JPS62288303A - Control system for complex power generating plant - Google Patents

Control system for complex power generating plant

Info

Publication number
JPS62288303A
JPS62288303A JP13011086A JP13011086A JPS62288303A JP S62288303 A JPS62288303 A JP S62288303A JP 13011086 A JP13011086 A JP 13011086A JP 13011086 A JP13011086 A JP 13011086A JP S62288303 A JPS62288303 A JP S62288303A
Authority
JP
Japan
Prior art keywords
steam
load
steam turbine
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13011086A
Other languages
Japanese (ja)
Inventor
Takashi Asao
孝志 麻尾
Eiji Yanai
矢内 英司
Takumi Otsu
大津 巧
Osami Takita
滝田 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP13011086A priority Critical patent/JPS62288303A/en
Publication of JPS62288303A publication Critical patent/JPS62288303A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce the life consumption rate of a steam turbine and shorten the starting time by installing a temperature reducing device and a humidity separator at the outlet of the overheating device of the waste heat recovering boiler of a gas turbine and controlling the inlet steam temperature after the load of the steam turbine is added. CONSTITUTION:When an economical operation mode is set in a setting device by an electricity feeding instruction supplied from an intermediate supply, a variety of patterns such as the aimed load of a gas turbine 1 and a steam turbine 3 and the main steam temperature of a waste heat recovering boiler 5 are calculated, and the life consumption rate of the steam turbine is set. Then, the steam temperature corresponding to the aimed load is corrected in a temperature variation width variation rate controller, and further the difference from the actual steam turbine inlet steam temperature is corrected by a main steam temperature controller. and the supplied water is sprayed into the main steam through a temperature reducing device 8 by the signal supplied from a supplied spray water quantity controller, and the humidity is separated by a humidity separator 9, and the inlet steam temperature is controlled. Thus, the life consumption rate of the steam turbine can be suppressed to a small value, and also the load variation time and the starting time can be shortened.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、複合発電プラントの制御系統に係り、特に、
中給(中央給電指令所)からの給電指令を受け、プラン
トの起動及び負荷制御をする際に、中給からの発生電力
量スケジュールより最適な経済運用モード(蒸気タービ
ン耐用年数向上モード(以下r!、NDURANCEモ
ード)起動・負荷上昇時間短縮モード(以下QUICK
モード) 、FINDυRANCEモードとQUICK
モードの組合せモード)を設定し、負荷制御並びに蒸気
の温度変化幅・変化率制御装置を介して蒸気タービン入
口蒸気の温度制御、並びに、給水スプレ量制御をするこ
とにより、蒸気タービンの寿命消費率の低減及びプラン
トの起動、負荷上昇時間の短縮化が図れる複合発電プラ
ントの制御系統に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a control system for a combined power generation plant, and in particular,
When starting up the plant and controlling the load in response to a power supply command from the central supply center (central power dispatch center), the optimal economic operation mode (steam turbine service life improvement mode (hereinafter referred to as r !, NDURANCE mode) start-up/load rise time reduction mode (QUICK
mode), FINDυRANCE mode and QUICK
By setting the load control and steam temperature change range/change rate control device to control the temperature of the steam turbine inlet steam and the amount of water spray, the life consumption rate of the steam turbine is This invention relates to a control system for a combined power generation plant that can reduce energy consumption and shorten plant start-up and load rise times.

〔従来の技術〕[Conventional technology]

従来、大容量の複合発電プラント(−軸型、又は、多軸
型)は、調整用電源という位置付けから、日単位で見る
とD S S (DAILY 5TART AND 5
TOP)として起動・停止を繰返すほか1時刻単位でみ
ると大幅な負荷変化を要求されている。
Conventionally, large-capacity combined power generation plants (-shaft type or multi-shaft type) have been positioned as regulating power sources, and when viewed on a daily basis, DSS (DAILY 5 TART AND 5
In addition to repeated starting and stopping as TOP), large load changes are required on a time-by-time basis.

尚、複合発電プラントを在来の汽力発電プラントと比較
すると第9図に示す様に、 a)高効率省資源型のプラントである。
Furthermore, when a combined cycle power plant is compared with a conventional steam power plant, as shown in Figure 9, a) it is a highly efficient and resource-saving plant.

b)起動・停止時間が短く起動損失も少なく、中間負荷
運用にも適している。
b) It has short startup and shutdown times and low startup loss, making it suitable for intermediate load operation.

ここで、起動時間に着目すると、複合発電ブラントは在
来の汽力に比べ約半分の時間で点火から全負荷迄到達し
ている。しかし、負荷変化率に着目すると、複合発電プ
ラントは在来汽力とほぼ同一である。これは負荷変化に
際して蒸気タービンの熱応力制限が等価的に同等である
ことを示している。故に、複合発電プラントの起動時の
負荷上昇の際も蒸気タービンの熱応力制限がかなり大き
な制約条件となり、起動時間を60分程度としている。
Focusing on start-up time, the combined power generation blunt reaches full load from ignition in about half the time compared to conventional steam power. However, if we focus on the rate of load change, combined cycle power plants are almost the same as conventional steam power plants. This shows that the thermal stress limits of the steam turbines are equivalently equivalent during load changes. Therefore, even when the load increases at the time of starting up a combined power generation plant, the thermal stress limit of the steam turbine becomes a very large constraint, and the starting time is set to about 60 minutes.

一方、在来の汽力設備に於いて、ドラム型ボイラの制御
には、燃焼制御、給水制御、蒸気温度制御があり、その
中の蒸気温度制御に着目すると、燃焼ガス側の条件を抛
作するものと、蒸気側そのものの条件を変える方式があ
る。いずれにしても。
On the other hand, in conventional steam power equipment, drum-type boiler control includes combustion control, water supply control, and steam temperature control, and focusing on steam temperature control, it is possible to manipulate the conditions on the combustion gas side. There is a method of changing the conditions on the steam side itself. In any case.

蒸気温度制御は、ボイラ・タービン間の取合条件迄を制
御し、蒸気タービンの負荷併入後は、−窓設定であり、
タービンとの協調はとられていなかった。
Steam temperature control controls the conditions of interaction between the boiler and the turbine, and after the load of the steam turbine is added, - window setting is performed.
There was no coordination with the turbine.

尚、第13図に在来の汽力発電プラントのホットスター
ト起動特性を示す、 ゛ 第10図には、従来の一軸型複合発電プラントの概略配
管系統を、第11図には、従来の一軸型複合発電プラン
トのホットスタート起動特性を夫夫示す。
In addition, Figure 13 shows the hot start startup characteristics of a conventional steam power generation plant. The hot start characteristics of a combined cycle power plant are shown here.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、複合発電プラントは蒸気タービンの熱応力の制限
により起動時間の短縮化困難及び負荷変化率の低値化と
いう問題点があった。
Conventionally, combined cycle power plants have had problems in that it has been difficult to shorten the start-up time and to reduce the rate of load change due to limitations on the thermal stress of the steam turbine.

本発明の目的は、蒸気タービンの寿命消費率低減、及び
、プラントの起動・負荷上昇時間の短縮化を図れる複合
発電プラントの制御系統を提供することにある。
An object of the present invention is to provide a control system for a combined power generation plant that can reduce the lifetime consumption rate of a steam turbine and shorten the plant start-up and load rise time.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複合発電プラントに於いてプラントの制御
系統に関し、中給からの給電指令を受はプラントの起動
及び負荷制御をする際に、中給からの発生電力量スケジ
ュールより最適な経済運用モード(ENDURANCE
 −T−−ド、 QUICK −T−−ド。
The above purpose is to set the optimum economic operation mode based on the power generation schedule from the intermediate supply when starting up the plant and controlling the load when receiving power supply commands from the intermediate supply. (ENDURANCE
-T--do, QUICK -T--do.

ENDUIIANCE −T−−ドとQUICK −1
1−−ドの組合せモード)を設定し、各種パターン(ガ
スタービン目標負荷。
ENDUIIANCE -T-do and QUICK -1
Set various patterns (gas turbine target load).

蒸気タービン目標負荷等)計算後の負荷制御並びに蒸気
の温度変化幅・変化率制御装置を介して蒸気タービン入
口蒸気の温度制御並びに給水スプレー量制御をすること
により達成される。
This is achieved by controlling the load after calculation (steam turbine target load, etc.), controlling the temperature of the steam at the steam turbine inlet, and controlling the amount of water spray through the steam temperature change width/change rate control device.

〔作用〕[Effect]

第1図に示すように、中給からの給電指令を受けた経済
運用モード設定装置に於いて、中給からの発生電力量ス
ケジュールより最適な運用モード(QLIICK −T
−−ド、 ENDURANCE モード、 QUICK
モードとENDURANCEモードの組合せモード)を
設定する。この際、経済運用モード設定装置は、自動。
As shown in Figure 1, the economic operation mode setting device that receives the power supply command from the intermediate supply selects the optimum operation mode (QLIICK-T) based on the power generation schedule from the intermediate supply.
-- mode, ENDURANCE mode, QUICK
mode and ENDURANCE mode). At this time, the economic operation mode setting device is automatic.

手動の切替可能とし、自動の場合は、あらかじめ設定さ
れテイルQUICKモードとENDURANCE モー
ドの組合せモードで、手動の場合は、運転員のモード設
定で動作する。
Manual switching is possible, and when automatic, it operates in a preset combination mode of tail QUICK mode and ENDURANCE mode, and when manual, it operates according to the operator's mode setting.

経済運用モード設定装置で設定された運用モードにより
、各種パターン(ガスタービン目標負荷。
Depending on the operation mode set by the economical operation mode setting device, various patterns (gas turbine target load).

蒸気タービン目標負荷、主蒸気温度)の計算及び蒸気タ
ービンの寿命消費率の設定が行なわれる。
Calculation of steam turbine target load, main steam temperature) and setting of steam turbine lifetime consumption rate are performed.

次いで、ガスタービン目標負荷と蒸気タービン目標負荷
は、プラント目標負荷として負荷制御系で処理され、一
方、蒸気タービン目標負荷に対応する主蒸気温度は、温
度変化幅、変化率制御装置内で補正され、さらに蒸気タ
ービン入口、蒸気温度制御装置で実際の蒸気タービン入
口蒸気温度との差を補正され、給水スプレー量制御装置
に入る。
Next, the gas turbine target load and the steam turbine target load are processed as plant target loads in the load control system, while the main steam temperature corresponding to the steam turbine target load is corrected within the temperature change width and change rate control device. Further, the difference between the steam temperature and the actual steam temperature at the steam turbine inlet is corrected by a steam temperature control device at the steam turbine inlet, and then the water is input to a feed water spray amount control device.

この給水スプレー量制御装置からの制御信号により、給
水スプレー量が制御され、主蒸気に給水がスプレーされ
る。この動作により、蒸気タービン入口蒸気温度が制御
されるため、蒸気タービンの寿命消費率を小さく抑える
ことができる。又、蒸気タービンの負荷追従性は、給水
スプレーを加えた主蒸気の保有エネルギによりバランス
され、又、蒸気タービンの入口蒸気温度は過大な熱応力
が発生しないように制御されているため、蒸気タービン
の負荷変化率を大きくとることができる。ひいては、負
荷変化時間、起動時間も従来に比べて短縮される。
The feed water spray amount is controlled by the control signal from the feed water spray amount control device, and the feed water is sprayed onto the main steam. This operation controls the steam temperature at the steam turbine inlet, so that the lifetime consumption rate of the steam turbine can be kept low. In addition, the load followability of the steam turbine is balanced by the energy possessed by the main steam plus the feed water spray, and the steam temperature at the inlet of the steam turbine is controlled so as not to generate excessive thermal stress. The load change rate can be increased. As a result, the load change time and start-up time are also shortened compared to the prior art.

〔実施例〕〔Example〕

第1図には、本発明である複合発電プラントの制御系統
を示し、第12図には、本発明である複合発電プラント
の制御系統を適用し、QIICKモードで運用した場合
のホットスタート起動特性を示す。
Fig. 1 shows the control system of the combined cycle power plant according to the present invention, and Fig. 12 shows the hot start startup characteristics when the control system for the combined cycle power plant according to the present invention is applied and operated in QIICK mode. shows.

第1図は、中給からの給電指令を受けた経済運用モード
設定装置に於いて、中給からの発生電力量スケジュール
より最適な運用モード(HNDURANCIIEモード
、QUICK モード、ENDURANCE モートド
QUICKモードの組合せモード)を設定し、各種パタ
ーン(ガスタービン目標負荷、蒸気タービン目標負荷等
)計算後の負荷制御及び蒸気の温度変化幅・変化率制御
装置を介して蒸気タービン入口蒸気温度制御並びに給水
スプレー量制御を夫々行なう制御系統である。
Figure 1 shows the optimal operation mode (combination mode of HNDURANCIIE mode, QUICK mode, ENDURANCE mode, ), and performs load control after calculating various patterns (gas turbine target load, steam turbine target load, etc.) and steam turbine inlet steam temperature control and feed water spray amount control via the steam temperature change range/change rate control device. This is a control system for each.

上記の概念フローを第2図に示す。The above conceptual flow is shown in FIG.

又、経済運用モード設定装置に於いて、各モードに設定
した際の各種状態値(蒸気タービン負荷。
Also, in the economic operation mode setting device, various status values (steam turbine load, etc.) when set to each mode.

給水スプレー前・後生蒸気温度、給水スプレー前蒸気タ
ービン第1段後、予想蒸気温度、給水スプレー後蒸気タ
ービン第1段後蒸気温度、給水スプレー量、蒸気タービ
ン寿命消費率<LCFI>)を、第3図から第8図に示
す。
The raw steam temperature before and after the feed water spray, the expected steam temperature before the feed water spray and after the first stage of the steam turbine, the steam temperature after the first stage of the steam turbine after the feed water spray, the feed water spray amount, the steam turbine life consumption rate <LCFI>), Shown in FIGS. 3 to 8.

尚、第3図と第4図は、QUICKモードの際の各種状
態値を示し、第5図と第6図は、[ENDURANCI
Eモードの際の各種状態値を示す。さらに、QUICK
モードとENDURANCEモードの組合せモードの場
合の各種状態値を第7図と第8図に示す。
In addition, FIGS. 3 and 4 show various status values in QUICK mode, and FIGS. 5 and 6 show [ENDURANCI].
Various status values in E mode are shown. Furthermore, QUICK
FIG. 7 and FIG. 8 show various status values in the case of a combination mode of mode and ENDURANCE mode.

次に、−軸型複合発電プラントに本発明である制御系統
を適用した時の特徴を以下に示す。
Next, the characteristics when the control system of the present invention is applied to a -axis type combined power generation plant are shown below.

第一の特徴は、第3図に示すように、蒸気タービンの負
荷上昇開始点から全負荷(100%負荷)迄の時間が第
11図の蒸気タービンの負荷上昇開始点から全負荷迄の
時間に比べてかなり短縮されている点である。(約16
分短縮) 尚、この際の蒸気タービンの寿命消費率は、蒸気タービ
ンの負荷上昇開始点から全負荷追給水スプレーを行ない
通気条件(温度のみ)を維持し。
The first characteristic is that, as shown in Figure 3, the time from the start point of the steam turbine load increase to full load (100% load) is the same as the time from the start point of the steam turbine load increase to full load (100% load) in Figure 11. This is considerably shorter than the . (about 16
In addition, the life consumption rate of the steam turbine in this case is determined by spraying additional water at full load from the start point of the steam turbine's load increase to maintain ventilation conditions (temperature only).

全負荷到達後、従来と同様な主蒸気温度上昇率で主蒸気
温度を制御するため、従来とほぼ同様となる。又、蒸気
タービンの負荷追従性は、給水スプレーを加えた主蒸気
の保有エネルギによりバランスされる。
After reaching full load, the main steam temperature is controlled at the same main steam temperature increase rate as in the past, so it is almost the same as in the past. Also, the load followability of the steam turbine is balanced by the retained energy of the main steam plus the feedwater spray.

さらに、蒸気タービンの負荷上昇時の熱応力が、給水ス
プレーを主蒸気に行なうことにより緩和され、相乗して
ガスタービンの負荷変化率を大きくとれるため、従来5
0分の起動時間が、本方式では約30公租度となる。
Furthermore, the thermal stress when the load on the steam turbine increases is alleviated by spraying the main steam with feed water, which synergistically increases the rate of change in the load on the gas turbine.
The starting time of 0 minutes becomes approximately 30 degrees in this method.

第二の特徴は、第5図と第6図に示すように。The second feature is shown in Figures 5 and 6.

蒸気タービンの負荷上昇開始点から全負荷迄の時間を従
来と同様とした時に、主蒸気に給水スプレーを行ない蒸
気タービン入口蒸気温度を下げることにより、蒸気ター
ビンの熱応力を緩和させ、蒸気タービンの寿命消費率を
低減する点である。
When the time from the start of the load increase to the full load of the steam turbine is the same as before, the thermal stress of the steam turbine is alleviated by spraying feed water to the main steam and lowering the steam temperature at the steam turbine inlet. The point is to reduce the lifetime consumption rate.

尚、この際の蒸気タービンの負荷追従性は、給水スプレ
ーを加えた主蒸気の保有エネルギによりバランスされる
Note that the load followability of the steam turbine at this time is balanced by the energy possessed by the main steam plus the feed water spray.

第三の特徴は、第一の特徴と第二の特徴を通常負荷変化
(負荷上昇)時に適用することにより、蒸気タービンの
負荷変化時の寿命消費率を低減でき、又、負荷変化率を
従来に比べて大きくとれる点である。
The third feature is that by applying the first feature and the second feature to normal load changes (load increases), it is possible to reduce the life consumption rate during load changes of the steam turbine, and also to reduce the load change rate compared to the conventional load change rate. This is a point that can be taken larger compared to .

又、将来、ガスタービンの燃焼温度は上昇傾向にあり、
複合発電プラントの蒸気条件も上昇傾向にある。よって
、複合発電プラントの主機である蒸気タービンの熱応力
に対する影響も大であるが、本発明によれば熱応力緩和
に効果がある。
Furthermore, in the future, the combustion temperature of gas turbines will tend to rise.
Steam conditions for combined cycle power plants are also on the rise. Therefore, the influence on the thermal stress of the steam turbine, which is the main engine of the combined power generation plant, is also large, but the present invention is effective in alleviating the thermal stress.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複合発電プラントの起動時間が従来に
比ベニ十分程度短縮(起動損失低減)され、さらに、蒸
気タービンの寿命消費率も低減できるため、中間負荷運
用並びにmu用電電源して位置付けされる複合発電プラ
ントの運用に効果がある。
According to the present invention, the startup time of a combined cycle power plant can be sufficiently shortened (reduced startup loss) compared to conventional systems, and the lifetime consumption rate of the steam turbine can also be reduced, so that it can be used as an electric power source for intermediate load operation and mu. This will have an effect on the operation of the combined cycle power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、ガスタービン・蒸気タービン・排熱回収ボイラ・発
電機・補機設備・その他付属設備から成る複合発電プラ
ントに於いて、 前記、排熱回収ボイラの過熱器出口に減温器、湿分分離
器、その他付属設備を設け、前記蒸気タービンの負荷併
入後の入口蒸気温度を制御することを特徴とする複合発
電プラントの制御系統。
[Claims] 1. In a combined power generation plant consisting of a gas turbine, a steam turbine, an exhaust heat recovery boiler, a generator, auxiliary equipment, and other attached equipment, a 1. A control system for a combined power generation plant, which is equipped with a heater, a moisture separator, and other auxiliary equipment, and controls the inlet steam temperature after load is added to the steam turbine.
JP13011086A 1986-06-06 1986-06-06 Control system for complex power generating plant Pending JPS62288303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13011086A JPS62288303A (en) 1986-06-06 1986-06-06 Control system for complex power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13011086A JPS62288303A (en) 1986-06-06 1986-06-06 Control system for complex power generating plant

Publications (1)

Publication Number Publication Date
JPS62288303A true JPS62288303A (en) 1987-12-15

Family

ID=15026188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13011086A Pending JPS62288303A (en) 1986-06-06 1986-06-06 Control system for complex power generating plant

Country Status (1)

Country Link
JP (1) JPS62288303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511807A (en) * 2005-10-17 2009-03-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for detecting lifetime consumption of components of fossil fuel energy generation equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511807A (en) * 2005-10-17 2009-03-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for detecting lifetime consumption of components of fossil fuel energy generation equipment

Similar Documents

Publication Publication Date Title
US8104283B2 (en) Steam temperature control in a boiler system using reheater variables
CA2914954C (en) Model-based combined cycle power plant load control
CN110531719A (en) A kind of fired power generating unit coordinated control peak-frequency regulation system, apparatus and method
JPS61152914A (en) Starting of thermal power plant
EP2770172B1 (en) Method for providing a frequency response for a combined cycle power plant
CN109378833A (en) A method of unit fast frequency hopping is realized by control extraction flow of steam
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
KR20190034813A (en) Integrated Coal Gasification Heat Duty Auto Control System
CN113405088A (en) Three-impulse frequency conversion automatic adjusting method
CA1245282A (en) Steam turbine load control in a combined cycle electrical power plant
JPS62288303A (en) Control system for complex power generating plant
JP4948348B2 (en) Combined cycle power plant
CN114153146B (en) Machine-furnace coordination autonomous switching control method for responding to power grid frequency modulation
CN110970926A (en) Auxiliary frequency modulation device based on energy-saving technology for thermal power plant and control method thereof
CN110134003A (en) The fired power generating unit varying duty dynamic Feedforward control method of adaptive AGC operating condition
CN110824905B (en) Isolated network operation method for abnormal disconnection working condition of generator set
US11125166B2 (en) Control system, gas turbine, power generation plant, and method of controlling fuel temperature
RU98103507A (en) REGULATING SYSTEM FOR REGULATING A TURBINE ROTATION FREQUENCY, AND ALSO A METHOD FOR TURBIN ROTATION FREQUENCY REGULATION AT A LOAD RESET
USRE35776E (en) Automatic control system for thermal power plant
JPH0486359A (en) Output control unit of co-generation plant
RU2269012C1 (en) Steam-turbine power-generating unit automated control method
CN108224468A (en) The method that water based on unit load instruction, wind instruction generate circuit
SU1090899A1 (en) Method of operating heat-electric generation plant
JPS6235561B2 (en)
JPH05340205A (en) Controller for combined power generation plant