention has a larger optical band gap than the p-type amorphous semiconductor layer obtained by the conventional method. Of course, the optical conductivity is lXl0-
5Ω-1cm-1 to lXl0-'Ω-'e1m-' and the dark conductivity from lXl0-6Ω-1cm-1 to 5X1
It can be seen that the resistance has been improved to 0-6Ω''Icff1-!.

〔効果〕〔effect〕

以上の如く本発明方法にあってはn型半導体層のp型ド
ーパント及びワイドギ中ツブ材料用染料ガスとしてトリ
メチルボロンを用いることとしたから分解が容易であり
、使用反応ガスの種類及びガス量ともに少なくて済む外
、暗4電率、光導電率が改善され低抵抗で且つ光学的バ
ンドギャップの大きいn型半導体層が製作出来るなど本
発明は優れた効果を奏するものである。
As described above, in the method of the present invention, trimethylboron is used as the p-type dopant for the n-type semiconductor layer and as the dye gas for the wide diameter material, so decomposition is easy, and both the type and amount of the reaction gas used are The present invention has excellent effects, such as being able to produce an n-type semiconductor layer with improved dark conductivity and photoconductivity, low resistance, and a large optical band gap, in addition to requiring only a small amount of metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態を示す枳弐図、第2図は
本発明方法により得たn型半導体層の光学的ハンドギャ
ップを示す図、第3図は本発明方法に依ったn型半導体
層の光導電率、暗導電率を示すグラフ、第4図は従来方
法で得たn型半導体層の光学的ハンドギヤツブを示す図
、第5図は従来方法によって得たn型半導体層の光導電
率、暗光電率を示すグラフである。 1・・・反応炉 2u+2d・・・電極 3・・・高周
波電源4.5・・・環材ガスタンク 6・・・ロークリ
ポンプ7・・・基板 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 茎 1 図 簿 2 凶 手続補正書(自発) 昭和61年7月22日
FIG. 1 is a diagram showing the implementation state of the method of the present invention, FIG. 2 is a diagram showing the optical hand gap of the n-type semiconductor layer obtained by the method of the present invention, and FIG. Figure 4 is a graph showing the photoconductivity and dark conductivity of the n-type semiconductor layer obtained by the conventional method. Figure 5 is the graph showing the optical hand gear of the n-type semiconductor layer obtained by the conventional method. It is a graph showing photoconductivity and dark photoconductivity. 1... Reaction furnace 2u+2d... Electrode 3... High frequency power supply 4.5... Ring material gas tank 6... Rokuri pump 7... Substrate patent Applicant Sanyo Electric Co., Ltd. agent Patent attorney Kono Nobukoku 1 Catalog 2 Written amendment of wrongful procedure (voluntary) July 22, 1985

Claims (1)

【特許請求の範囲】 1、グロー放電法を用いてp型半導体層を形成する過程
で、反応ガスとしてトリメチルボロンを用いることを特
徴とする半導体の製造方法。 2、前記トリメチルボロンはp型ドーパント、又はワイ
ドギャップ材料の原料として用いられる特許請求の範囲
第1項記載の半導体の製造方法。
[Claims] 1. A method for manufacturing a semiconductor, characterized in that trimethylboron is used as a reactive gas in the process of forming a p-type semiconductor layer using a glow discharge method. 2. The method of manufacturing a semiconductor according to claim 1, wherein the trimethylboron is used as a p-type dopant or a raw material for a wide gap material.
JP16870985A 1985-07-30 1985-07-30 Manufacture of semiconductor Pending JPS6229132A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16870985A JPS6229132A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor
US06/888,474 US4755483A (en) 1985-07-30 1986-07-21 Method for producing semiconductor device with p-type amorphous silicon carbide semiconductor film formed by photo-chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16870985A JPS6229132A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPS6229132A true JPS6229132A (en) 1987-02-07

Family

ID=15872995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16870985A Pending JPS6229132A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPS6229132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284809A (en) * 1987-05-15 1988-11-22 Sanyo Electric Co Ltd Method of forming p-type amorphous silicon carbide layer
JPS6411317A (en) * 1987-07-06 1989-01-13 Toshiba Corp Manufacture of semiconductor device
US5238866A (en) * 1991-09-11 1993-08-24 GmbH & Co. Ingenieurburo Berlin Biotronik Mess- und Therapiegerate Plasma enhanced chemical vapor deposition process for producing an amorphous semiconductive surface coating
JPH07230957A (en) * 1994-02-15 1995-08-29 Nippon Steel Corp Forming method of boron-containing polysilicon film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115020A (en) * 1981-12-28 1983-07-08 Sharp Corp Preparation of amorphous silicon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115020A (en) * 1981-12-28 1983-07-08 Sharp Corp Preparation of amorphous silicon film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284809A (en) * 1987-05-15 1988-11-22 Sanyo Electric Co Ltd Method of forming p-type amorphous silicon carbide layer
JPS6411317A (en) * 1987-07-06 1989-01-13 Toshiba Corp Manufacture of semiconductor device
US5238866A (en) * 1991-09-11 1993-08-24 GmbH & Co. Ingenieurburo Berlin Biotronik Mess- und Therapiegerate Plasma enhanced chemical vapor deposition process for producing an amorphous semiconductive surface coating
JPH07230957A (en) * 1994-02-15 1995-08-29 Nippon Steel Corp Forming method of boron-containing polysilicon film

Similar Documents

Publication Publication Date Title
JPS6122622A (en) Method and device for producing photovoltaic power panel
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JPH084071B2 (en) Deposited film formation method
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
US4446168A (en) Method of forming amorphous silicon
JPS6229132A (en) Manufacture of semiconductor
JPS6329821B2 (en)
JPS6188570A (en) Manufacture of amorphous silicon solar cell
US5221643A (en) Method for producing polycrystalline semiconductor material by plasma-induced vapor phase deposition using activated hydrogen
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPS6132416A (en) Manufacture of semiconductor device
JP2688219B2 (en) Photoelectric conversion element
JPH01161777A (en) Manufacture of amorphous semiconductor solar cell
JPH0554692B2 (en)
JPS62196876A (en) Photosensor and manufacture thereof
JPS63284809A (en) Method of forming p-type amorphous silicon carbide layer
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JP2000196122A (en) Photovolatic element
JPH02177371A (en) Manufacture of amorphous solar cell
JPS5857757A (en) Preparation of amorphous silicon solar battery
JPS6216514A (en) Manufacture of photoelectric conversion element
JPS60128610A (en) Method of forming thin film
JPH05343713A (en) Manufacture of amorphous solar cell
JPH05275726A (en) Photoelectric conversion device
JPS58102569A (en) Manufacture of amorphous silicon solar battery