JPS6132416A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6132416A
JPS6132416A JP15253184A JP15253184A JPS6132416A JP S6132416 A JPS6132416 A JP S6132416A JP 15253184 A JP15253184 A JP 15253184A JP 15253184 A JP15253184 A JP 15253184A JP S6132416 A JPS6132416 A JP S6132416A
Authority
JP
Japan
Prior art keywords
layer
temperature
doped layer
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15253184A
Other languages
Japanese (ja)
Other versions
JPH0719906B2 (en
Inventor
Masataka Kondo
正隆 近藤
Toshito Tando
丹藤 俊人
Kunio Nishimura
西村 国夫
Kazunaga Tsushimo
津下 和永
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Japan Science and Technology Agency
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd, Research Development Corp of Japan filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59152531A priority Critical patent/JPH0719906B2/en
Publication of JPS6132416A publication Critical patent/JPS6132416A/en
Publication of JPH0719906B2 publication Critical patent/JPH0719906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the decline of characteristics caused by reduction and metallization of a transparent conductive film of oxide by specifying the temperature for forming films at a time when an amorphous silicon film is formed on the transparent conductive film. CONSTITUTION:On a transparent conductive film of oxide such as ITO, the amorphous semiconductor which consists of a-Si:H, a-SiC:H at a first dope layer, a-Si:H, a-Si:F as an intrinsic layer, a-SiC:H, a-Si:H as the second dope layer, (the conductive type is opposite to that of the first dope layer) is deposited. The temperature for forming the first dope layer is set at 180 deg.C, the temperatures for the intrinsic layer and the second impurity dope layer are set at 160- 350 deg.C. The temperature for the first dope layer is more preferably 10-40 deg.C by which a substrate is cooled. As a result, the transparent conductive film becomes hard to be reduced even when it contacts with a reducing plasma including hydrogen atoms and the decline of semiconductor characteristics such as the generation of recombination center caused by pollution of the semiconductor layer by the produced metal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

[従来の技術] 太陽電池などに用いられるa−8i:tl、 a−8+
C:H。
[Prior art] a-8i:tl, a-8+ used in solar cells, etc.
C:H.

a−Ge:Hla−8i: F:H、μc−3i:Hな
どの非晶質シリコン膜を成膜する際に、通常容量結合方
RF平行平板CVD装置が用いられている。 −−しか
し、この装置を用い、従来法のように220〜250℃
程度の温度で成膜すると、電子や半導体形成ガスから生
成されたラジカルが直接基板面に衝突するため、ITO
、In2O5、I■0/5n02、Cdx5nOY(X
−0,5〜2、y=2〜4)、lr  O(x= 0.
33〜0.5)など×1−x から形成された透−明導電膜が一部還元され、金属化す
る。この金属が堆積された第1不純物ド−プ層のみなら
ず真性層まで拡散して、一種のドーパントとして作用し
たり、真性層で発生した電子やホールを打消してしまう
再結合中心になったりするなど、半導体/透明導電膜間
の界面が著しく劣化する。また、前記金属化が生じると
、透明電極そのものの透明性や導電性も低下するため、
半導体装置の特性、とくに光電変換特性が大幅に低下す
る。
When forming amorphous silicon films such as a-Ge:Hla-8i:F:H and μc-3i:H, a capacitively coupled RF parallel plate CVD apparatus is usually used. --However, using this equipment, the temperature
When a film is formed at a temperature of
, In2O5, I■0/5n02, Cdx5nOY(X
−0,5~2, y=2~4), lr O(x=0.
A transparent conductive film formed from x1-x such as 33-0.5) is partially reduced and metallized. This metal diffuses not only into the deposited first impurity doped layer but also into the intrinsic layer, acting as a kind of dopant or becoming a recombination center that cancels out electrons and holes generated in the intrinsic layer. The interface between the semiconductor/transparent conductive film is significantly deteriorated. In addition, when the metallization occurs, the transparency and conductivity of the transparent electrode itself decreases,
The characteristics of the semiconductor device, especially the photoelectric conversion characteristics, are significantly reduced.

[発明が解決しようとする問題点] 本発明は、前記のごとき酸化物透明導電膜上に非晶質半
導体を堆積する際におこる、酸化物透明導電膜の還元に
より生ずる問題を少なくしようとするものである。
[Problems to be Solved by the Invention] The present invention attempts to reduce the problems caused by the reduction of the oxide transparent conductive film, which occurs when an amorphous semiconductor is deposited on the oxide transparent conductive film as described above. It is something.

[問題点を解決するための手段] 本発明は、酸化物透明導電膜上に第1不純物ドープ層(
以下、第1ドープ層という)、真性層、第2不純物ドー
プm<以下、第2ドープ層という、第1ドープ層と反対
の導電タイプ)からなる非晶質半導体をこの順に堆積す
る際に、第1ドープ層の成膜温度を10〜180℃、真
性層および第2不純物ドープ層の成膜温度を160〜3
50℃にすることにより、前記問題を少なくしたもので
ある。
[Means for solving the problems] The present invention provides a first impurity doped layer (
When depositing in this order an amorphous semiconductor consisting of a first doped layer (hereinafter referred to as a first doped layer), an intrinsic layer, and a second impurity doped m<hereinafter referred to as a second doped layer (conductivity type opposite to the first doped layer), The film forming temperature of the first doped layer is 10 to 180°C, and the film forming temperature of the intrinsic layer and the second impurity doped layer is 160 to 3°C.
By setting the temperature to 50°C, the above-mentioned problem is alleviated.

[実施例] 本発明に用いる酸化物透明導電膜とは一般に半導体装置
の製造に使用される、厚さ0.01〜10IA程度の酸
化物透明導電膜のことであり、このような酸化物透明導
電膜である限り、とくに限定はない。該導電膜の具体例
としては、ITO1ITO/ 5nOz 、In2O5
,5n02. Cd  SnOv(x=O15〜2、Y
=2〜4)、Ir  O(x=0.33×1−x 〜0.5)、CdOなどがあげられるが、これらに限定
されるものではない。
[Example] The oxide transparent conductive film used in the present invention is an oxide transparent conductive film with a thickness of about 0.01 to 10 IA, which is generally used in the manufacture of semiconductor devices. There is no particular limitation as long as it is a conductive film. Specific examples of the conductive film include ITO1ITO/5nOz, In2O5
, 5n02. Cd SnOv (x=O15~2, Y
=2~4), IrO (x=0.33x1-x~0.5), CdO, etc., but are not limited to these.

これらの導電膜はいずれも、水素原子を含んだような還
元性のプラズマにより還元されやすく、とくに温度が高
くなると一般的な化学反応のばあいと同様、その還元が
顕著におこる。
All of these conductive films are easily reduced by reducing plasma containing hydrogen atoms, and when the temperature is particularly high, the reduction occurs significantly as in a general chemical reaction.

本発明において酸化物透明導電膜上に堆積される第1ド
ープ層としては、たとえばa−8i:H。
In the present invention, the first doped layer deposited on the oxide transparent conductive film is, for example, a-8i:H.

a−3iC:H、a−Ge:Hla−8i:F:H1μ
C−3i:Hなどのp型のものが一般的に用いられるが
、このようなp型のドープ層に限定されるものではない
a-3iC:H, a-Ge:Hla-8i:F:H1μ
Although a p-type layer such as C-3i:H is generally used, it is not limited to such a p-type doped layer.

第1ドープ層が堆積されたのちに一形成される真性層、
および第2ドープ層としては、通常用いられる真性層、
および第1ドープ層と反対の導電タイプである第2ドー
プ層であれば、とくに限定されるものではない。このよ
うな真性層の具体例としては、a−8i:Hla−8t
:F、 a−3i:F:Hla−8iGe:Hla−8
iSn:H,a−3iN:Hなど、第2ドープ層の具体
例としては、第1ドープ層がp型のばあいにはn型の1
tC−8i:If 、 a−3iC:H、a−8i:H
,a−8iN:Hなど、第1ドープ層がn型のばあいに
はp型のa−8i:H,μC−8i:H、a−3iC:
Hなどがあげられる。
an intrinsic layer formed after the first doped layer is deposited;
And as the second doped layer, a commonly used intrinsic layer,
The second doped layer is not particularly limited as long as it is a second doped layer having a conductivity type opposite to that of the first doped layer. A specific example of such an intrinsic layer is a-8i:Hla-8t
:F, a-3i:F:Hla-8iGe:Hla-8
Specific examples of the second doped layer, such as iSn:H and a-3iN:H, include n-type 1 when the first doped layer is p-type.
tC-8i:If, a-3iC:H, a-8i:H
, a-8iN:H, etc. When the first doped layer is n-type, p-type a-8i:H, μC-8i:H, a-3iC:
Examples include H.

本発明においては、第1ドープ層を成膜するばあい成膜
温度を180℃以下、好ましくは150℃以下、さらに
好ましくは130℃以下、ことにヒーターを用いない温
度(たとえば10〜70℃程度)、とくに好ましくは基
板を冷却した温度(たとえば10〜40℃程度)にする
のがよい。このように成膜温度を低くして成膜すること
により、酸化物透明導電膜が水素原芋を含んだ還元性の
プラズマと接触しても還元されにくくなり、したがって
生成する金属の凶も少なくなり、該金属による半導体層
の汚染から生ずる再結合中心の発生、ドーピング効率の
低下などの半導体特性の低下が著しく改善される。また
低い温度で成膜するので堆積される第1ドープ層に発生
する内部応力を少なくすることができるため、第1ドー
プII/酸化物透明導電膜の界面におけるストレスから
起因するダングリングボンドなどの欠陥を減少させるこ
とができる。さらに連続プロセス装置を用いてヒーター
を用いない温度で成膜するようなばあいには、ヒーター
の1つを節約することができ、装置コストの低減をはか
ることができる。
In the present invention, when forming the first doped layer, the film forming temperature is 180°C or lower, preferably 150°C or lower, more preferably 130°C or lower, especially at a temperature not using a heater (for example, about 10 to 70°C). ), particularly preferably at a temperature at which the substrate is cooled (for example, about 10 to 40°C). By forming the film at a low film-forming temperature in this way, the oxide transparent conductive film is less likely to be reduced even if it comes into contact with reducing plasma containing hydrogen raw material, and therefore the metal produced is less likely to be harmful. Therefore, deterioration of semiconductor properties such as generation of recombination centers and deterioration of doping efficiency resulting from contamination of the semiconductor layer by the metal is significantly improved. In addition, since the film is formed at a low temperature, the internal stress generated in the deposited first doped layer can be reduced, so dangling bonds etc. caused by stress at the interface of the first doped II/oxide transparent conductive film can be reduced. Defects can be reduced. Furthermore, if a continuous process device is used to form a film at a temperature without using a heater, one of the heaters can be saved, and the cost of the device can be reduced.

前記第1ドープ層を成膜するばあいのプラズマ条件は成
膜温度が低いために注意を要し、通常圧力を0.2〜2
.5Torrの範囲で、グロー放電を維持可能な最小ま
たはその近傍の圧力にし、シラン(またはシランとメタ
ンの混合ガス)に対するドーピングガスの流量比を0.
05〜2,0%にし、RFパワーはグロー放電を維持可
能な範囲(5〜2014/cd)で最小になるようにし
て、膜のドーピング特性、光学的禁止帯幅を最適化した
条件、たとえばp型半導体を製造するばあいには、導電
率の温度依存性から求まる活性化エネルギーΔEが0.
6eV以下、光学的禁止帯幅EOptとの差がEODt
−ΔE≧L3eVになるように最適化された条件である
When forming the first doped layer, care must be taken regarding the plasma conditions because the film forming temperature is low, and the pressure is usually set at 0.2 to 2.
.. The pressure is at or near the minimum that can sustain glow discharge in the range of 5 Torr, and the flow rate ratio of doping gas to silane (or a mixture of silane and methane) is 0.
05 to 2,0%, and the RF power is minimized within the range that can maintain glow discharge (5 to 2014/cd), and the doping characteristics of the film and the optical band gap are optimized, for example. When manufacturing a p-type semiconductor, the activation energy ΔE determined from the temperature dependence of conductivity is 0.
6eV or less, the difference from the optical band gap EOpt is EODt
The conditions are optimized so that -ΔE≧L3eV.

なお本発明の方法を実施するための装置としては、通常
の容量結合型RF平行平板CvO装置。
The apparatus for carrying out the method of the present invention is a conventional capacitively coupled RF parallel plate CvO apparatus.

誘導結合型RF平行平板CvD装置、DC0平行平板型
CvD装置などがあげられるが、平行平板COv装置に
顕著な効果がみられる。
Examples include an inductively coupled RF parallel plate CvD device, a DC0 parallel plate CvD device, and a remarkable effect is seen in the parallel plate COv device.

つぎに本発明の方法を実施例に基づき説明する。Next, the method of the present invention will be explained based on examples.

実施例1〜6および比較例1 RF容量結合型平行平板CvD装置を用い、青板ガラス
板上にスパッタ法により厚さ700^になるようにIT
Oを形成した。第1表に示す温度、CVD圧力1.5T
orr、  3it14/ CH4f)流量が2/3、
SiH4+CH4の合計流量に対してBz H6の流量
ηなるようにして、RFパワー密度1oo1/cdでρ
型a−8iC:H層をITO面上に100人堆積させた
のち、220℃、CVD圧力ITOrr 5SiH4ガ
スを用いてRFパワー密度1511M/ 7でi型a−
3i:8層を6000 A堆積させた。ついで220℃
、CV[1圧力2 Torr 、  5iHaに対しP
H3が1%、H2が30倍になるように導入し、RFパ
ワー密度50〜70+nW/CIiでn型μc−8i:
8層を30OA堆積させ、電極としてA1を真空蒸着法
により1000人堆積させて、1dの面積を有する太陽
電池を作製した。
Examples 1 to 6 and Comparative Example 1 Using an RF capacitively coupled parallel plate CvD device, IT was deposited onto a blue plate glass plate by sputtering to a thickness of 700^.
O was formed. Temperature shown in Table 1, CVD pressure 1.5T
orr, 3it14/CH4f) flow rate is 2/3,
The flow rate of Bz H6 is set to η for the total flow rate of SiH4 + CH4, and ρ is set at an RF power density of 1oo1/cd.
Type a-8 iC: After 100 layers of H layer were deposited on the ITO surface, the i-type a-
3i:8 layers were deposited at 6000 A. Then 220℃
, CV [1 pressure 2 Torr, P for 5iHa
Introducing H3 to 1% and H2 to 30 times, n-type μc-8i at RF power density of 50 to 70+nW/CIi:
A solar cell having an area of 1 d was fabricated by depositing 8 layers at 30 OA and depositing 1000 A1 layers as electrodes by vacuum evaporation.

えられた太陽電池の特性をAM−1,100fllW/
catのソーラーシュレータ−を用いて測定した。それ
らの結果を第1表および第1図に示す。
The characteristics of the solar cell obtained were AM-1,100flW/
It was measured using a Cat solar schulator. The results are shown in Table 1 and FIG.

酸化物透明電極/p層/i層の界面の様子をしらべるた
め、えられた太陽電池と同じCVD条件にてEllおよ
びilをITO上にそれぞれ100^、300Aの厚さ
に順次堆積させたのちESCA。
In order to examine the state of the oxide transparent electrode/p layer/i layer interface, Ell and il were sequentially deposited on ITO to a thickness of 100 and 300 A, respectively, under the same CVD conditions as the solar cell. ESCA.

^noer 、8188などの電子分光法により測定し
、0層およびi層に拡散したInの量を分析した。
The amount of In diffused into the 0 layer and the i layer was analyzed using electron spectroscopy such as Noer, 8188.

それらの結果を第1表に示す。The results are shown in Table 1.

[以下余白] 第1表の結果から、p層の成膜温度を下げることにより
、太陽電池特性のうちの短絡電流(Jsc)および曲線
因子(FF)に大幅な改善がみられ、結果的に光電変換
効率(η)の向上がはかられることがわかる。
[Left below] From the results in Table 1, by lowering the p-layer deposition temperature, there was a significant improvement in the short circuit current (Jsc) and fill factor (FF) of the solar cell characteristics, and as a result, It can be seen that the photoelectric conversion efficiency (η) can be improved.

また第1表の結果から、p層およびi層に拡散したIn
の便が、成膜温度30℃のものは180℃のものの17
10以下、225℃のものの1720以下であることが
わかる。
Also, from the results in Table 1, it is clear that In diffused into the p-layer and i-layer
The stool of the film forming temperature of 30℃ is 17% higher than that of 180℃.
It can be seen that it is 10 or less, and 1720 or less at 225°C.

[発明の効果] 本発明の方法により半導体装置を製造すると低い湿麿で
第1ドープ層を成膜するため、酸化物透明導電膜が水素
原子を含んだような還元性のプラズマと接触しても還元
されにくくなり、したがって生成する金属の量も少なく
なり、該金属による再結合中心の増加、ドーピング特性
の低下などの半導体特性の低下が著しく改善される。ま
た低温度で成膜するために堆積される1ド一プ層に発生
する内部応力を少なくすることができるため、第1ドー
プ層/1m化物透明導電膜の界面における応力により発
生するダングリングボンドなどの欠陥を減少させること
ができる。さらに連続プロセス装置を用いてヒーターを
使用しない温度で成膜するようなばあいには、ヒーター
の1つを節約する゛ことができ、装置コストの低減をは
かることができる。
[Effects of the Invention] When a semiconductor device is manufactured by the method of the present invention, the first doped layer is formed at a low humidity, so that the oxide transparent conductive film comes into contact with reducing plasma containing hydrogen atoms. is also less likely to be reduced, and therefore the amount of metal produced is reduced, and deterioration of semiconductor properties such as increase in recombination centers and deterioration of doping properties due to the metal is significantly improved. In addition, because the film is formed at a low temperature, it is possible to reduce the internal stress that occurs in the 1-doped layer deposited, so dangling bonds that occur due to stress at the interface of the 1-doped layer/1 m compound transparent conductive film can be reduced. It is possible to reduce defects such as Furthermore, if a continuous process device is used to form a film at a temperature that does not use a heater, one heater can be saved, and the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜6でえられた太陽電池の特性を示し
たグラフである。
FIG. 1 is a graph showing the characteristics of the solar cells obtained in Examples 1 to 6.

Claims (1)

【特許請求の範囲】 1 酸化物透明導電膜上に第1不純物ドープ層、真性層
、第2不純物ドープ層(第1不純物ドープ層と反対の導
電タイプ)からなる非晶質半導体をこの順に堆積する際
に、第1不純物ドープ層の成膜温度が10〜180℃で
、真性層および第2不純物および第2不純物ドープ層の
成膜温度が160〜350℃であることを特徴とする半
導体装置の製造方法。 2 前記第1不純物ドープ層の成膜温度が130℃以下
である特許請求の範囲第1項記載の製造方法。 3 前記第1不純物ドープ層の成膜温度がヒーターを用
いない温度である特許請求の範囲第1項記載の製造方法
。 4 前記第1不純物ドープ層の成膜温度が基板を冷却し
た温度である特許請求の範囲第1項記載の製造方法。
[Claims] 1. An amorphous semiconductor consisting of a first impurity doped layer, an intrinsic layer, and a second impurity doped layer (conductivity type opposite to the first impurity doped layer) is deposited in this order on an oxide transparent conductive film. A semiconductor device characterized in that the film formation temperature of the first impurity doped layer is 10 to 180°C, and the film formation temperature of the intrinsic layer, the second impurity, and the second impurity doped layer is 160 to 350°C. manufacturing method. 2. The manufacturing method according to claim 1, wherein the first impurity doped layer is formed at a temperature of 130° C. or lower. 3. The manufacturing method according to claim 1, wherein the first impurity-doped layer is formed at a temperature that does not use a heater. 4. The manufacturing method according to claim 1, wherein the first impurity-doped layer is formed at a temperature at which the substrate is cooled.
JP59152531A 1984-07-23 1984-07-23 Method for manufacturing semiconductor device Expired - Lifetime JPH0719906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59152531A JPH0719906B2 (en) 1984-07-23 1984-07-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59152531A JPH0719906B2 (en) 1984-07-23 1984-07-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6132416A true JPS6132416A (en) 1986-02-15
JPH0719906B2 JPH0719906B2 (en) 1995-03-06

Family

ID=15542473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59152531A Expired - Lifetime JPH0719906B2 (en) 1984-07-23 1984-07-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0719906B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149968A (en) * 1987-12-07 1989-06-13 Toshiba Corp Manufacture of fiber sliding member
JPH0586544A (en) * 1991-04-01 1993-04-06 Toyota Autom Loom Works Ltd Picking device of jet loom, reed for picking device and production of the reed
US5279334A (en) * 1991-07-10 1994-01-18 Tsudakoma Kogyo Kabushiki Kaisha Reed maintenance device with warp sheet repositioner
JP2002246619A (en) * 2001-02-13 2002-08-30 Kanegafuchi Chem Ind Co Ltd Method of manufacturing thin film photoelectric conversion device
US6461444B1 (en) 1999-08-20 2002-10-08 Kaneka Corporation Method and apparatus for manufacturing semiconductor device
US10024065B2 (en) 2009-03-27 2018-07-17 Afi Licensing Llc Floor panel and floating floor system incorporating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149968A (en) * 1987-12-07 1989-06-13 Toshiba Corp Manufacture of fiber sliding member
JPH0586544A (en) * 1991-04-01 1993-04-06 Toyota Autom Loom Works Ltd Picking device of jet loom, reed for picking device and production of the reed
US5279334A (en) * 1991-07-10 1994-01-18 Tsudakoma Kogyo Kabushiki Kaisha Reed maintenance device with warp sheet repositioner
US6461444B1 (en) 1999-08-20 2002-10-08 Kaneka Corporation Method and apparatus for manufacturing semiconductor device
JP2002246619A (en) * 2001-02-13 2002-08-30 Kanegafuchi Chem Ind Co Ltd Method of manufacturing thin film photoelectric conversion device
US10024065B2 (en) 2009-03-27 2018-07-17 Afi Licensing Llc Floor panel and floating floor system incorporating the same

Also Published As

Publication number Publication date
JPH0719906B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US7238545B2 (en) Method for fabricating tandem thin film photoelectric converter
EP1113505A2 (en) Semiconductor device and manufacturing method thereof
JP2008153646A (en) Manufacturing method of semiconductor device
JPH05243596A (en) Manufacture of laminated type solar cell
CN218788382U (en) High-efficiency heterojunction solar cell
US4710786A (en) Wide band gap semiconductor alloy material
US4409424A (en) Compensated amorphous silicon solar cell
JP2000138384A (en) Amorphous semiconductor device and its manufacture
JPH10125944A (en) Photosensor
JPS6132416A (en) Manufacture of semiconductor device
US4680607A (en) Photovoltaic cell
US7122736B2 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
JPH11103082A (en) Photosensor and manufacture thereof
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0121634B2 (en)
JP2545066B2 (en) Semiconductor device
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPH0562830B2 (en)
JP2757896B2 (en) Photovoltaic device
JP2004253417A (en) Method of manufacturing thin film solar cell
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JP3358164B2 (en) Method for manufacturing photovoltaic device
JP3487580B2 (en) Deposited film forming method and deposited film forming apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term