JPS62288482A - Method of controlling hot-air generator at time of suspension of metallurgical furnace - Google Patents

Method of controlling hot-air generator at time of suspension of metallurgical furnace

Info

Publication number
JPS62288482A
JPS62288482A JP12823886A JP12823886A JPS62288482A JP S62288482 A JPS62288482 A JP S62288482A JP 12823886 A JP12823886 A JP 12823886A JP 12823886 A JP12823886 A JP 12823886A JP S62288482 A JPS62288482 A JP S62288482A
Authority
JP
Japan
Prior art keywords
hot air
air generator
pipe
metallurgical furnace
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12823886A
Other languages
Japanese (ja)
Inventor
芹沢 保文
木村 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12823886A priority Critical patent/JPS62288482A/en
Publication of JPS62288482A publication Critical patent/JPS62288482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、合金鉄製錬用竪型炉(スメルティングファー
ネス、以下単にrsFJと略記する)などの冶金炉で使
用する熱風を得るための装置の分野に属する技術であり
、特に冶金炉の休止に伴う送風停止時における熱風発生
装置の管理方法についての提案である。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is used in a metallurgical furnace such as a vertical furnace for smelting ferroalloy (smelting furnace, hereinafter simply abbreviated as rsFJ). This technology belongs to the field of devices for obtaining hot air, and in particular, it proposes a method for managing hot air generators when blowing air is stopped due to the suspension of a metallurgical furnace.

本発明で用いる熱風発生装置は、冷風をバーナー燃焼雰
囲気下の高温輻射室内に配設された金属製加熱管中を通
流させる間に、輻射熱によって昇温させる装置であり、
一種のレキュペレータ−である。
The hot air generator used in the present invention is a device that raises the temperature of cold air using radiant heat while passing it through a metal heating tube installed in a high-temperature radiant chamber under a burner combustion atmosphere.
It is a kind of recuperator.

(従来の技術) 従来、冶金炉、特°に高炉に供給する熱風を得るには、
燃焼室と蓄熱室を備える蓄熱式の熱交換器いわゆる熱風
炉が多用されてきた。ただし、この熱風炉は蓄熱式であ
るから複数基を1組として構成しなければならず設備費
が嵩むという問題点があった0 (発明が解決しようとする問題点) 本発明は、上記したような蓄熱方式とは異なり、輻射室
の加熱管中を通流する冷風を直接加熱するいわゆる直火
式前型方式の熱風発生装置を対象としており、実用上次
のような問題点を抱えていた。
(Prior art) Conventionally, in order to obtain hot air to be supplied to a metallurgical furnace, especially a blast furnace,
Regenerative heat exchangers, so-called hot-blast stoves, which include a combustion chamber and a heat storage chamber, have been widely used. However, since this hot air stove is a heat storage type, there is a problem that a plurality of units must be configured as a set, which increases the equipment cost (Problems to be solved by the invention) The present invention solves the above problems. Unlike heat storage methods such as the Ta.

すなわち、冶金炉例えばSPIが休止するときは、該熱
風発生装置2も当然休止しなければならない。
That is, when the metallurgical furnace, for example SPI, is stopped, the hot air generator 2 must also be stopped.

ところが、該熱風発生装置2の輻射室3はライニングが
施しであるので、しばらくの間高熱の状態が続く。従っ
て、もしこの時プロワ−4を停止してしまうと、輻射室
3内の加熱管5の温度が上がり、溶損するケースもあっ
た。
However, since the radiation chamber 3 of the hot air generator 2 is lined, the high temperature state continues for a while. Therefore, if the blower 4 were stopped at this time, the temperature of the heating tube 5 in the radiation chamber 3 would rise, and there were cases where the heating tube 5 would be melted and damaged.

そこで、従来SFIが休止しても、ブロワ−4をそのま
ま運転し、熱風管14の弁7のみを閉じてブリーダー6
から放出することで加熱管5の冷却保護を図っていたが
休止が数時間以上にもわたる場合電力消費が大きく無駄
があった。
Conventionally, even when the SFI is stopped, the blower 4 is operated as is, only the valve 7 of the hot air pipe 14 is closed, and the bleeder 6 is closed.
Although cooling and protection of the heating tube 5 was attempted by discharging the heat from the heating tube 5, the power consumption was large and wasted if the pause lasted for several hours or more.

本発明の目的は、冶金炉休止時にあっても上述の如き無
駄が出ないような熱風発生装置の管理方法を提供すると
ころにある。
An object of the present invention is to provide a method for managing a hot air generator that does not cause waste as described above even when the metallurgical furnace is out of service.

(問題点を解決するための手段) 上記の目的は次に示すような技術手段、すなわち、 冶金炉休止に伴う送風停止時の熱風発生装置の管理に当
たり、該熱風発生装置上流側の送風管に設けた空気導入
口から、弁を解放して該送風管内に大気を自然吸引する
ことにより、該熱風発生装置の加熱管内を常時通風状態
に維持することを特徴とする冶金炉休止時における熱風
発生装置の管理方法、および 冶金炉休止に伴う送風停止時の熱風発生装置の管理に当
たり、下流側の熱風管と煙突との間にエジェクター管を
接続してなる熱風発生装置上流側の送風管に設けた空気
導入口から、該エジェクター管の煙突内開口部に生ずる
エジェクター作用によるドラフトを利用して、前記送風
管内に大気を吸引することにより、該熱風発生装置の加
熱管内を常時通風状態に維持することを特徴とする冶金
炉休止時における熱風発生装置の管理方法、の採用によ
って実現できる。
(Means for solving the problem) The above purpose is achieved by the following technical means: In managing the hot air generator when the blowing of air is stopped due to the shutdown of the metallurgical furnace, Hot air generation when a metallurgical furnace is not in operation, characterized in that the inside of the heating tube of the hot air generator is always maintained in a ventilated state by releasing a valve and naturally drawing atmospheric air into the blast tube from a provided air inlet. Regarding the management method of the equipment and the management of the hot air generator when the blowing is stopped due to the shutdown of the metallurgical furnace, we installed an ejector pipe in the upstream blast pipe of the hot air generator, which has an ejector pipe connected between the downstream hot air pipe and the chimney. The inside of the heating tube of the hot air generator is always maintained in a ventilated state by sucking atmospheric air into the blast tube through the air inlet opening of the ejector tube due to the ejector action generated at the opening in the chimney. This can be realized by adopting a method for managing a hot air generator when a metallurgical furnace is shut down, which is characterized by the following.

(実施例) 以下に本発明の好適実施例を図面を参照して説明する。(Example) Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は熱風発生装置2の図であり、耐火物ライニング
を有する輻射室3内に鋼製の加熱管5が配設してあり、
その下方すなわち輻射室3の底部にはSF炉頂ガスや製
鉄所発生の混合ガスを燃料として用いる複数個のバーナ
ー10が設置されている。
FIG. 1 is a diagram of a hot air generator 2, in which a steel heating pipe 5 is arranged in a radiant chamber 3 having a refractory lining.
Below that, that is, at the bottom of the radiation chamber 3, a plurality of burners 10 are installed that use SF furnace top gas or a mixed gas generated at a steelworks as fuel.

前記加熱管5はヘッダー11.12を介してプロワ−4
が位置する上流側に送風管13が接続され、またSFI
が位置する下流側に熱風管14が接続されている。
The heating tube 5 is connected to the blower 4 via a header 11.12.
A blower pipe 13 is connected to the upstream side where SFI is located, and
A hot air pipe 14 is connected to the downstream side where is located.

SFIが稼動している状態における該熱風発生装置の場
合、送風管13を経て導入される冷風は、煙道15に設
けた対流部16で予熱されてから加熱管5に入り加熱(
約900℃)され、熱風管14を経てsplの羽口に供
給される。
In the case of the hot air generator when the SFI is in operation, the cold air introduced through the blast pipe 13 is preheated in the convection section 16 provided in the flue 15, and then enters the heating pipe 5 and is heated (
(approximately 900° C.) and is supplied to the spl tuyere via the hot air pipe 14.

一方、SFIが休止してプロワ−4が止まった休風状態
では、以下に説明する2つの方法を採用して管理する。
On the other hand, in a non-wind state where the SFI is at rest and the blower 4 is stopped, the following two methods are adopted for management.

そのうち第1の方法を第2図にもとづき説明する。この
方法は、加熱管5上流側の送風管13に、開閉弁17を
有する空気導入口18を設け、弁17−開、弁7.8−
閉、ブリーダー6開の状態にすると、空気導入口18か
ら20ONm”/minの大気を自然吸引(但し、弁や
ブリーダー開度により吸い込み風量の調整可)するので
、輻射室3内温度が1000℃あるにもかかわらず、該
加熱管5内に前記流量の冷風が通流するため、管の温度
は800℃にしかならず、休風時にブロワ−4を動かさ
なくとも低温度に維持できた。
The first method will be explained based on FIG. In this method, an air inlet 18 having an on-off valve 17 is provided in the blast pipe 13 on the upstream side of the heating pipe 5, and the valve 17 is opened, the valve 7.8-
When the bleeder 6 is closed and the bleeder 6 is open, air is naturally sucked in at a rate of 20 ONm''/min from the air inlet 18 (however, the suction air volume can be adjusted by adjusting the opening of the valve and bleeder), so the temperature inside the radiation chamber 3 reaches 1000°C. Despite this, since the cold air flowed through the heating tube 5 at the above-mentioned flow rate, the temperature of the tube was only 800 DEG C., and the temperature could be maintained at a low temperature without moving the blower 4 during the wind break.

次に、第2の方法について第3図にもとすき説明する。Next, the second method will be explained with reference to FIG.

この方法は、加熱管5上流側の送風管13に上記したよ
うに開閉弁17を有する空気導入口18を設けると共に
その下流側の熱風管14には煙突19との間に該煙突1
9の上部内に開口をもつエジェクター管20を接続し、
弁17.21−開、弁7.8−閉、ブリーダー6開の状
態にすると、エジェクター管20の煙突内開口部分(H
: 48.5m)で生ずるエジェクター作用により強烈
なドラフトが生じるため空気導入口18から30ONm
 ”/minの大気が強制的に吸引される。その結果、
輻射室3内温度が1000℃もあるにもかかわらず、該
加熱管5内に前記流量の冷風が通流するため、管の温度
は600℃にしかならず、休風時にブロワ−4を動かさ
なくとも低温度に維持できた。
In this method, an air inlet 18 having an on-off valve 17 is provided as described above in the blast pipe 13 on the upstream side of the heating pipe 5, and a chimney 19 is provided in the hot air pipe 14 on the downstream side of the air inlet 18.
Connect an ejector tube 20 having an opening in the upper part of 9,
When the valve 17.21 is open, the valve 7.8 is closed, and the bleeder 6 is open, the opening in the chimney of the ejector pipe 20 (H
: 30ONm from the air inlet 18 due to the strong draft caused by the ejector action that occurs at 48.5m).
”/min of atmosphere is forcibly sucked in. As a result,
Even though the temperature inside the radiation chamber 3 is as high as 1000°C, the temperature of the pipe is only 600°C because the above-mentioned flow rate of cold air flows through the heating pipe 5, and the temperature of the pipe is only 600°C. Able to maintain low temperature.

(発明の効果) 以上説明したように本発明によれば、冶金炉休止時にあ
ってもブロワ−の空運転が不必要であり、エネルギーコ
ストの面で極めて有利である。
(Effects of the Invention) As explained above, according to the present invention, there is no need for idle operation of the blower even when the metallurgical furnace is shut down, which is extremely advantageous in terms of energy costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は、熱風発生装置の路線図、第
2図および第3図は、本発明方法の異なる実施例を説明
する路線図である。 1・・・SF (スメルティングファーネス)2・・・
熱風発生装置    3・・・輻射室4・・・ブロワ−
5・・・加熱管 6・・・ブリーダー     7,8・・・弁lO・・
・バーナー      11.12・・・ヘッダー13
・・・送風管       14・・・熱風管15・・
・煙道        16・・・対流部17・・・弁
         18・・・空気導入口19・・・煙
突        20・・・エジェクター管21・・
・弁
FIGS. 1(a) and 1(b) are route maps of a hot air generator, and FIGS. 2 and 3 are route maps illustrating different embodiments of the method of the present invention. 1... SF (Smelting Furnace) 2...
Hot air generator 3... Radiation chamber 4... Blower
5... Heating tube 6... Bleeder 7, 8... Valve lO...
・Burner 11.12...Header 13
...Air pipe 14...Hot air pipe 15...
- Flue 16... Convection section 17... Valve 18... Air inlet 19... Chimney 20... Ejector pipe 21...
·valve

Claims (1)

【特許請求の範囲】 1、冶金炉休止に伴う送風停止時の熱風発生装置の管理
に当たり、該熱風発生装置上流側の送風管に設けた空気
導入口から、弁を解放して該送風管内に大気を自然吸引
することにより、該熱風発生装置の加熱管内を常時通風
状態に維持することを特徴とする冶金炉休止時における
熱風発生装置の管理方法。 2、冶金炉休止に伴う送風停止時の熱風発生装置の管理
に当たり、下流側の熱風管と煙突との間にエジェクター
管を接続してなる熱風発生装置上流側の送風管に設けた
空気導入口から、該エジェクター管の煙突内開口部に生
ずるエジェクター作用によるドラフトを利用して、前記
送風管内に大気を吸引することにより、該熱風発生装置
の加熱管内を常時通風状態に維持することを特徴とする
冶金炉休止時における熱風発生装置の管理方法。
[Claims] 1. When managing a hot air generator when blowing air is stopped due to a metallurgical furnace shutdown, a valve is released from an air inlet provided in a blower pipe on the upstream side of the hot air generator to allow air to flow into the blower pipe. 1. A method for managing a hot air generator when a metallurgical furnace is out of service, characterized in that the interior of the heating tube of the hot air generator is always maintained in a ventilated state by naturally suctioning atmospheric air. 2. In order to manage the hot air generator when air blowing is stopped due to metallurgical furnace shutdown, an air inlet is installed in the upstream blast pipe of the hot air generator, which has an ejector pipe connected between the downstream hot air pipe and the chimney. The heating tube of the hot air generator is always maintained in a ventilated state by drawing atmospheric air into the blast tube using a draft caused by the ejector action generated at the opening in the chimney of the ejector tube. A method for managing a hot air generator when a metallurgical furnace is shut down.
JP12823886A 1986-06-04 1986-06-04 Method of controlling hot-air generator at time of suspension of metallurgical furnace Pending JPS62288482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12823886A JPS62288482A (en) 1986-06-04 1986-06-04 Method of controlling hot-air generator at time of suspension of metallurgical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12823886A JPS62288482A (en) 1986-06-04 1986-06-04 Method of controlling hot-air generator at time of suspension of metallurgical furnace

Publications (1)

Publication Number Publication Date
JPS62288482A true JPS62288482A (en) 1987-12-15

Family

ID=14979907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12823886A Pending JPS62288482A (en) 1986-06-04 1986-06-04 Method of controlling hot-air generator at time of suspension of metallurgical furnace

Country Status (1)

Country Link
JP (1) JPS62288482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019007001A1 (en) * 2017-07-07 2019-01-10 中冶南方工程技术有限公司 Regenerative combustion type coal-based shaft furnace and direct reduction production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019007001A1 (en) * 2017-07-07 2019-01-10 中冶南方工程技术有限公司 Regenerative combustion type coal-based shaft furnace and direct reduction production method

Similar Documents

Publication Publication Date Title
CN101949649A (en) Annealing furnace combustion air preheating device
CN104457215B (en) A kind of method that melting iron block prepares high temperature iron liquid
JP5501841B2 (en) Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking
JPS62288482A (en) Method of controlling hot-air generator at time of suspension of metallurgical furnace
CN105238901A (en) Multipurpose hot blast stove high-temperature preheating system
JPH10158656A (en) Dry coke quencher
CN100497664C (en) Pushing type heating furnace with cooling apparatus
JPH09287013A (en) Device for utilizing heat in hot stove
JP3733803B2 (en) Furnace pressure control method for rotary hearth furnace
JP4839921B2 (en) Cooling method for hot stove
CN110976245A (en) Vertical spraying equipment of aluminum product
CN1566369A (en) Cooling process for hot-air stove
CN104359314B (en) The energy-saving heating furnace system of a kind of Mist heat recovering and flue gas waste heat recovery method
CN2171830Y (en) Water cooled cupola without furnace liner
CN201842854U (en) Hot blast stove flue thermal compensation device
JP2802447B2 (en) How to keep hot stove warm
CN117327854A (en) Novel heat preservation method for hot blast stove during blast furnace overhaul
JP2695444B2 (en) Boiler equipment
CN2910954Y (en) Tube-packing type chimney fixed at converter mouth of evaporated cooling flue of steelmaking converter
CN201203342Y (en) Direct combustion type overhead combustion chamber cupola
CN2913997Y (en) Overhead outer blast-heating cupola
JPH09229351A (en) Combustion method for heating furnace
CN2294383Y (en) Hot wind boiler
JPH03202412A (en) Operation of hot air stove for blast furnace
JPS5877513A (en) Heat insulating method for hot stove