JPS62290807A - Production of rare earth containing magnet alloy - Google Patents

Production of rare earth containing magnet alloy

Info

Publication number
JPS62290807A
JPS62290807A JP61133281A JP13328186A JPS62290807A JP S62290807 A JPS62290807 A JP S62290807A JP 61133281 A JP61133281 A JP 61133281A JP 13328186 A JP13328186 A JP 13328186A JP S62290807 A JPS62290807 A JP S62290807A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
powder
magnet
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61133281A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61133281A priority Critical patent/JPS62290807A/en
Publication of JPS62290807A publication Critical patent/JPS62290807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce a rare earth contg. magnet alloy which is improved in magnetic characteristics by spherical pulverized powder by atomizing the melt of an alloy essentially consisting of rare earth elements including Y by centrifugal force to form the powder. CONSTITUTION:The melt of the rare earth alloy essentially consisting of 1 or >=2 kinds of the rare earth elements including Y is atomized by a centrifugal atomization method in a nonoxidizing atmosphere. The spherical pulverized powder having <=200mu grain size is thereby obtd. The rare earth alloy is expressed by the formula R1-alpha-beta-gammaMalphaAbetaXgamma. R is 1 or >=2 kinds of the raw earth elements including Y, M is 1 or >=2 kinds of Fe, Co, Ni, and Mn, A is 1 or >=2 kinds of Ti, Al, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, X is 1 or >=2 kinds of B, C, N, Si, P, and 0.60<=alpha<=0.85, 0<=beta<=0.10, gamma<0.15. Such pulverized powder alloy yields the magnet having the improved magnetic characteristics when the alloy is made into the magnet by molding, sintering and if necessary, heat treatment.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は希土類系磁石合金の製造方法に関する。[Detailed description of the invention] 3. Detailed description of the invention (Industrial application field) The present invention relates to a method for manufacturing a rare earth magnet alloy.

(従来の技術) 希土類元素を含有せしめた希土類コバルト磁石が出現し
たが、コバルトや高価な希土類元素を多く含むために安
価で優れた磁気特性を有する磁石材料の要請を必ずしも
満足するものではない。
(Prior Art) Rare earth cobalt magnets containing rare earth elements have appeared, but because they contain large amounts of cobalt and expensive rare earth elements, they do not necessarily satisfy the need for a magnet material that is inexpensive and has excellent magnetic properties.

しかし、最近、コバルトを全く含まず、更に磁気特性も
一層優れた希土類磁石合金が出現し、特にネオジウム−
硼素−鉄磁石合金を代表例とする希土類−硼素−鉄系磁
石合金は今後の永久磁石材料として注目されている。
However, recently, rare earth magnet alloys have appeared that do not contain any cobalt and have even better magnetic properties, especially neodymium.
Rare earth-boron-iron magnet alloys, exemplified by boron-iron magnet alloys, are attracting attention as future permanent magnet materials.

ところで、一般に上記磁石材料の製造は、合金を高周波
炉等で溶解して鋳造し、得られたインゴットを粉砕して
微粉末にし、これを磁界中で成形し焼結することによる
ものである(特開昭59−46008号参照)。また、
一部には、ロール法によって溶湯を急冷してリボン状に
し、これを微粉砕する方法も知られている(特開昭60
−89546号参照)。
By the way, the above-mentioned magnet material is generally produced by melting and casting an alloy in a high-frequency furnace or the like, crushing the obtained ingot into a fine powder, molding it in a magnetic field, and sintering it ( (See Japanese Patent Application Laid-Open No. 59-46008). Also,
Some methods are known in which the roll method is used to rapidly cool the molten metal into a ribbon shape, which is then finely pulverized (Japanese Patent Application Laid-Open No. 1983-1999).
-89546).

しかし、いずれの方法であってもインゴット乃至リボン
を機械的粉砕手段(スタンドミル、ボールミル等)によ
り粉砕して微粉末原料とするものであるため、微粉末の
大きさ、形状などの性状に限界があり、しかも不純物が
混入するという問題もあった。
However, in either method, the ingot or ribbon is crushed by mechanical crushing means (stand mill, ball mill, etc.) to obtain a fine powder raw material, so there are limits to the properties such as the size and shape of the fine powder. Moreover, there was also the problem of contamination with impurities.

(発明の目的) 本発明は、特に上記希土類系磁石合金の製造に関する従
来技術の欠点を解消し、機械的粉砕を行わずに微細結晶
粒で粒径が小さく、球状の微粉末原料を得ることにより
、磁気特性を改善し得る希土類系磁石合金の製造方法を
提供することを目的とするものである。
(Objective of the Invention) The present invention is intended to eliminate the drawbacks of the conventional technology particularly related to the production of the above-mentioned rare earth magnet alloy, and to obtain a fine powder raw material with fine crystal grains, small particle size, and spherical shape without mechanical pulverization. The object of the present invention is to provide a method for manufacturing a rare earth magnet alloy that can improve magnetic properties.

(発明の構成) 上記目的を達成するため、本発明者は1機械的粉砕工程
を伴わずに合金溶湯から直接粉末を得ることができる種
々の噴霧法について検討したところ、遠心噴霧法が効果
的に適用できることを見い出した。
(Structure of the Invention) In order to achieve the above object, the present inventor investigated various spraying methods that can directly obtain powder from molten alloy without a mechanical crushing step, and found that centrifugal spraying is effective. found that it can be applied to

すなわち1合金溶湯から直接粉末を製造する方法として
は、水噴霧法、ガス噴霧法、遠心噴霧法などがあるが、
水噴霧法では合金溶湯が酸化してしまい、またガス噴霧
法では得られた微粉末が丸い形状のものとはなるが、微
細な結晶粒が得られない。これに対し、遠心力によって
合金溶湯を霧化する遠心噴霧法によれば、酸化を防止で
きることは勿論、回転体の回転数を変えると共に雰囲気
(例、Ar、N2、He)温度を下げることにより、ガ
ス噴霧法より球状で、かつ、粒径が200μ−以下の粉
末が得られ、しかもその粒子を5μm以下、好ましくは
3μm以下の微細結晶粒とすることができる。また、合
金溶湯を急冷しやすいのでアモルファス化することも可
能である。
In other words, methods for directly producing powder from a molten alloy include water spraying, gas spraying, centrifugal spraying, etc.
In the water spraying method, the molten alloy is oxidized, and in the gas spraying method, the fine powder obtained is round, but fine crystal grains cannot be obtained. On the other hand, according to the centrifugal atomization method, which atomizes the molten alloy by centrifugal force, it is possible to prevent oxidation, as well as by changing the rotation speed of the rotating body and lowering the temperature of the atmosphere (e.g. Ar, N2, He). By the gas atomization method, a powder having a spherical shape and a particle size of 200 .mu.m or less can be obtained, and the particles can be made into fine crystal grains of 5 .mu.m or less, preferably 3 .mu.m or less. Furthermore, since the molten alloy can be easily cooled rapidly, it is also possible to make it amorphous.

このように、遠心噴霧法は磁石合金用の原料粉末を製造
するのに多くのメリットを有しているため、得られた粉
末を微粉砕し、これを通常の成形。
As described above, the centrifugal atomization method has many advantages in producing raw material powder for magnetic alloys, so the obtained powder is finely pulverized and then molded using normal molding.

焼結、熱処理工程に供するならば、特に球状粉で焼結密
度が晶められるので、磁気特性を向上することができる
。またプラスチックと混合してプラスチック磁石を製造
する場合、合金粉末を多く混合しプラスチックを20ν
t%以下にして成形、磁石化しても脆くなく、しかも磁
気特性を向上させることができる。
If the powder is subjected to sintering and heat treatment, the sintered density can be crystallized, especially in spherical powder, so that the magnetic properties can be improved. In addition, when manufacturing plastic magnets by mixing with plastic, a large amount of alloy powder is mixed and the plastic is mixed with 20ν
Even if it is molded and magnetized at t% or less, it will not become brittle and the magnetic properties can be improved.

上記遠心噴霧法を適用する磁石合金としては、少なくと
も希土類元素(Yを含む)の1種又は2種以」二を主成
分として含有する希土類系磁石合金であり、その組成は
制限されないが、特にR1−α−β−γMαAβYγで
表わされる合金に好適である。
The magnet alloy to which the above centrifugal spraying method is applied is a rare earth magnet alloy containing at least one or two or more rare earth elements (including Y) as a main component, and its composition is not limited, but in particular It is suitable for an alloy represented by R1-α-β-γMαAβYγ.

但し、上記式において、R:Yを含む希土類元素のうち
の1種又は2種以上、M : Fe、 Co、Ni及び
Mnのうちの1種又は2種以上、A : Ti、AQ 
、Zr、Hf、V、Nb、Ta、Cr、Mo及びWのう
ちの1種又は2種以上、 X:B、C,N、Sl及びP
のうちの1種又は2種以上と定義され、α・、β及びγ
は原子割合で0.60≦α≦0.85.0≦β≦0.1
0.γ<0.15と定義される。
However, in the above formula, R: one or more rare earth elements including Y, M: one or more of Fe, Co, Ni and Mn, A: Ti, AQ
, Zr, Hf, V, Nb, Ta, Cr, Mo and W, X: B, C, N, Sl and P
Defined as one or more of the following: α・, β and γ
is the atomic ratio of 0.60≦α≦0.85.0≦β≦0.1
0. It is defined as γ<0.15.

次に本発明法の実施例を示す。Next, examples of the method of the present invention will be shown.

(実施例1) 33i+t%Nd−1,3wt%B−Fe合金をH2ガ
スを導入して雰囲気置換した容器内で高周波溶解し、鉄
製回転体を10.OOOrpmで回転させつつ、タンア
イッンユを通して上記合金の溶融金属流を該回転体に落
下させ、遠心噴霧することによって平均粒径約100μ
mの合金粉末を得た。これを約4μ扉まで微粉砕し、 
この粉末を15KOeの磁場中で2 ton / cr
s ”の圧力で成形し、Ar雰囲気中で1100℃、1
時間焼結し、更に室温まで50”C/ h rの速度で
冷却した。この焼結磁石の磁気特性を測定したところ、
焼結密度7.50g/al?で、Br: 13,100
G、 1Hc: 9,5000e、(B H)wax 
: 38 、6 M G Osであった。
(Example 1) A 33i+t%Nd-1,3wt%B-Fe alloy was high-frequency melted in a container in which the atmosphere was replaced by introducing H2 gas, and an iron rotating body was heated to 10. While rotating at OOO rpm, the molten metal flow of the above-mentioned alloy is dropped onto the rotating body through the tan-a-in-yu and centrifugally sprayed to obtain an average particle size of about 100 μm.
m alloy powder was obtained. This is pulverized to about 4 μm,
This powder was heated at 2 ton/cr in a magnetic field of 15 KOe.
s'' pressure and 1100℃ in an Ar atmosphere for 1
The sintered magnet was sintered for an hour and then cooled to room temperature at a rate of 50"C/hr. The magnetic properties of this sintered magnet were measured.
Sintered density 7.50g/al? So, Br: 13,100
G, 1Hc: 9,5000e, (BH)wax
: 38,6 MGOs.

比較例として、従来法により、上記合金のインゴットを
粗粉砕し、約4μmまで微粉砕したものを2 ton 
/ GW ”で成形し、1100℃で焼結した。
As a comparative example, 2 tons of ingots of the above alloy were roughly pulverized and finely pulverized to about 4 μm using a conventional method.
/GW” and sintered at 1100°C.

得られた焼結磁石は、焼結密度7.35g/cd、Br
: 12,800G、  エHc: 7,200 0e
、(BH)wax: 34.OMGOeであった。
The obtained sintered magnet had a sintered density of 7.35 g/cd, Br
: 12,800G, HC: 7,200 0e
, (BH)wax: 34. It was OMGOe.

本実施例で得られた焼結磁石が比較例のものよすも磁気
特性が優れているのは、遠心噴霧でP)だ粉末は球状粉
であり、忰結密度が高められたためである。
The reason why the sintered magnet obtained in this example has better magnetic properties than that of the comparative example is that the P) powder obtained by centrifugal spraying is a spherical powder, and the compaction density is increased.

(実施例2) 30wt%Nd−1、Owt%B−Fe合金をH2ガス
を導入して雰囲気置換した容器内で高周波溶解し、鉄製
回転体を15.OOQrpmで回転させつつ、タンディ
ツシュを通して上記合金の溶融金属流を該回転体に落下
させ、遠心噴霧することによって平均粒径30μmの合
金粉末を得た。この粒子の結晶粒を調べたところ、3μ
m以下の非常に微細な結晶を有していることが判明し、
−また酸素量が0.4wt%であった。得られた粉末に
エポッキシ樹脂を2wt%混合し、7 ton / a
m”の圧力で成形した。更にこれを100℃にて加熱し
て樹脂を硬化させた後、磁気特性を測定したところ、B
rニア、0OOG、工Hc: 15 、5 K Oa、
(BH)I8ax:9.8MGOeが得られた。
(Example 2) A 30 wt% Nd-1, Owt% B-Fe alloy was high-frequency melted in a container in which H2 gas was introduced to replace the atmosphere, and an iron rotating body was heated at 15. While rotating at OOQ rpm, a molten metal flow of the above alloy was dropped onto the rotating body through a tundish and centrifugally sprayed to obtain alloy powder with an average particle size of 30 μm. When we examined the crystal grains of this particle, we found that it was 3μ
It was found that it has very fine crystals of less than m.
-Also, the amount of oxygen was 0.4 wt%. The obtained powder was mixed with 2 wt% of epoxy resin, and the amount was 7 tons/a.
m" pressure. After heating this at 100°C to harden the resin, the magnetic properties were measured, and it was found that B
r Near, 0OOG, Engineering Hc: 15, 5 K Oa,
(BH) I8ax: 9.8 MGOe was obtained.

比較例として、従来法により、上記合金のインゴットを
熱処理した後、平均粒径5μのまで微粉砕し、上記と同
様にエポッキシ樹脂と混合して磁石化を図ったところ、
Br:1,800G、I I(c :9000e、(B
 H)wax: 0 、3 M G Oeと非常に低く
、磁石にならなかった。一方、Arガスを使用したガス
噴霧によって約120μmの粉末を得て、これを上記と
同様にエボッキシ樹脂と混合、成形して磁石化したとこ
ろ、Br:3,800G、I r(c :9.3KOe
、(B H)max: 1 、7 MG Osが得られ
た。
As a comparative example, an ingot of the above alloy was heat-treated by a conventional method, then finely pulverized to an average particle size of 5 μm, and mixed with epoxy resin in the same manner as above to create a magnet.
Br: 1,800G, II (c: 9000e, (B
H) Wax: Very low at 0.3 M G Oe and did not become a magnet. On the other hand, a powder of approximately 120 μm was obtained by gas atomization using Ar gas, and this was mixed with epoxy resin in the same manner as above, molded, and magnetized, resulting in Br: 3,800G, I r (c: 9. 3KOe
, (B H)max: 1,7 MG Os were obtained.

ガス噴霧では、結晶粒が30μm以下で遠心噴霧に比べ
て粗く、酸素量も0 、9 tzt%と多いため、磁気
特性レベルが低い。
In gas spraying, the crystal grains are 30 μm or less, which is coarser than in centrifugal spraying, and the amount of oxygen is as high as 0.9 tzt%, so the level of magnetic properties is low.

(実施例3) 実施例2と同様の方法で得た粉末をナイロン12樹脂6
すt%と混合し、粉砕によりペレット化したものを射出
成形により磁石化し、その磁気特性を調べた結果−B 
r : 5 + 1000− I Hc : 15−3
KOe、(B I()max: 4 、8 M G O
eが得られた。
(Example 3) Powder obtained in the same manner as in Example 2 was mixed with nylon 12 resin 6.
The results of mixing the mixture with 50% and pulverizing it into pellets, making it into a magnet by injection molding, and examining its magnetic properties-B
r: 5 + 1000-IHc: 15-3
KOe, (B I () max: 4, 8 M G O
e was obtained.

一方、比較例として、単ロール法により急冷凝固してリ
ボンを作り、それを100μmに粉砕し、ナイロン12
樹脂6tit%と混合し、ペレット化したものを射出成
形により磁石化した。その磁気特性を調べた結果、Br
:5,0OOG、1Hc:15゜0KOe、(BH)w
ax:4.3M、GOeが得られた。
On the other hand, as a comparative example, a ribbon was made by rapid solidification using a single roll method, and the ribbon was ground to 100 μm.
The mixture was mixed with 6 tit% of resin, pelletized, and magnetized by injection molding. As a result of investigating its magnetic properties, Br
:5,0OOG, 1Hc:15゜0KOe, (BH)w
ax: 4.3M, GOe was obtained.

また、本実施例による磁石と比較例による磁石について
引張試験を行ったところ、各々800kg/cII+2
,220kg/Cm”の引張強さを示した。
In addition, when a tensile test was conducted on the magnet according to the present example and the magnet according to the comparative example, the tensile strength was 800 kg/cII+2
, 220 kg/Cm'' tensile strength.

本実施例の磁石が比較例の磁石よりも磁気特性が向上し
ているが、更に遠心噴霧法によれば粉末が球状粉となる
ので樹脂とよく混合し、引張強さが向上している。
The magnet of this example has better magnetic properties than the magnet of the comparative example, and furthermore, the centrifugal spraying method turns the powder into spherical powder, which mixes well with the resin and has improved tensile strength.

(発明の効果) 以上詳述したように、本発明によれば、球状の微粉末で
その粒子が微細結晶である合金粉末原料を使用すること
ができるので、希土類系合金磁石の磁気特性が向上し、
プラスチック磁石の場合には強度を高めることもできる
(Effects of the Invention) As detailed above, according to the present invention, it is possible to use an alloy powder raw material that is a spherical fine powder whose particles are fine crystals, so that the magnetic properties of rare earth alloy magnets are improved. death,
In the case of plastic magnets, the strength can also be increased.

Claims (1)

【特許請求の範囲】 (1)Yを含む希土類元素の1種又は2種以上を主成分
とする希土類系磁石合金を製造するに際し、該希土類系
合金の溶融金属を遠心力によって霧化させ、得られた粉
末を原料として希土類系磁石合金を得ることを特徴とす
る希土類系磁石合金の製造方法。 (2)前記希土類系合金は、式R_1−α−β−γMα
AβXγで表わされ、但し、この式においてR、M、A
及びxは R:Yを含む希土類元素のうちの1種又は2種以上 M:Fe、Co、Ni及びMnのうちの1種又は2種以
上 A:Ti、Al、Zr、Hf、V、Nb、Ta、Cr、
Mo及びWのうちの1種又は2種以上 X:B、C、N、Si及びPのうちの1種又は2種以上 と定義され、α、β及びγは原子割合で 0.60≦α≦0.85 0≦β≦0.10 γ<0.15 と定義される組成の合金である特許請求の範囲第(1)
項記載の方法。 (3)前記原料粉末は成形、焼結及び必要に応じて熱処
理の工程で磁石化される特許請求の範囲第(1)項記載
の方法。 (4)前記原料粉末はプラスチックと混合し、成形して
磁石化される特許請求の範囲第(1)項記載の方法。 (5)前記原料粉末はその粒径が200μm以下である
特許請求の範囲第(1)項記載の方法。 (6)前記原料粉末はその粒子が5μm以下の微細結晶
粒である特許請求の範囲第(1)記載の方法。 (7)前記遠心噴霧はAr、N、He等の非酸化性雰囲
気中で実施される特許請求の範囲第(1)項記載の方法
[Scope of Claims] (1) When producing a rare earth magnetic alloy containing one or more rare earth elements including Y as a main component, atomizing the molten metal of the rare earth alloy by centrifugal force, A method for producing a rare earth magnet alloy, the method comprising obtaining a rare earth magnet alloy using the obtained powder as a raw material. (2) The rare earth alloy has the formula R_1-α-β-γMα
It is represented by AβXγ, however, in this formula, R, M, A
and x is R: one or more rare earth elements including Y M: one or more of Fe, Co, Ni, and Mn A: Ti, Al, Zr, Hf, V, Nb , Ta, Cr,
One or more of Mo and W X: One or more of B, C, N, Si and P, α, β and γ are 0.60≦α in atomic proportion Claim (1) is an alloy having a composition defined as ≦0.85 0≦β≦0.10 γ<0.15
The method described in section. (3) The method according to claim (1), wherein the raw material powder is magnetized in the steps of molding, sintering, and optionally heat treatment. (4) The method according to claim (1), wherein the raw material powder is mixed with plastic, molded, and magnetized. (5) The method according to claim (1), wherein the raw material powder has a particle size of 200 μm or less. (6) The method according to claim 1, wherein the raw material powder has fine crystal grains of 5 μm or less. (7) The method according to claim (1), wherein the centrifugal spraying is performed in a non-oxidizing atmosphere such as Ar, N, He, or the like.
JP61133281A 1986-06-09 1986-06-09 Production of rare earth containing magnet alloy Pending JPS62290807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133281A JPS62290807A (en) 1986-06-09 1986-06-09 Production of rare earth containing magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133281A JPS62290807A (en) 1986-06-09 1986-06-09 Production of rare earth containing magnet alloy

Publications (1)

Publication Number Publication Date
JPS62290807A true JPS62290807A (en) 1987-12-17

Family

ID=15100972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133281A Pending JPS62290807A (en) 1986-06-09 1986-06-09 Production of rare earth containing magnet alloy

Country Status (1)

Country Link
JP (1) JPS62290807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303702A (en) * 1988-05-31 1989-12-07 Tokin Corp Manufacture of resin permanent magnet
EP0411591A2 (en) * 1989-07-31 1991-02-06 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303702A (en) * 1988-05-31 1989-12-07 Tokin Corp Manufacture of resin permanent magnet
EP0411591A2 (en) * 1989-07-31 1991-02-06 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
JPH03174486A (en) * 1989-07-31 1991-07-29 Toshiba Corp Cooling energy storage material and manufacture thereof
EP0411591A3 (en) * 1989-07-31 1991-10-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
EP0774522A3 (en) * 1989-07-31 1997-06-04 Kabushiki Kaisha Toshiba A method of manufacturing a cold accumulating material and a refrigerator using the cold accumulating material

Similar Documents

Publication Publication Date Title
US4585473A (en) Method for making rare-earth element containing permanent magnets
US5908513A (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US4913745A (en) Method for producing a rare earth metal-iron-boron anisotropic bonded magnet from rapidly-quenched rare earth metal-iron-boron alloy ribbon-like flakes
KR20000048146A (en) Rare earth/iron/boron-based per manent magnet alloy composition
WO2003001541A1 (en) Rare earth magnet and method for production thereof
JPH06346101A (en) Magnetically anisotropic powder and its production
KR0151244B1 (en) Permanent magnet
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JPS6393841A (en) Rare-earth permanent magnet alloy
JP3304175B2 (en) Rare earth quenched powder manufacturing method, rare earth quenched powder, bonded magnet manufacturing method, and bonded magnet
JPS63109101A (en) Production of nd-b-fe alloy powder for magnet
JPH0559165B2 (en)
JPS62290807A (en) Production of rare earth containing magnet alloy
JPH0766022A (en) Permanent magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JPS6373502A (en) Manufacture of rare earth magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63216307A (en) Alloy powder for magnet
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPS6398107A (en) Manufacture of rare earth permanent magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JPS6263645A (en) Production of permanent magnet material
JPH048923B2 (en)