JPS62288168A - Manufacture of cubic silicon carbide sintered body - Google Patents

Manufacture of cubic silicon carbide sintered body

Info

Publication number
JPS62288168A
JPS62288168A JP61130997A JP13099786A JPS62288168A JP S62288168 A JPS62288168 A JP S62288168A JP 61130997 A JP61130997 A JP 61130997A JP 13099786 A JP13099786 A JP 13099786A JP S62288168 A JPS62288168 A JP S62288168A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered body
weight
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61130997A
Other languages
Japanese (ja)
Other versions
JPH0829986B2 (en
Inventor
育夫 倉地
克彦 新井
宏明 和田
渡部 洋児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61130997A priority Critical patent/JPH0829986B2/en
Publication of JPS62288168A publication Critical patent/JPS62288168A/en
Publication of JPH0829986B2 publication Critical patent/JPH0829986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は立方晶炭化珪素焼結体の製造方法に係り、特に
易焼結性でかつ緻密構造を与える立方晶炭化珪素(以下
「β−5iC」と略記する)焼結体の製造方法に関する
。更に詳しくは、本発明は、特定性状のβ−5iC粉末
もしくはこの粉末と特定量の焼結助剤との組合わせを用
い、このものを焼結することによりβ−5iC焼結体を
製造する方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a cubic silicon carbide sintered body, and particularly a cubic silicon carbide sintered body that is easily sinterable and has a dense structure. The present invention relates to a method for manufacturing a sintered body of silicon carbide (hereinafter abbreviated as "β-5iC"). More specifically, the present invention uses β-5iC powder with specific properties or a combination of this powder and a specific amount of sintering aid, and sinters this to produce a β-5iC sintered body. Regarding the method.

[従来の技術] 炭化珪素(以下rsicJと記載する)焼結体は、硬度
及び高温強度が共に大きく、耐熱性に優れ、化学的に安
定であることから、耐摩耗性機械部品、構造用材料、耐
熱性材料等に広く利用されている。SiC粉末には大別
してα、βの2つの結晶形があり、これらのうちβ−5
iC粉末の焼結方法としては、従来、β−3iC粉末に
一定量の硼素及び炭素を混合し、真空中、COガス雰囲
気中又は不活性ガス:囲気中で焼成する方法が知られて
いる。
[Prior Art] Silicon carbide (hereinafter referred to as rsicJ) sintered bodies have high hardness and high-temperature strength, excellent heat resistance, and are chemically stable, so they are used as wear-resistant mechanical parts and structural materials. It is widely used in heat-resistant materials, etc. SiC powder can be roughly divided into two crystal forms, α and β, and among these, β-5
Conventionally, as a method for sintering iC powder, a method is known in which β-3iC powder is mixed with a certain amount of boron and carbon, and the mixture is sintered in a vacuum, a CO gas atmosphere, or an inert gas atmosphere.

このようなβ−3iC粉末の焼結体の製造において、そ
の緻密化が困難なことは、焼結の終期に粒成長が生じ、
例えば粒径100μm以上の粒子が多量に生成し、高度
に緻密化することが難しいことに基く。焼結過程におい
て、硼素は焼結体の緻密化に有効に作用するが、同時に
焼結終期の粒成長を促進する作用をも有している。また
、炭素は、β−5iC粉末中に含まれる不純物であるS
iO2(SiO2は焼結を阻害するため、これを除去す
ることが好ましい。)を除去する作用を有するが、脱酸
素に必要な量を超えて添加すると有害であるとされてい
る。
In the production of such a sintered body of β-3iC powder, the difficulty in densification is that grain growth occurs at the final stage of sintering.
For example, this is based on the fact that particles with a particle size of 100 μm or more are produced in large quantities and it is difficult to make them highly dense. In the sintering process, boron effectively acts to densify the sintered body, but at the same time has the effect of promoting grain growth at the final stage of sintering. In addition, carbon is S, which is an impurity contained in β-5iC powder.
Although it has the effect of removing iO2 (SiO2 inhibits sintering, it is preferable to remove it), it is said to be harmful if added in excess of the amount necessary for deoxidizing.

従って、従来より、β−3iC粉末の焼結にあたり、こ
れに混合する硼素及び炭素はある特定の範囲内の量で使
用されていた。例えば、硼素0.5〜5.0重量%及び
炭素1.5〜5.0重量%(特公昭58−17146号
)1.あるいは、硼素0.3〜3重量%及び炭素0.1
〜1.0重量%(特公昭57−32035号)である。
Therefore, conventionally, when sintering β-3iC powder, boron and carbon are mixed in amounts within a certain range. For example, boron 0.5-5.0% by weight and carbon 1.5-5.0% by weight (Japanese Patent Publication No. 58-17146)1. Alternatively, 0.3-3% by weight boron and 0.1% carbon
~1.0% by weight (Japanese Patent Publication No. 57-32035).

即ち、従来においては、硼素は0.3重量%を下限とし
、炭素は必要以上に加えずに、β−5iC粉末の焼結が
行なわれている。
That is, in the past, β-5iC powder was sintered with the lower limit of boron being 0.3% by weight and without adding more carbon than necessary.

[発明が解決しようとする問題点] しかしながら従来の方法では、用いる焼結助剤の全が多
く、用いる原料粉末によっては異常粒成長を生じ、高密
度化が阻害され、このため満足すべき高密度の焼結体が
得られていないのが実状である。
[Problems to be Solved by the Invention] However, in the conventional method, a large amount of sintering aid is used, and depending on the raw material powder used, abnormal grain growth occurs, inhibiting high density. The reality is that a sintered body with a high density has not been obtained.

これに対し、特定方法で製造したβ−3iC粉末に炭素
及び硼素をそれぞれ0.1〜5重量%混合して焼成する
方法が特公昭55−46996号公報に開示され、硼素
の使用量を0゜1重量%まで下げることが可能とされて
いるが、本号公告公報の実施例は、すべて1.0重量%
以上の硼素を使用しており、少量の硼素添加で良好な焼
結体を得ることは実証されていない。
On the other hand, Japanese Patent Publication No. 55-46996 discloses a method in which 0.1 to 5% by weight each of carbon and boron is mixed into β-3iC powder produced by a specific method and then fired. It is said that it is possible to reduce the amount to 1.0% by weight, but the examples in this publication are all 1.0% by weight.
The above amounts of boron are used, and it has not been demonstrated that a good sintered body can be obtained by adding a small amount of boron.

このように、従来法においては、β−3iC粉末と焼結
助剤との関係が明確にされておらず、このため従来、焼
結体の製造法は必ずしも満足すべきものではなく、高密
度のβ−5iC焼結体を工業的有利に製造し得る方法の
出現が望まれていた。
In this way, in the conventional method, the relationship between the β-3iC powder and the sintering aid is not clarified, and for this reason, the conventional method for producing sintered bodies has not always been satisfactory, and it has been difficult to produce high-density products. It has been desired to develop a method for producing β-5iC sintered bodies industrially and advantageously.

[問題点を解決するための手段] 本発明は、従来法では明らかにされていなかった焼結助
剤の量とβ−5iC粉末の性状との関係を把握し、高密
度の焼結体を容易に製造するためのβ−3iC粉末の要
件を明確化したものであり、 立方晶炭化珪素粉末を焼結して炭化珪素焼結体を製造す
るにあたり、粉末内部に含まれる酸素が0,5重量%未
満である立方晶炭化珪素粉末を用いることを特徴とする
立方晶炭化珪素焼結体の製造方法、 を要旨とするものである。
[Means for solving the problems] The present invention grasps the relationship between the amount of sintering aid and the properties of β-5iC powder, which has not been clarified in conventional methods, and makes it possible to produce a high-density sintered body. This clarifies the requirements for β-3iC powder for easy production, and when producing a silicon carbide sintered body by sintering cubic silicon carbide powder, the oxygen contained inside the powder must be 0.5 A method for producing a cubic silicon carbide sintered body, characterized in that the cubic silicon carbide powder is used in an amount of less than % by weight.

しかして、このような特定のβ−3iC粉末を用いるこ
とにより、従来、高緻密化焼結が不可能であった焼結助
剤の低添加量領域、即ち0.5重量%を超え3重量%以
下の炭素及び0.05〜0.3重量%の硼素、あるいは
、0.5重量%を超え3重量%以下の炭素、0.05〜
0.1重量%の硼素及び0.05〜1重量%のアルミニ
ウム含有化合物の低添加領域においても、高度に緻密化
されたβ−5iC焼結体を製造することが可能となるの
である。
Therefore, by using such a specific β-3iC powder, it is possible to achieve a low addition amount of sintering aid, which was previously impossible for highly densified sintering, that is, more than 0.5% by weight and 3% by weight. % or less of carbon and 0.05 to 0.3% by weight of boron, or more than 0.5 to 3% by weight of carbon, 0.05 to 0.3% by weight of boron
Even in the low addition range of 0.1% by weight of boron and 0.05 to 1% by weight of aluminum-containing compounds, it is possible to produce highly densified β-5iC sintered bodies.

即ち、本発明者らはβ−5iC粉末の焼結における反応
機構及び焼結条件について詳細に検討した結果、次の■
〜■の事項を知見した。
That is, as a result of detailed study of the reaction mechanism and sintering conditions in sintering β-5iC powder, the present inventors found the following
I found out the following points.

■ β−5iC粒子の粒界エネルギーは、炭素物質又は
他の無機物質をβ−3iC粒子間に介在させると低下す
る。従ってこれらの介在物の存在によって焼結を促進し
、粒成長を抑制すbことが可能である。
(2) The grain boundary energy of β-5iC particles is reduced when carbon material or other inorganic material is interposed between β-3iC particles. Therefore, the presence of these inclusions can promote sintering and suppress grain growth.

■ 粒成長を誘起するエネルギーは、その粒子系に付随
する表面エネルギー及び粒界エネルギー等の総自由エネ
ルギーに支配され、系内に余剰自由エネルギーが多くな
れば異常粒成長を起こし易くなる。
(2) The energy that induces grain growth is controlled by the total free energy such as surface energy and grain boundary energy associated with the grain system, and the more surplus free energy in the system, the more likely abnormal grain growth will occur.

■ 従来、SiC粉体の焼結において有害とされていた
不純物酸素の形態に関しては、JIS−R−6124(
1961−5−10)に記載の方法により定量される遊
離ケイ素(遊離シリカ)に基くものと、この方法により
測定されない形態の酸素が存在する。
■ Regarding the form of impurity oxygen, which has been considered harmful in the sintering of SiC powder, JIS-R-6124 (
There are those based on free silicon (free silica), which are determined by the method described in 1961-5-10), and the oxygen in the form that is not determined by this method.

■ ■において、前者の形態の酸素は助剤として添加さ
れる炭素により容易に除去されるが、後者の酸素の一部
は、緻密化が進行する1600℃以上でもSiC粉体中
に残存し、焼結を阻害する要因となる。
In (2), the former form of oxygen is easily removed by carbon added as an auxiliary agent, but some of the latter oxygen remains in the SiC powder even at temperatures above 1600°C when densification progresses. This becomes a factor that inhibits sintering.

■ 前述の如く、焼結助剤である炭素と組み合わされる
他の原子、例えば硼素はできる限り少ない方が良く、好
ましくはSiC中への固溶量として知られている0、3
重量%未満である方がよい。この理由は、硼素は炭素に
比較し拡散速度が速いため、過剰に存在すると、焼結体
の高温特性に影響を与えるばかりではなく、焼結終期に
余剰の硼素が、異常粒成長を起こし、高密度化を阻害す
る原因となることによる。
■ As mentioned above, the amount of other atoms combined with carbon as a sintering aid, such as boron, should be as small as possible, preferably 0.3, which is known as the amount of solid solution in SiC.
It is better to be less than % by weight. The reason for this is that boron has a faster diffusion rate than carbon, so if it is present in excess, it not only affects the high-temperature properties of the sintered body, but also causes abnormal grain growth at the end of sintering. This is because it becomes a cause of inhibiting densification.

しかして、上記■から焼結助剤の必要性か示される。ま
た、■、■、■かう、用いる粉体の性状、特に酸素量に
より、製造される焼結体の緻密化の程度に差が現れるこ
とか説明される。また、■より、添加される焼結助剤の
世に上限があることが説明される。
Therefore, the necessity of a sintering aid is shown from (1) above. It is also explained that the degree of densification of the produced sintered body differs depending on the properties of the powder used, especially the amount of oxygen. In addition, (2) explains that there is an upper limit to the amount of sintering aid that can be added.

従来においては、j完結体の製造に用いる原料粉末に対
する根本的な検討が行なわれていなかったために、β−
3iCの焼結に関し、多くの特許か提出され、様々な硼
素添加量か開示されているものの、焼結体の強度特性に
おいて良好な結果が得られる炭素−硼素の併用において
、硼素添加量が03重量%以下で良好な焼結体を得た実
施例は少なく、0.2重量%以下の例は皆無である。こ
れは、これまで提供されているβ−5iC粉末には焼結
助剤として添加された炭素で十分に除去できない酸素が
存在していたために、上記■、■の知見からも説明され
るように、良好な高密度炭化珪素焼結体を製造すること
が不可能であったからである。
In the past, fundamental consideration had not been given to the raw material powder used in the production of j-finished products, so β-
Regarding the sintering of 3iC, many patents have been filed and various amounts of boron added have been disclosed. There are few examples in which a good sintered body was obtained with a content of less than 0.2% by weight, and there are no examples with a content of less than 0.2% by weight. This is because the β-5iC powder provided so far contains oxygen that cannot be removed sufficiently by the carbon added as a sintering aid, as explained by the findings in ① and ① above. This is because it has been impossible to produce a good high-density silicon carbide sintered body.

発明者らは、β−3iC粉末の粉体内部に含まれる酸素
、即ち1600℃以上の温度においても粉体中に残存す
る可能性のある酸素が極めて少ない粉末の合成に成功し
、この酸素量の少ないβ−5iC粉末を用いることによ
り、少量の焼結助剤のもとに緻密な炭化珪素焼結体を製
造することができることを見い出し、本発明を完成させ
た。
The inventors succeeded in synthesizing a powder containing very little oxygen contained inside the powder of β-3iC powder, that is, oxygen that may remain in the powder even at temperatures of 1,600°C or higher, and the amount of oxygen was reduced. The inventors have discovered that a dense silicon carbide sintered body can be produced with a small amount of sintering aid by using β-5iC powder with a small amount of sintering agent, and have completed the present invention.

以下本発明の構成につき更に詳細に説明する。The configuration of the present invention will be explained in more detail below.

なお、本明細書において、「%」は「重量%」を示す。In addition, in this specification, "%" indicates "weight %."

本発明において原料として用いるβ−5iC粉末は、粉
体内部に含まれる酸素(以下、これを「内部酸素」と称
する。)量が0.5%未満のものである。
The β-5iC powder used as a raw material in the present invention has an amount of oxygen contained inside the powder (hereinafter referred to as "internal oxygen") of less than 0.5%.

即ち、本発明は、不純物原子の中で、特に酸素に着目し
たものである。以下に本発明で用いるβ−3iC粉末の
内部酸素量の定量方法について説明する。
That is, the present invention particularly focuses on oxygen among impurity atoms. The method for quantifying the internal oxygen content of the β-3iC powder used in the present invention will be explained below.

原料β−5iC粉末の酸素不純物に関しては、■ JI
S−R−6124に記載の方法により定量される遊離シ
リカをもとに測定される形態の酸素不純物。
Regarding oxygen impurities in the raw material β-5iC powder, ■ JI
Oxygen impurities in the form determined based on free silica determined by the method described in S-R-6124.

■ ■により測定されない酸素不純物、即ち内部酸素。■ Oxygen impurities not measured by ■, i.e. internal oxygen.

の2種類が存在する。従って、内部酸素の量は、下記の
式から計算して求められる。
There are two types: Therefore, the amount of internal oxygen can be calculated from the following formula.

ここで、全酸素量は、次のようにして測定することがで
きる。即ち、スズカプセル中にSiCの粉体試料を50
mg前後秤量し、ニッケル製のカゴの中に入れ、黒鉛坩
堝中にて2000℃以上で粉体を熱分解する。キャリア
ガスとしてはヘリウムガスを用いる。粉体中の全酸素は
、Coガスとして発生する(即ち、黒鉛坩堝中にて5n
−Niフラックスを用い、SiCを分解する過程におい
て、o2が存在すればCo(高温ではCO2−4CO+
%02)が生成するので、酸化触媒を用いてcoを酸化
してCO2とし、赤外吸収装置にてCO2を定量する。
Here, the total oxygen amount can be measured as follows. That is, 50 SiC powder samples were placed in a tin capsule.
Weigh around 100 mg, place it in a nickel basket, and thermally decompose the powder at 2000°C or higher in a graphite crucible. Helium gas is used as the carrier gas. All oxygen in the powder is generated as Co gas (i.e. 5n in a graphite crucible).
- In the process of decomposing SiC using Ni flux, if o2 is present, Co (at high temperature CO2-4CO+
%02) is generated, so the CO is oxidized to CO2 using an oxidation catalyst, and the CO2 is quantified using an infrared absorption device.

このようにして定量されたCO2からSiC粉体中の全
酸素量を決定することができる。また、前式において遊
離シリカとして存在する酸素の量は、JIS−R−61
24に記載された方法により遊離シリカの量を測定し、
この値に32/64 (02/S i 02 )を乗じ
て求めることができる。しかして、このようにして求め
た遊離シリカとして存在する酸素量を上記全酸素量から
引くことにより、内部酸素量が求められる。
The total amount of oxygen in the SiC powder can be determined from the CO2 determined in this manner. In addition, the amount of oxygen present as free silica in the above formula is JIS-R-61
measuring the amount of free silica by the method described in 24;
It can be determined by multiplying this value by 32/64 (02/S i 02 ). Therefore, by subtracting the amount of oxygen present as free silica determined in this manner from the total oxygen amount, the internal oxygen amount can be determined.

このようにして求められる内部酸素量と焼結性及び結晶
の完全性との関係を検討した結果、一般に提供されるβ
−5iC粉末の内部酸素量は0.5%以上であるのに対
し、0.5%未満のβ−3iC粉末を原料として用いる
ことにより、焼結助剤の少量添加、例えば炭素−硼素の
好適な組み合せにおいて、硼素の添加量0.3%未満の
添加で高密度の焼結体が得られることが判明した。
As a result of examining the relationship between the amount of internal oxygen required in this way, sinterability, and crystal perfection, we found that β
-5iC powder has an internal oxygen content of 0.5% or more, but by using β-3iC powder of less than 0.5% as a raw material, it is possible to add a small amount of sintering aid, such as carbon-boron. It has been found that a high-density sintered body can be obtained by adding less than 0.3% of boron in a combination of the following.

即ち、本発明の方法に従って、内部酸素量が0.5%未
満のβ−3iC粉末を用いることにより、焼成助剤の少
量添加、例えば、炭素0.05重量%を超え3重量%以
下及び硼素0.05〜0.3m!量%、あるいは、炭素
015重量%を超え3i量%以下、硼素0.05〜0.
1重量%及びアルミニウム含有化合物0.05〜1重量
%、の添加で極めて緻密なβ−5iC焼結体を得ること
ができる。
That is, according to the method of the present invention, by using β-3iC powder with an internal oxygen content of less than 0.5%, small additions of firing aids, such as more than 0.05% by weight and not more than 3% by weight of carbon and boron. 0.05~0.3m! % by weight, or more than 15% by weight of carbon but not more than 3% by weight, and 0.05 to 0.0% by weight of boron.
An extremely dense β-5iC sintered body can be obtained by adding 1% by weight of the aluminum-containing compound and 0.05 to 1% by weight of the aluminum-containing compound.

なお、本発明は、β−3iC粉末、即ち、粉末の結晶相
の95%以上がβ型である粉末で、含まれる内部酸素の
量が0.5%未満であることを要旨とするものであって
、不純物に関しては粉末に用いるケイ素源と、炭素源の
化合物に含まれる不純物の量や種類に依存し、これらは
、焼結を阻害しない範囲内であれば特に制限されない。
The gist of the present invention is a β-3iC powder, that is, a powder in which 95% or more of the crystal phase of the powder is β type, and the amount of internal oxygen contained is less than 0.5%. Regarding impurities, it depends on the silicon source used in the powder and the amount and type of impurities contained in the carbon source compound, and these are not particularly limited as long as they do not inhibit sintering.

遊離シリカの量に関しても特に制限はないが、好ましく
は2%以下であるほうが、焼結助剤として加える炭素の
量を少なくできるので経済的である。
There is no particular restriction on the amount of free silica, but it is preferably 2% or less, which is more economical since the amount of carbon added as a sintering aid can be reduced.

本発明で用いる内部酸素量が0.5%未満のβ−3iC
粉末を製造する方法としては、特に制限はなく、一般に
工業生産で採用されるシリカ還元法、その他各種の方法
で製造されたβ−3iC粉末を、必要に応じて、後述の
実施例の如く、不活性ガス雰囲気中にて高温で熱処理す
ることにより容易に得ることができる。
β-3iC with an internal oxygen content of less than 0.5% used in the present invention
There are no particular restrictions on the method for producing the powder, and β-3iC powder produced by the silica reduction method generally employed in industrial production or various other methods may be used, if necessary, as in the Examples below. It can be easily obtained by heat treatment at high temperature in an inert gas atmosphere.

本発明において、焼結助剤として用いる炭素源としては
微粒の炭素又は炭化可能な有機物質が挙げられる。炭化
可能な有機物質とは加熱に際し、分解して炭素を生ずる
もので、ポリフェニレンフェノール樹脂等の高収率で炭
素を与えるものが望ましい。硼素源としては硼素及び硼
素を含む化合物のいずれでも良い。、また硼素は結晶室
、非晶質のいずれでも良いが、粒度は微粒な程好ましく
10μ以下であることが望ましい。またアルミニウム含
有化合物としてはアルミナ(A 120 s )等の無
機物やアルミニウムイソプロポキシド(Aft(QCs
 Ht )3 )等の有機アルミニウム化合物が挙げら
れる。
In the present invention, carbon sources used as sintering aids include fine carbon particles or carbonizable organic substances. The carbonizable organic substance is one that decomposes to produce carbon when heated, and it is desirable to use a substance that provides carbon at a high yield, such as polyphenylene phenol resin. The boron source may be either boron or a compound containing boron. Further, boron may be either crystalline or amorphous, but the finer the particle size, the more preferable it is, and it is desirable that the boron is 10 μm or less. Examples of aluminum-containing compounds include inorganic substances such as alumina (A 120 s ) and aluminum isopropoxide (Aft (QCs)).
Examples include organoaluminum compounds such as Ht)3).

[作用] β−5iC焼結体の焼結原料として、内部酸素量が0.
5%未満という粉体内部に含まれる酸素の量が少ないβ
−5iC粉末を用いることにより、焼結温度付近での硼
素の消費を防ぐことが可能となり、この結果、焼結助剤
の少ない添加量で焼結することが可能となる。このため
焼結時の粒成長が抑制され、高密度の焼結体を得ること
が可能となる。
[Function] As a sintering raw material for β-5iC sintered body, the internal oxygen content is 0.
β The amount of oxygen contained inside the powder is small, less than 5%.
By using -5iC powder, it is possible to prevent the consumption of boron near the sintering temperature, and as a result, it is possible to sinter with a small amount of sintering aid added. Therefore, grain growth during sintering is suppressed, making it possible to obtain a high-density sintered body.

て更に具体的に説明するが、本発明はその要旨を超えな
い限り以下の実施例に限定されるものではない。
The present invention will be described in more detail below, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

実施例1 下記表−1に示す性状のβ−3iC粉末をアルゴン雰囲
気中で1900℃にて30分間熱処理した後、得られた
粉末をβ−3iC製ボールミルで粉砕した。この処理に
より合成されたβ−3iC粉末の性状を表−2に示す。
Example 1 β-3iC powder having the properties shown in Table 1 below was heat treated at 1900° C. for 30 minutes in an argon atmosphere, and then the obtained powder was pulverized with a β-3iC ball mill. Table 2 shows the properties of the β-3iC powder synthesized by this treatment.

表−1熱処理前のβ−3iC粉末 表−2熱処理後のβ−3iC粉末 焼結助剤の炭素源としてフェノール樹脂を用いて、熱処
理により得られた内部酸素量0.48%のβ−3iC粉
末の焼結を行なった。まず、フェノール樹脂をメタノー
ルに溶解し、この溶液で残留炭素として1.5重量%に
なる量をこのβ−3iC粉末に付着させた。これに硼素
を0.09重量%添加し、十分に混合し、ラバープレス
で成形した。この成形物を1500℃、10”Torr
の条件で30分加熱した後、1気圧のアルゴンガス雰囲
気中、2200℃で15分間焼成した。得られた焼結体
は約4〜10μm程度の粒子からなり、異常な粒成長も
認められず、密度も3.10g/am’と、極めて高密
度の焼結体であった。
Table 1 β-3iC powder before heat treatment Table 2 β-3iC powder after heat treatment β-3iC with an internal oxygen content of 0.48% obtained by heat treatment using phenolic resin as the carbon source of the sintering aid The powder was sintered. First, a phenol resin was dissolved in methanol, and an amount of residual carbon of 1.5% by weight was attached to the β-3iC powder using this solution. 0.09% by weight of boron was added to this, thoroughly mixed, and molded using a rubber press. This molded product was heated at 1500°C and 10” Torr.
After heating under the following conditions for 30 minutes, it was fired at 2200° C. for 15 minutes in an argon gas atmosphere of 1 atm. The obtained sintered body consisted of particles of about 4 to 10 μm, no abnormal grain growth was observed, and the density was 3.10 g/am', which was an extremely high-density sintered body.

実施例2 エチルシリケート(S i 02として40%含むケイ
酸のエタノールエステル)を39g及びフェノールレジ
ン(レゾール型で酸触媒にて硬化)を17gにトルエン
スルフォン酸の60%水溶液を2.5gi加し、ポリエ
チレンカップ中にて激しく攪拌混合し、得られた白色固
型物を1000℃にて炭化後、1800℃、10分の条
件にてSiC化を行なった。合成されたβ−3iC粉末
の性状を表−3に示す。
Example 2 2.5 g of a 60% aqueous solution of toluenesulfonic acid was added to 39 g of ethyl silicate (ethanol ester of silicic acid containing 40% as S i 02) and 17 g of phenol resin (resol type, cured with an acid catalyst). The mixture was vigorously stirred and mixed in a polyethylene cup, and the resulting white solid was carbonized at 1000°C, and then converted into SiC at 1800°C for 10 minutes. Table 3 shows the properties of the synthesized β-3iC powder.

表−3β−3iC粉末 この粉末に硼素0.15%と、炭素を実施例1と同様に
フェノール樹脂にて残留炭素として1.5%になる量を
添加して十分に混合し、ラバープレスにて成型後、アル
ゴンガス1気圧下、2150℃、30分の条件にて焼結
を行なった。
Table 3 β-3iC powder To this powder, add 0.15% boron and carbon in an amount of 1.5% as residual carbon using phenol resin in the same manner as in Example 1, mix thoroughly, and press into a rubber press. After molding, sintering was performed at 2150° C. for 30 minutes under 1 atm of argon gas.

得られた焼結体は、異常粒成長も認められず、密度3.
10g/Cm’まで緻密化された高密度焼結体であった
The obtained sintered body showed no abnormal grain growth and had a density of 3.
It was a high-density sintered body densified to 10 g/Cm'.

実施例3 実施例2において、SiC化の温度を1900℃とし、
内部酸素0.08%、遊1lItS i O20,1%
のβ−3iCを得、合成後ボールミルにて粉砕した粉体
を用いて、実施例2と同様の焼結条件にて焼結を行なっ
た。その結果、B:0.10%、C:1.5%の少量の
焼結助剤添加にて、正常組織で密度が3.11g/cr
n’の緻密な焼結体が得られた。
Example 3 In Example 2, the temperature of SiC conversion was 1900°C,
Internal oxygen 0.08%, free 1lItS i O20.1%
β-3iC was obtained, and sintering was performed under the same sintering conditions as in Example 2 using a powder that was pulverized in a ball mill after synthesis. As a result, with the addition of a small amount of sintering aid of 0.10% B and 1.5% C, the density of normal tissue was 3.11 g/cr.
A dense sintered body of n' was obtained.

実施例4 実施例1と同一の粉体(表−2)を用い、焼結助剤とし
てB:0.29%、C22%の添加にて実施例2と同様
の焼結条件にて焼結を行なったところ、正常組織で密度
が3.05g/crn’の緻密な焼結体が得られた。
Example 4 Using the same powder as in Example 1 (Table 2), sintering was carried out under the same sintering conditions as in Example 2 with the addition of 0.29% B and 22% C as sintering aids. As a result, a dense sintered body with a normal tissue and a density of 3.05 g/crn' was obtained.

実施例5 実施例3と同様の粉末を用い、焼結助剤としてB:0.
06%、C:1.0%の添加量にて、実施例1と同様の
焼結条件で焼結を行なったところ、正常組織で密度が3
.08g/crr?の緻密な焼結体が得られた。
Example 5 The same powder as in Example 3 was used, and B: 0.
When sintering was carried out under the same sintering conditions as in Example 1 with the addition amounts of C: 06% and C: 1.0%, the density of the normal tissue was 3.
.. 08g/crr? A dense sintered body was obtained.

比較例1 内部酸素0.79%、遊離5iO20,22%の市販の
β−5iC粉末を用い、実施例1と同様の焼結条件にて
常圧焼結を行なフたところ、焼結体の密度は2.85g
/crn’で組織は空孔が多く、緻密化していなかった
Comparative Example 1 Using a commercially available β-5iC powder containing 0.79% internal oxygen and 0.22% free 5iO, pressureless sintering was performed under the same sintering conditions as in Example 1, resulting in a sintered body. The density of is 2.85g
/crn', the structure had many pores and was not densified.

比較例2 内部酸素1.1%、遊離5iO20,45%の市販のβ
−3iC粉末を用い、焼結助剤としてB・0.3%、C
:2%の添加にて実施例1と同様の焼結条件で焼結を行
なったところ、焼結体の密度は2.6g/cm’de、
組織は空孔が多く、緻密化していなかった。
Comparative Example 2 Commercial β with 1.1% internal oxygen and 0.45% free 5iO2
-3iC powder is used, and 0.3% B and C are used as sintering aids.
: When sintering was carried out under the same sintering conditions as in Example 1 with the addition of 2%, the density of the sintered body was 2.6 g/cm'de,
The structure had many pores and was not densified.

比較例3 内部酸素0,51%、遊離5iO20,5%の市販のβ
−5iC粉末を用い、焼結助剤としてB:01%、C:
1.5%の添加にて実施例1と同様の焼結条件で焼結を
行なったところ、焼結体の密度は2.75g/crn″
で、組織は空孔が多く、緻密化していなかった。
Comparative Example 3 Commercial β with internal oxygen 0.51% and free 5iO2 0.5%
-5iC powder, B: 01%, C: as sintering aids
When sintering was carried out under the same sintering conditions as in Example 1 with addition of 1.5%, the density of the sintered body was 2.75 g/crn''
The structure had many pores and was not densified.

以上の結果をまとめて表−4に示す。The above results are summarized in Table 4.

表−4より、本発明の方法によれば、最適な焼結助剤の
添加量のもとに、極めて緻密で良好な焼結体が得られる
ことが明らかである。
From Table 4, it is clear that according to the method of the present invention, an extremely dense and good sintered body can be obtained by adding the optimum amount of sintering aid.

表−4 [発明の効果コ 以上詳述した通り、本発明はβ−5iC焼結体を製造す
るに当り、原料粉末として内部酸素量が0.5%未満の
β−3iC粉末を用いるものであり、これにより少ない
焼結助剤のもとに良好な焼結を行なうことが可能となる
。従って本発明の方法によれば異常粒成長を防止して、
極めて高密度のβ−5iC焼結体を容易に製造すること
ができる。
Table 4 [Effects of the Invention] As detailed above, the present invention uses β-3iC powder with an internal oxygen content of less than 0.5% as the raw material powder for producing β-5iC sintered bodies. This makes it possible to perform good sintering with a small amount of sintering aid. Therefore, according to the method of the present invention, abnormal grain growth can be prevented,
An extremely high density β-5iC sintered body can be easily produced.

Claims (3)

【特許請求の範囲】[Claims] (1)立方晶炭化珪素粉末を焼結して炭化珪素焼結体を
製造するにあたり、粉体内部に含まれる酸素が0.5重
量%未満である立方晶炭化珪素粉末を用いることを特徴
とする立方晶炭化珪素焼結体の製造方法。
(1) In producing a silicon carbide sintered body by sintering cubic silicon carbide powder, the cubic silicon carbide powder is characterized in that the oxygen contained inside the powder is less than 0.5% by weight. A method for producing a cubic silicon carbide sintered body.
(2)立方晶炭化珪素粉末を焼結するに際し、焼結助剤
として、前記立方晶炭化珪素粉末に対して0.5重量%
を超え3重量%以下の炭素及び0.05〜0.3重量%
の硼素を用いることを特徴とする特許請求の範囲第1項
に記載の焼結体の製造方法。
(2) When sintering cubic silicon carbide powder, use 0.5% by weight of the cubic silicon carbide powder as a sintering aid.
more than 3% by weight of carbon and 0.05 to 0.3% by weight
2. The method for manufacturing a sintered body according to claim 1, wherein boron is used.
(3)立方晶炭化珪素粉末を焼結するに際し、焼結助剤
として、前記立方晶炭化珪素粉末に対して0.5重量%
を超え3重量%以下の炭素、0.05〜0.1重量%の
硼素及び0.05〜1重量%のアルミニウム含有化合物
を用いることを特徴とする特許請求の範囲第1項に記載
の焼結体の製造方法。
(3) When sintering cubic silicon carbide powder, use 0.5% by weight of the cubic silicon carbide powder as a sintering aid.
3% by weight or less of carbon, 0.05 to 0.1% by weight of boron, and 0.05 to 1% by weight of aluminum-containing compound. Method for producing solids.
JP61130997A 1986-06-05 1986-06-05 Method for producing cubic silicon carbide sintered body Expired - Fee Related JPH0829986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130997A JPH0829986B2 (en) 1986-06-05 1986-06-05 Method for producing cubic silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130997A JPH0829986B2 (en) 1986-06-05 1986-06-05 Method for producing cubic silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS62288168A true JPS62288168A (en) 1987-12-15
JPH0829986B2 JPH0829986B2 (en) 1996-03-27

Family

ID=15047525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130997A Expired - Fee Related JPH0829986B2 (en) 1986-06-05 1986-06-05 Method for producing cubic silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPH0829986B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034608A (en) * 1973-07-13 1975-04-03
JPS5078609A (en) * 1973-10-24 1975-06-26
JPS55116664A (en) * 1979-02-27 1980-09-08 Tokyo Shibaura Electric Co Manufacture of silicon carbide ceramics
JPS6065765A (en) * 1983-09-21 1985-04-15 科学技術庁無機材質研究所長 Process for sintering cubic silicon carbide powder
JPS60155572A (en) * 1984-01-24 1985-08-15 科学技術庁無機材質研究所長 Manufacture of high heat conductivity silicon carbide sintered body
JPS60186467A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Silicon carbide sintered body and manufacture
JPS61168567A (en) * 1985-01-19 1986-07-30 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6256368A (en) * 1985-09-06 1987-03-12 株式会社東芝 Manufacture of silicon carbide sintered body
JPH0556307A (en) * 1991-08-22 1993-03-05 Fujitsu General Ltd Characteristic compensating device for video signal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034608A (en) * 1973-07-13 1975-04-03
JPS5078609A (en) * 1973-10-24 1975-06-26
JPS55116664A (en) * 1979-02-27 1980-09-08 Tokyo Shibaura Electric Co Manufacture of silicon carbide ceramics
JPS6065765A (en) * 1983-09-21 1985-04-15 科学技術庁無機材質研究所長 Process for sintering cubic silicon carbide powder
JPS60155572A (en) * 1984-01-24 1985-08-15 科学技術庁無機材質研究所長 Manufacture of high heat conductivity silicon carbide sintered body
JPS60186467A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Silicon carbide sintered body and manufacture
JPS61168567A (en) * 1985-01-19 1986-07-30 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6256368A (en) * 1985-09-06 1987-03-12 株式会社東芝 Manufacture of silicon carbide sintered body
JPH0556307A (en) * 1991-08-22 1993-03-05 Fujitsu General Ltd Characteristic compensating device for video signal

Also Published As

Publication number Publication date
JPH0829986B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
JPH08217424A (en) Hexagonal boron nitride powder and its production
JPS62288168A (en) Manufacture of cubic silicon carbide sintered body
JPS6152106B2 (en)
JPS61117107A (en) Amorphous boron niride powder and its preparation
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
JPH0662286B2 (en) Method for producing silicon carbide
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JPS638069B2 (en)
JP2007320778A (en) High-denseness silicon carbide ceramic and its production method
JPH062565B2 (en) Method for producing silicon carbide
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPS59217608A (en) Method for synthesizing cubic boron nitride
JPH06279119A (en) Highly heat conductive sic ceramics and its production
JP3827360B2 (en) Manufacturing method of silicon nitride
JPH0761900B2 (en) Method for manufacturing silicon carbide sintered body
JPS61136963A (en) Manufacture of silicon nitride base sintered body
JPS6212665A (en) Method of sintering silicon carbide powder
JPH0431364A (en) Production of silicon carbide sintered compact
JPS6152109B2 (en)
JPH0556307B2 (en)
JPS6183606A (en) Production of easily sinterable aluminum nitride powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPS62108770A (en) Silicon carbide sintered body and manufacture
JPS61251573A (en) Manufacture of silicon carbide sintered body
JPH0442863A (en) Preparation of sialon-silicon carbide composite powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees