JPS62291121A - Planar type semiconductor device - Google Patents

Planar type semiconductor device

Info

Publication number
JPS62291121A
JPS62291121A JP13665286A JP13665286A JPS62291121A JP S62291121 A JPS62291121 A JP S62291121A JP 13665286 A JP13665286 A JP 13665286A JP 13665286 A JP13665286 A JP 13665286A JP S62291121 A JPS62291121 A JP S62291121A
Authority
JP
Japan
Prior art keywords
film
insulating film
dielectric constant
substrate
type substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13665286A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
和浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13665286A priority Critical patent/JPS62291121A/en
Publication of JPS62291121A publication Critical patent/JPS62291121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To elongate a depletion layer near the surface of an N-type substrate by forming a second insulating film having higher dielectric constant than that of a first insulating film on the first for protecting a junction end to modulate lines of electric in the first film on the substrate. CONSTITUTION:A first insulating film 1 which covers a P-N junction end of a P-type diffused layer 5 formed on an N-type substrate 1 and is provided on the substrate is of an SiO2 film having a specific dielectric constant of 4.6-4.8. A second insulating film 2 which is provided on the first film to cover the top of the P-N junction end is of an Al2O3 film having a specific dielectric constant of 8.6-10.5. When the P-N junction is reversely biased, a depletion layer is extended in an N-type substrate 4, and equipotential line 8 which passes the vicinity of the position formed with the film 2 is as designated by a broken line. Since the dielectric constant l2 of the film 2 is higher than that l1 of the film 2, an electric field in the film 2 is weakened, and the electric field in the film 1 directly under the film 2 is strengthened to act in a direction for extending the depletion layer near the surface of the substrate 4.

Description

【発明の詳細な説明】 1 発明の詳細な説明 〔産業上の利用分野〕 本発明は、プレーナ型半導体装置に関し、特に接合を覆
う絶縁膜の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a planar semiconductor device, and particularly to the structure of an insulating film covering a junction.

〔従来の技術〕[Conventional technology]

従来、プレーナ型半導体装置の耐圧向上技術の一つにフ
ィールドプレート構造がある。第3図にフィールドプレ
ート構造を持ったPN接合型Siダイオードの一般例を
示し、以下にフィールドプレート構造の作用を説明する
Conventionally, there is a field plate structure as one of the techniques for improving the withstand voltage of planar semiconductor devices. FIG. 3 shows a general example of a PN junction type Si diode having a field plate structure, and the action of the field plate structure will be explained below.

第3図のStダイオードはN型基板24にP型拡散層2
5が設けられ、PN接合端をおおって絶縁膜21が設け
られ、この絶縁膜上にフィールドプレート22が設けら
れている。まず仁のPN接合に逆バイアスを印加すると
、第3図中破線に示す通ヤN型基板24に空乏層が広が
る。この時、フィールドプレート22の電位がP型拡散
層と同電位であることから、フィールドブレート直下の
絶縁[21とN型基板24との界面近傍の空乏層が伸び
、一般のフィールドプレート構造を持たないプレーナ型
半導体装置よシも、耐圧が同上する。
The St diode in FIG. 3 has a P-type diffusion layer 2 on an N-type substrate 24.
5, an insulating film 21 is provided covering the PN junction end, and a field plate 22 is provided on this insulating film. First, when a reverse bias is applied to the normal PN junction, a depletion layer spreads in the N-type substrate 24 shown by the broken line in FIG. At this time, since the potential of the field plate 22 is the same as that of the P-type diffusion layer, the depletion layer near the interface between the insulation [21] directly under the field plate and the N-type substrate 24 is extended, resulting in a general field plate structure. Even planar type semiconductor devices that do not have the same breakdown voltage as above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のフィールドプレート構造では、フィール
ドプレートの材質が金属であるため、フィールドプレー
ト全域が等電位となシ、フィールドプレート端部の電界
が強く、外部イオンの吸着等が起シ易く、信頼性上の不
安定要因となる。また、フィールドプレート直下の電界
が強いと絶縁膜との界面近傍のN型基板表面がPチャン
ネルに反転し、P散拡散層が伸びた状態になシ、最悪の
場合2段ブレークダウンを起すことがある。更に、上述
の現象は、絶縁膜中の電荷密度によって変化し、工程能
力上の問題も関係する 〔問題点を解決するための手段〕 本発明のプレーナ型半導体装置は、金属(An等)のフ
ィールドプレート構造のかわシに、高誘電率の誘電体膜
を使用して、N型基板表面及び、フールドブレート端部
での電界集中を緩和するものである。
In the conventional field plate structure described above, since the material of the field plate is metal, the entire field plate is not at an equal potential, and the electric field at the edge of the field plate is strong, which tends to cause adsorption of external ions, resulting in poor reliability. This causes the above instability. In addition, if the electric field directly under the field plate is strong, the surface of the N-type substrate near the interface with the insulating film will be inverted to a P-channel, leaving the P-diffusion layer stretched, resulting in a two-stage breakdown in the worst case. There is. Furthermore, the above-mentioned phenomenon changes depending on the charge density in the insulating film, and is also related to problems in process capability [Means for solving the problem] The planar semiconductor device of the present invention A dielectric film with a high dielectric constant is used in the field plate structure to alleviate electric field concentration on the surface of the N-type substrate and the edge of the field plate.

本発明のプレーナ型半導体装置は、PN接合を1つ以上
有するプレーナ型半導体装置において接合終端を保護し
ている第1の絶縁膜よに第1の絶縁膜の誘電率よシ高い
誘電率を有する第2の絶縁膜を形成されていることを特
徴とする。
The planar semiconductor device of the present invention has a dielectric constant higher than that of the first insulating film that protects the junction termination in a planar semiconductor device having one or more PN junctions. A feature is that a second insulating film is formed.

好ましい実施態様では、第2の絶縁膜の形成されていな
い第1の絶縁膜上と第2の絶縁膜上とに第1の絶縁膜と
同じ、又はよシ低い誘電率を有し、且つ膜厚が第2の絶
縁膜と同じ又は、厚い第3の絶lf&膜が形成されてい
る。
In a preferred embodiment, on the first insulating film on which the second insulating film is not formed and on the second insulating film, a film having a dielectric constant equal to or lower than that of the first insulating film is formed. A third insulating film having the same or thicker thickness as the second insulating film is formed.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the present invention.

N型基板4に形成されたP散拡散層5とのPN接合端t
−aい、基板上に設けられた第1の絶縁膜lは、熱酸化
によって形成された比誘電率4.6〜4.8の5iOz
膜である。第1の絶縁膜上に設けられ、PN接合端の上
部を覆う第2の絶縁膜2は、比誘電率8.6〜10.5
のA7zOsMMである。第1および第2の絶縁膜上に
設けられた第3の絶縁膜3は、比誘電率4.0〜4.3
cDCVDSiOzMuT6る。
PN junction end t with P diffusion layer 5 formed on N type substrate 4
-a, the first insulating film l provided on the substrate is a 5iOz film with a dielectric constant of 4.6 to 4.8 formed by thermal oxidation.
It is a membrane. The second insulating film 2 provided on the first insulating film and covering the upper part of the PN junction end has a dielectric constant of 8.6 to 10.5.
This is A7zOsMM. The third insulating film 3 provided on the first and second insulating films has a dielectric constant of 4.0 to 4.3.
cDCVDSiOzMuT6.

電極6は、P形波散層5にオーミック接触を持つAl薄
膜であシ、電極7はN形基板lとオーミック接触を持つ
AJ薄膜である。ここで電極6はequipotenf
ial ring (EQPR)として働く。
The electrode 6 is an Al thin film having ohmic contact with the P-type wave dispersion layer 5, and the electrode 7 is an AJ thin film having ohmic contact with the N-type substrate 1. Here, the electrode 6 is equipotenf
ial ring (EQPR).

まず、PN接合に逆バイアスを印加すると、N形基板4
中に空乏層が広がシ、第2の絶縁膜2の形成された部位
近傍を通る等電位線8は、第1図中に破線で示す通シと
なる。これは、第2の絶縁膜2の誘電率ε2が第1の絶
縁膜1の誘電率#lよル高いため、第2の絶縁膜2中の
電界が弱くなシ、第2の絶縁膜2直下の第1の絶縁膜上
中の電界が強くなh、N形基板4表面付近の空乏層を伸
ばす方向に働く。更に、第2の絶縁膜2上には誘電率t
3が第1の絶縁膜1と同程度の第3の絶縁膜が形成され
、第2の絶縁M2中も電気力線が通過するため、第3の
絶縁膜3上の電位分布は一様となシ、外部イオンの偏シ
による特性変動の少ないプレーナ型半導体装置となる。
First, when a reverse bias is applied to the PN junction, the N type substrate 4
The depletion layer spreads therein, and the equipotential line 8 passing near the portion where the second insulating film 2 is formed becomes a line shown by a broken line in FIG. This is because the dielectric constant ε2 of the second insulating film 2 is higher than the dielectric constant #l of the first insulating film 1, so the electric field in the second insulating film 2 is weak. The electric field directly above the first insulating film is strong and acts in the direction of extending the depletion layer near the surface of the N-type substrate 4. Further, on the second insulating film 2 there is a dielectric constant t
Since the third insulating film 3 is the same as the first insulating film 1 and the electric lines of force pass through the second insulating film 1, the potential distribution on the third insulating film 3 is uniform. Moreover, a planar semiconductor device with less variation in characteristics due to unevenness of external ions can be obtained.

第2図は本発明の第2の実施例の縦断面図である。第2
の実施例は本発明をMOSFET 外周部に適用したも
のである。第1の絶縁膜41は熱酸化によって形成され
た比誘電率4.6〜4.8のSi0g膜であシ、第2の
絶縁膜12は、比誘電率30〜100のTi0z膜であ
る。第3の絶縁膜13は、比[率4.0〜4.30CV
DSiOzMである。N型基板14は、比抵抗20〜6
0Ωαの基板であり、MOSFETのドレインとして働
く。
FIG. 2 is a longitudinal sectional view of a second embodiment of the invention. Second
In this embodiment, the present invention is applied to the outer peripheral portion of a MOSFET. The first insulating film 41 is a Si0g film with a dielectric constant of 4.6 to 4.8 formed by thermal oxidation, and the second insulating film 12 is a Ti0z film with a dielectric constant of 30 to 100. The third insulating film 13 has a ratio of 4.0 to 4.30 CV.
It is DSiOzM. The N-type substrate 14 has a specific resistance of 20 to 6
It is a 0Ωα substrate and serves as the drain of the MOSFET.

P型拡散層15は、N型基板14内に形成され、ゲート
領域として働く拡散層である。高濃度N型拡散層11j
:P型拡散層15内に形成され、MOSFETのソース
領域として働きP散拡散層よシ高濃度拡散層である。電
極17はソース電極、電極18はゲート電極(Poly
i Si etc)である。
The P-type diffusion layer 15 is a diffusion layer formed within the N-type substrate 14 and serving as a gate region. High concentration N type diffusion layer 11j
: It is formed in the P-type diffusion layer 15, acts as a source region of the MOSFET, and is a highly doped diffusion layer compared to the P-type diffusion layer. The electrode 17 is a source electrode, and the electrode 18 is a gate electrode (Polymer
i Si etc).

まず、電極17.18間をショート状態で接地し、ドレ
イン領域に、正バイアスを印加すると、N型基板14中
に空乏層が広がり、第2の絶縁膜12の近傍の第1の絶
R膜とN型基板との界面の等電位線は第2図中に破線で
示す通シとなシ、空乏層が伸びゲート領域周辺部の電界
集中が緩和される。また、N型基板表面が反転すること
もなくなり、これまで耐圧保持のみであった外周領域も
、6一 電流経路として使用できる。
First, when the electrodes 17 and 18 are grounded in a short-circuit state and a positive bias is applied to the drain region, a depletion layer spreads in the N-type substrate 14 and the first isolated R film near the second insulating film 12 The equipotential lines at the interface between the gate electrode and the N-type substrate are shown by broken lines in FIG. 2, and the depletion layer is extended, thereby relaxing the electric field concentration around the gate region. Furthermore, the surface of the N-type substrate is no longer inverted, and the outer peripheral region, which has been used only to maintain voltage resistance, can now be used as a current path.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、PN接合上を保護する第
1の絶縁膜の誘電率よシも高い誘電率を有する第2の絶
縁膜によシ、N型基板表面上の第1の絶縁膜中の電気力
線を変調させ、N型基板表面近傍の空乏層を伸ばすこと
ができる。
As explained above, the present invention provides a second insulating film having a dielectric constant higher than that of the first insulating film that protects the PN junction. By modulating the electric lines of force in the film, the depletion layer near the surface of the N-type substrate can be extended.

また、第2の絶縁膜上は、第1の絶縁膜と同程度の誘電
率を有する第3の絶縁膜により覆われているため、半導
体装置表面での電位分布は一様となシ、フィールドプレ
ート構造におけるプレート端へのイオン集中による特性
変動が起らず、耐圧が向上できる効果がある。
Furthermore, since the second insulating film is covered with a third insulating film having a dielectric constant comparable to that of the first insulating film, the potential distribution on the surface of the semiconductor device is not uniform, and the field Characteristic fluctuations due to concentration of ions at the edge of the plate in the plate structure do not occur, and the withstand voltage can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の縦断面図、第2図は本
発明の第2の実施例の縦断面図、第3図は従来のフィー
ルドプレート構造の縦断面図である。
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a second embodiment of the invention, and FIG. 3 is a longitudinal sectional view of a conventional field plate structure.

Claims (2)

【特許請求の範囲】[Claims] (1)PN接合を1つ以上有するプレーナ型半導体装置
において、接合終端を保護している第1の絶縁膜上に第
1の絶縁膜の誘電率より高い誘電率を有する第2の絶縁
膜が形成されていることを特徴とするプレーナ型半導体
装置。
(1) In a planar semiconductor device having one or more PN junctions, a second insulating film having a dielectric constant higher than that of the first insulating film is provided on the first insulating film protecting the junction termination. A planar semiconductor device characterized in that:
(2)前記第2の絶縁膜の形成されていない第1の絶縁
膜上と第2の絶縁膜上とに第1の絶縁膜と同じ、又は低
い誘電率を有し、且つ膜厚が第2の絶縁膜と同じ、又は
厚い第3の絶縁膜3が形成されていることを特徴とする
特許請求の範囲第1項記載のプレーナ型半導体装置。
(2) On the first insulating film on which the second insulating film is not formed and on the second insulating film, the dielectric constant is the same as or lower than that of the first insulating film, and the film thickness is the same as that of the first insulating film, or on the second insulating film. 2. The planar semiconductor device according to claim 1, further comprising a third insulating film 3 that is the same as or thicker than the second insulating film.
JP13665286A 1986-06-11 1986-06-11 Planar type semiconductor device Pending JPS62291121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13665286A JPS62291121A (en) 1986-06-11 1986-06-11 Planar type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13665286A JPS62291121A (en) 1986-06-11 1986-06-11 Planar type semiconductor device

Publications (1)

Publication Number Publication Date
JPS62291121A true JPS62291121A (en) 1987-12-17

Family

ID=15180334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13665286A Pending JPS62291121A (en) 1986-06-11 1986-06-11 Planar type semiconductor device

Country Status (1)

Country Link
JP (1) JPS62291121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105611A1 (en) * 2011-02-02 2012-08-09 ローム株式会社 Semiconductor power device and method for producing same
JP2016015482A (en) * 2014-06-09 2016-01-28 パナソニックIpマネジメント株式会社 Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105611A1 (en) * 2011-02-02 2012-08-09 ローム株式会社 Semiconductor power device and method for producing same
JP5858934B2 (en) * 2011-02-02 2016-02-10 ローム株式会社 Semiconductor power device and manufacturing method thereof
US9472405B2 (en) 2011-02-02 2016-10-18 Rohm Co., Ltd. Semiconductor power device and method for producing same
US9947536B2 (en) 2011-02-02 2018-04-17 Rohm Co., Ltd. Semiconductor power device and method for producing same
US10515805B2 (en) 2011-02-02 2019-12-24 Rohm Co., Ltd. Semiconductor power device and method for producing same
US10840098B2 (en) 2011-02-02 2020-11-17 Rohm Co., Ltd. Semiconductor power device and method for producing same
US11276574B2 (en) 2011-02-02 2022-03-15 Rohm Co., Ltd. Semiconductor power device and method for producing same
US12009213B2 (en) 2011-02-02 2024-06-11 Rohm Co., Ltd. Semiconductor power device and method for producing same
JP2016015482A (en) * 2014-06-09 2016-01-28 パナソニックIpマネジメント株式会社 Semiconductor device
US10361266B2 (en) 2014-06-09 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US4009483A (en) Implementation of surface sensitive semiconductor devices
CA1037160A (en) Semiconductor device having at least one pn junction and channel stopper surrounded by a protective conducting layer
US3302076A (en) Semiconductor device with passivated junction
US4963970A (en) Vertical MOSFET device having protector
GB2089118A (en) Field-effect semiconductor device
JPH07202205A (en) Semiconductor element that has high surface breakdown voltage
US4881106A (en) DV/DT of power MOSFETS
JP2601143B2 (en) Semiconductor device
EP0519741A2 (en) High-breakdown-voltage semiconductor element
JP2781175B2 (en) Semiconductor device
KR910008861A (en) Integrated circuit
JPS62291121A (en) Planar type semiconductor device
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
JPS5753944A (en) Semiconductor integrated circuit
GB1503300A (en) Schottky barrier diode memory devices
JPH04125972A (en) Mos semiconductor element and manufacture thereof
GB1066159A (en) Semiconductor devices
US5554879A (en) High voltage component having a low stray current
JPH07254707A (en) Semiconductor device
JP2883779B2 (en) Semiconductor device
JPH10190011A (en) High-withstand voltage diode
JPH0669510A (en) High-breakdown-strength semiconductor device
JPS6355976A (en) Field effect semiconductor device
CA1123122A (en) High voltage dielectrically isolated dual gate solid-state switch
JPH02312281A (en) Conductivity modulation mosfet