JPS62287578A - Enclosed alkaline storage battery - Google Patents

Enclosed alkaline storage battery

Info

Publication number
JPS62287578A
JPS62287578A JP61131521A JP13152186A JPS62287578A JP S62287578 A JPS62287578 A JP S62287578A JP 61131521 A JP61131521 A JP 61131521A JP 13152186 A JP13152186 A JP 13152186A JP S62287578 A JPS62287578 A JP S62287578A
Authority
JP
Japan
Prior art keywords
charging
battery
cathode
anode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61131521A
Other languages
Japanese (ja)
Other versions
JPH0644491B2 (en
Inventor
Kensuke Nakatani
中谷 謙助
Yoshiaki Yano
箭野 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61131521A priority Critical patent/JPH0644491B2/en
Publication of JPS62287578A publication Critical patent/JPS62287578A/en
Publication of JPH0644491B2 publication Critical patent/JPH0644491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To make the built-up of cell charging voltage at the time of full charging as well as to detect a voltage variation at the time of the full charging so easily and accurately, by constituting the uncharged capacity of an anode in a discharged state to be smaller that the uncharged capacity of a cathode. CONSTITUTION:The uncharged capacity of an anode at a discharged state is constituted to be smaller in substance than the uncharged capacity of a cathode, and at the time of charging, the anode is full charged earlier than the cathode. Therefore, a variation in cell charging voltage at the time of full charging is made larger by the large build-up of the anode to hydrogen generating potentional. With this constitution, such charging control as utilizing the voltage variation is made performable easily and accurately so that constant current-constant voltage charging can be done.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 この発明は、電解液量制限型の密閉型アルカリ蓄電池に
関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a sealed alkaline storage battery of a limited electrolyte amount type.

〈従来の技術) ニッケルーカドミウム蓄電池ヤj酸化銀−亜鉛蓄電池あ
るいはニッケルー鉄蓄電池などのアルカリ蓄電池では、
カドミウムや亜鉛または鉄などを活物質として含有する
陰極板と、水駿化ニッケルや酸化銀などを活物質とする
陽極板とを用い、これらをセパレータを介して組合せて
収納缶に入れ、アルカリ電解液を注液するなどした構成
が採られている。
<Prior art> In alkaline storage batteries such as nickel-cadmium storage batteries, silver oxide-zinc storage batteries, or nickel-iron storage batteries,
A cathode plate containing cadmium, zinc, or iron as an active material, and an anode plate containing nickel hydroxide, silver oxide, etc. as an active material are used, and these are combined through a separator and placed in a storage can to perform alkaline electrolysis. A configuration in which liquid is injected is adopted.

この種のアルカリ蓄電池、例えばニッケルーカドミウム
蓄電池では、充放電の際には下記の反応が起こり、また
満充電に達するとニッケル陽極からは酸素ガスが、カド
ミウム陰極からは水素ガスがそれぞれ発生する。
In this type of alkaline storage battery, such as a nickel-cadmium storage battery, the following reactions occur during charging and discharging, and when the battery reaches full charge, oxygen gas is generated from the nickel anode and hydrogen gas is generated from the cadmium cathode.

そして、上記M素ガスはカドミウム陰極においてその充
電生成物である金属カドミウムと反応して電気化学的に
消費させることができるが、カドミウム陰極で発生する
水素ガスは電池内で・消費させることができず、電池容
器内に蓄積される。このため、過充電状態が長く続くと
水素ガス蓄積母が増大し電池容器の内圧が異常に上昇し
て、電池容器が変形したり安全弁の作動によってアルカ
リ電解液が外部漏出するといった不都合があり、電池の
密閉化が非常に困難であるといった欠点がある。
The above M gas can be electrochemically consumed by reacting with metal cadmium, which is a charging product, at the cadmium cathode, but the hydrogen gas generated at the cadmium cathode cannot be consumed within the battery. Instead, it accumulates inside the battery container. For this reason, if the overcharge state continues for a long time, the hydrogen gas accumulation will increase and the internal pressure of the battery container will rise abnormally, causing problems such as deformation of the battery container and leakage of alkaline electrolyte to the outside due to the activation of the safety valve. The drawback is that it is very difficult to seal the battery.

この欠点を解潤するため、現用の密閉型のアルカリ蓄電
池では、陽極容量よりも陰極容量を実質的に大きくし、
充電時には陽極が陰極より先に満充電になるようにした
所謂陽極支配型の構成が採られている。この構成とする
ことで、充電末期に陽極が満充電になっても陰極は満充
電とならず、過充電状態におっても陽極からの酸素ガス
発生が優先して発生されるので、陰極からの水素ガス発
生が抑制されるようになる。
In order to overcome this drawback, in current sealed alkaline storage batteries, the cathode capacity is substantially larger than the anode capacity.
During charging, a so-called anode-dominated configuration is adopted in which the anode is fully charged before the cathode. With this configuration, even if the anode is fully charged at the end of charging, the cathode will not be fully charged, and even in an overcharged state, oxygen gas will be generated from the anode with priority, so that oxygen gas will be generated from the cathode. hydrogen gas generation will be suppressed.

一方、現用の密閉型アルカリ蓄電池では、以上のことに
加えて、電池内に遊離の電解液が実質的に存在しないよ
うにその電解液量を制限する構成が用いられている。つ
まり、電池内の電解液量を多量にし、電解液中に電極体
を浸漬させたタイプの電池ではたとえ上]ホしたように
過充電時に先に陽極からの酸素ガス発生を優先させる構
成としても陽極で発生した閑素ガスは豊富な電解液に濡
れた陰極表面に到達することができず、上記消費反応に
よる電池内での酸素ガス消費ができなくなり、密閉型電
池であれば電池内部ガス圧が上昇してしまうからである
On the other hand, in current sealed alkaline storage batteries, in addition to the above, a configuration is used in which the amount of electrolyte is limited so that there is substantially no free electrolyte in the battery. In other words, in a type of battery in which the amount of electrolyte in the battery is increased and the electrode body is immersed in the electrolyte, even if the configuration is such that the generation of oxygen gas from the anode is prioritized first during overcharging as shown in [e] above, The aerosol gas generated at the anode cannot reach the cathode surface, which is wet with the rich electrolyte, and oxygen gas cannot be consumed within the battery by the above consumption reaction, and in the case of a sealed battery, the internal gas pressure of the battery This is because the amount will rise.

〈発明が解決しようとする問題点〉 しかしながら、以上のように陽極支配型とした密閉型ア
ルカリ蓄電池では充電末期の電池電圧変化が小さいので
、充電完了を電圧変化によって捕えることが極めて難し
いという問題があり、このような電圧変化によって充電
を制御する回路を構成すると非常に複雑でそれ故高価な
ものとならざるを得ず、また例えば鉛蓄電池で一般に行
なわれている定電流一定電圧充電法をこの密閉型アルカ
リ蓄電池に実用上適用できないのである。
<Problems to be Solved by the Invention> However, as described above, in an anode-dominated sealed alkaline storage battery, the battery voltage change at the end of charging is small, so there is a problem that it is extremely difficult to determine the completion of charging from the voltage change. However, configuring a circuit that controls charging using such voltage changes would be extremely complex and therefore expensive. It cannot be practically applied to sealed alkaline storage batteries.

また、この密閉型アルカリ蓄電池では、一般に、安全を
みこんで陰極容量を陽極容量よりもかなり大きく取って
設δ−1されており、電池放電容伍に実質的に貢献しな
い陰極部分を相当電池内に持ち込まざるを得ないため、
体積効率上非常に不利になるという問題がある。
In addition, in this sealed alkaline storage battery, the cathode capacity is generally designed to be much larger than the anode capacity for safety reasons, and a considerable amount of the cathode portion, which does not substantially contribute to the battery discharge capacity, is kept inside the battery. Because we have no choice but to bring it into
There is a problem in that it is very disadvantageous in terms of volumetric efficiency.

〈問題点を解決するための手段〉 この発明の密閉型アルカリ蓄電池は、電池内に遊離の電
解液が実質的に存在しないように制限した電解液量制限
型のものであって、放電状態での陰極の未充電容量を陽
極の未充電容量よりも実質的に小さく構成したことを要
旨とする。
<Means for Solving the Problems> The sealed alkaline storage battery of the present invention is of a type in which the amount of electrolyte is limited so that there is substantially no free electrolyte in the battery, and the amount of free electrolyte is limited in the battery in a discharged state. The gist is that the uncharged capacity of the cathode is substantially smaller than the uncharged capacity of the anode.

また、この構成に加えて、陰1※活物質より水素過電圧
の大きな全屈または金属化合物を陰極に添加・含有させ
てもよい。
Further, in addition to this configuration, a total dielectric material or a metal compound having a larger hydrogen overvoltage than the cathode 1* active material may be added to and contained in the cathode.

〈作 用〉 従来の、陽極支配型で電解液量制限型の密閉型ニッケル
ーカドミウム蓄電池を用い、定電流で充電した場合の充
電量(%)に対する充電電圧(V)の変化を第5図に示
した。同図から、満充電時(充電量100%近傍)にお
ける充電電圧の変化が極めて小さいことが明らかである
<Function> Figure 5 shows the change in charging voltage (V) with respect to the amount of charge (%) when charging with a constant current using a conventional sealed nickel-cadmium storage battery with anode-dominated type and limited electrolyte volume. It was shown to. It is clear from the figure that the change in charging voltage at full charge (near 100% charge) is extremely small.

また、第6図はニッケル陽極(II>及びカドミウム陰
極(I>の電極電位(VVS  HCJ/Hg0)をそ
れぞれ示したものであり、カドミウム陰極■は満充電時
に大きな電圧の立ら上がり(水素発生電位への立ち上が
り)を見せている。そして、上記従来の密閉型ニッケル
ーカドミウム蓄電池で満充電時に大きな電圧の立ち上が
りが見られないのは、この電池では、上述のように、陰
極より陽極の方が先に満充電になるように構成している
ため、陽極が満充電となり液量ガスを発生するようにな
ると、陰、極では前記酸素ガス消費反応が生じてそれ以
上充電が進行しなくなって陰極が見かけ上溝充電となる
ので、第6図で示した電位の立ら上がりが起こらないこ
とに起因している。
Figure 6 shows the electrode potential (VVS HCJ/Hg0) of the nickel anode (II>) and the cadmium cathode (I>), and the cadmium cathode ■ has a large voltage rise (hydrogen generation) when fully charged. The reason why the above conventional sealed nickel-cadmium storage battery does not show a large voltage rise when fully charged is that, as mentioned above, the anode is closer to the anode than the cathode. Since the battery is configured so that it is fully charged first, when the anode becomes fully charged and begins to generate liquid gas, the oxygen gas consumption reaction occurs at the cathode and the electrode, and charging no longer progresses. This is because the cathode is apparently groove-charged, so the potential rise shown in FIG. 6 does not occur.

本発明の密閉型アルカリ蓄電池では上記のように構成し
たので、充電時には陰極が陽極よりも先に満充電となる
ため、陰極の水素発生電位への大きな立ら上がりによっ
て満充電時における電池充電電圧の電圧変化を大きくす
ることができる。
Since the sealed alkaline storage battery of the present invention is constructed as described above, the cathode becomes fully charged before the anode during charging, so the battery charging voltage at full charge is reduced due to a large rise in the hydrogen generation potential of the cathode. The voltage change can be increased.

また、陰極活物質より水素過電圧の大きな金属または金
属化合物を陰極に添加することで、第6図で点線■で示
したように、陰極は満充電時により大きな電圧の立ち上
がりを示し、従って、上記の電池充電電圧の変化をより
大きくすることができる。
In addition, by adding a metal or metal compound with a higher hydrogen overvoltage than the cathode active material to the cathode, the cathode exhibits a larger voltage rise when fully charged, as shown by the dotted line ■ in Figure 6, and therefore the above The change in battery charging voltage can be made larger.

そして、以上のように満充電時の電圧変化を大きくでき
るため、この電圧変化を利用して充電を制御することが
容易にできるようになり、前述の定電流一定電圧充電法
の適用も実用上可能となる。ただし、その場合、陰極の
水素発生電位が環境温度により変化するため、定電流充
電から定電圧充電に移行する際の制限電位として広い温
度範囲にわたって同一の電位を用いることが難しい場合
もめるが、上述のように陰極活物質より水素過電圧の大
きな金属または金属化合物(例えばカドミウム陰極の場
合にはInやZn)を添加することにより、これが改善
され、同一の制限電位を広い温度範囲にわたって使用す
ることが可能となる。第1図に、本発明の密閉型蓄電池
を定電流一定電圧充電した時の充電電流の典型的な変化
を示した。
As described above, since the voltage change during full charging can be increased, charging can be easily controlled using this voltage change, making it practical to apply the constant current constant voltage charging method described above. It becomes possible. However, in that case, since the hydrogen generation potential of the cathode changes depending on the environmental temperature, it may be difficult to use the same potential over a wide temperature range as the limiting potential when transitioning from constant current charging to constant voltage charging, but as mentioned above, This can be improved by adding a metal or metal compound (for example, In or Zn in the case of a cadmium cathode) that has a higher hydrogen overvoltage than the cathode active material, making it possible to use the same limiting potential over a wide temperature range. It becomes possible. FIG. 1 shows typical changes in charging current when the sealed storage battery of the present invention is charged with constant current and constant voltage.

また、電池放電容量に実質的に貢献しない陰極容量を大
幅に減らし、その分陽極容量並びに電池放電容量に貢献
する陰極部分を増やすことができるので電°池の体積効
率が大幅に改善される。
Furthermore, the cathode capacity that does not substantially contribute to the battery discharge capacity can be significantly reduced, and the anode capacity and the cathode portion that contribute to the battery discharge capacity can be increased by that amount, so that the volumetric efficiency of the battery can be greatly improved.

〈実施例〉 以下にこの発明をニッケルーカドミウム蓄電池に適用し
た例を説明する。
<Example> An example in which the present invention is applied to a nickel-cadmium storage battery will be described below.

実害f41800mAHの焼結式ニッケル陽極と、実容
量1500mAHの焼結式カドミウム陰極とを、夫々放
電状態でセパレータを介して組合せ、これらを−緒に捲
回して電極体を構成した。この電極体を電池外装缶に入
れ、25重量%の水酸化カリウム水溶液をアルカリ電解
液として5CC注液し、その後外装缶開口を封口して電
解液量制限型の密閉型ニッケルーカドミウム蓄電池(本
発明電池A:公称容量1500mAH)を作製した。
A sintered nickel anode with an actual damage f of 41,800 mAH and a sintered cadmium cathode with an actual capacity of 1,500 mAH were combined in a discharge state via a separator, and then wound together to form an electrode body. This electrode body is placed in a battery outer can, and 5cc of 25% by weight potassium hydroxide aqueous solution is injected as an alkaline electrolyte.Then, the opening of the outer can is sealed and the electrolyte amount is limited to a sealed nickel-cadmium storage battery. Invention battery A (nominal capacity: 1500 mAH) was produced.

この電池に用いたカドミウム陰極並びにニッケル陽極の
夫々の極板容量を第3図(A)に模式的に示した。
The plate capacities of the cadmium cathode and nickel anode used in this battery are schematically shown in FIG. 3(A).

第3図(B)は同型に構成した従来の密閉型ニッケルー
カドミウム蓄電池(従来電池B)に用いるカドミウム陰
極及びニッケル陽極の各極板容量の模式図である。図中
、斜線部は充電状態の容量を、また白色部は放電状態の
容量を指す。
FIG. 3(B) is a schematic diagram of the capacity of each plate of a cadmium cathode and a nickel anode used in a conventional sealed nickel-cadmium storage battery (conventional battery B) configured in the same manner. In the figure, the shaded area indicates the capacity in the charged state, and the white area indicates the capacity in the discharged state.

この電池では公称容量は1200mAHとなっており、
本発明電池へでは従来電池の125%の公称容量をもた
せることができた。
This battery has a nominal capacity of 1200mAH.
The battery of the present invention was able to have a nominal capacity of 125% of that of the conventional battery.

また、第4図に示したように、実容量 1800mAH
の焼結式ニッケル陽極と、実害ff11800mAHで
300mAHに相当する容量を先に充電した焼結式カド
ミウム陰極とを用いて電解液量制限型の密閉型ニッケル
ーカドミウム蓄電池(本発明電池C:公称容量1500
mAH>を作製した。
In addition, as shown in Figure 4, the actual capacity is 1800mAH.
A sealed nickel-cadmium storage battery with a limited amount of electrolyte (invention battery C: nominal capacity) is constructed using a sintered nickel anode of 1500
mAH> was produced.

これら3つの電池の体積効率(mAH/cc)を第1表
に示した。
The volumetric efficiencies (mAH/cc) of these three batteries are shown in Table 1.

第1表 また、上記本発明電池A、Cについて、それぞれ10時
間率(0,IC>の電流で充電した所、満充電時にはそ
れぞれ、従来電池Bには見られなかった鋭い充電電圧の
立ち上がりが見られた。
Table 1 Also, when batteries A and C of the present invention were charged at a current of 10 hours (0, IC), a sharp rise in charging voltage, which was not observed in conventional battery B, was observed when fully charged. It was seen.

更に、上記2つの電池A、Cを第2表の条件で環境温度
0’C,20’C,50℃でそれぞれ定電流一定電圧充
電テストを行なった。
Further, the two batteries A and C were subjected to constant current and constant voltage charging tests at environmental temperatures of 0'C, 20'C, and 50C under the conditions shown in Table 2, respectively.

第2表 テスト結果は第2図に示した通りであり、20’Cでは
それぞれ図中実線aのように満充電時からは充電電流が
減少していく正常な充電が行なわれた。また、温度50
’Cでは一点鎖線すのように、充電電流は満充電時から
一度は減少するものの、再び増大して結局過充電状態に
なってしまった。これは、満充電後に流れる充電電流に
よる電解で電池温度が更に上昇し、満充電後の電池充電
電圧が温度上昇によって低下して制限電圧以下となり占
び定電圧充電に戻っていったためであり、満充電時の電
圧の立ち上がりの度合がやや小さいことが原因であると
考えられる。一方、温度O℃では点線Cで示したように
充電初期より充電電流が減少していき、充電不足となっ
た。これは充電初期から電池充電電圧が制限電位に到達
していたため、はじめから定電圧充電になってしまった
ことに依る。
The test results in Table 2 are as shown in FIG. 2, and at 20'C, normal charging was performed in which the charging current decreased from the time of full charge, as indicated by the solid line a in the figure. Also, the temperature is 50
In 'C, as shown by the dashed-dotted line, the charging current decreases once from full charge, but increases again and eventually becomes overcharged. This is because the battery temperature further rises due to electrolysis caused by the charging current that flows after full charge, and the battery charging voltage after full charge decreases due to the temperature rise, becoming below the limit voltage and returning to constant voltage charging. This is thought to be because the degree of voltage rise during full charge is somewhat small. On the other hand, at a temperature of 0° C., as shown by the dotted line C, the charging current decreased from the initial stage of charging, resulting in insufficient charging. This is because the battery charging voltage had reached the limiting potential from the beginning of charging, resulting in constant voltage charging from the beginning.

また、活物質として酸化カドミウムを用い、また酸化カ
ドミウムに対して0.5〜1重足%の酸化インジウムを
添加し、これらを糊料とともに混練して作った活物質ペ
ーストを集電体に塗着して作製したペース1〜式カドミ
ウム陰極を用いた他は本発明電池Aと同様な密閉型のニ
ッケルーカドミウム蓄電池(本発明電池D)を作った。
In addition, cadmium oxide is used as an active material, and 0.5 to 1% indium oxide is added to cadmium oxide, and an active material paste made by kneading these with a glue is applied to the current collector. A sealed nickel-cadmium storage battery (Battery D of the present invention) similar to Battery A of the present invention was made except that the cadmium cathode of the PACE 1~ type prepared by the above method was used.

更に、酸化インジウムに代えて酸化亜鉛を、酸化カドミ
ウムに対して0.2〜5重量%添加した他は本発明電池
りと同様な密閉型ニッケルーカドミウム蓄電池(本発明
電池E)を作った。
Furthermore, a sealed nickel-cadmium storage battery (Battery E of the present invention) similar to the battery of the present invention was prepared except that 0.2 to 5% by weight of zinc oxide was added to the cadmium oxide instead of indium oxide.

これら2つの電池り、Eをそれぞれ10Ri!間率(0
,IC>の電流で充電した所、満充電時の電池充電電圧
の立ち上がりは、酸化インジウムあるいは酸化亜鉛の無
添加の場合に較べて、ともに200〜250mV増大し
た。
These two batteries each have 10 Ri! Space rate (0
, IC>, the rise of the battery charging voltage at full charge increased by 200 to 250 mV compared to the case where no indium oxide or zinc oxide was added.

次に、これら電池り、Eを第3表の条件で上記、電池A
、Cの場合と同様に定電流一定電圧充電テス1〜を行な
った。
Next, these batteries, E, and the above battery A under the conditions shown in Table 3.
As in the case of , C, constant current constant voltage charging tests 1 to 1 were conducted.

テストの結果は、温度O℃、20℃、50℃のいずれの
温度においても充電電流は第2図の実線Cで示した変化
を示し、すべて正常な充電を行なえた。
As a result of the test, the charging current showed the change shown by the solid line C in FIG. 2 at all temperatures of 0° C., 20° C., and 50° C., and normal charging was possible in all cases.

〈発明の効果〉 以上のように構成されるこの発明のアルカリ蓄電池によ
れば、満充電時の電池充電電圧の立ち上がりを大きくで
きるため、満充電時の電圧変化を容易且つ確実に検知で
き、従来電池では実用上適用不可能であった定電流一定
電圧充電が行なえる。また、陰極活物質より水素過電圧
が大きい金属または金属化合物を陰極に添加することで
、広い温度範囲での定電流一定電圧充電が可能となる。
<Effects of the Invention> According to the alkaline storage battery of the present invention configured as described above, since the rise of the battery charging voltage at full charge can be increased, voltage changes at full charge can be easily and reliably detected, which is different from conventional Constant-current, constant-voltage charging, which is practically impossible with batteries, can be performed. Further, by adding a metal or a metal compound having a higher hydrogen overvoltage than the cathode active material to the cathode, constant current and constant voltage charging becomes possible over a wide temperature range.

更に、従来電池と較べて、陰極の実質容量を大幅に小さ
くできるので、電池充電電圧の増大を図り、体積効率の
よい電池を提供することができる。
Furthermore, since the actual capacity of the cathode can be significantly reduced compared to conventional batteries, it is possible to increase the battery charging voltage and provide a battery with good volumetric efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電池を定電流一定電圧充電した時の典
型的な充電電流の変化を示したグラフ、第2図は同じく
充電時の環境温度を変えた場合の充電電流の変化を示し
たグラフ、第3図(^)、 (B)及び第4図は本発明
電池及び従来電池の極板容母の模式図、第5図は従来電
池の充電電圧の変化を示したグラフ、第6図は同じく電
極電位の変化を示したグラフである。 第1図 第2図 先 電 量 (%) fa3図 第4図 第5図 1111%) 先電量(%)
Figure 1 is a graph showing typical changes in charging current when the battery of the present invention is charged with constant current and voltage, and Figure 2 is a graph showing changes in charging current when the environmental temperature during charging is changed. The graphs shown in Figures 3 (^), (B) and Figure 4 are schematic diagrams of the electrode plate bodies of the battery of the present invention and the conventional battery, and Figure 5 is a graph showing changes in charging voltage of the conventional battery. FIG. 6 is a graph similarly showing changes in electrode potential. Fig. 1 Fig. 2 Amount of electricity (%) Fig. 3 Fig. 4 Fig. 5 1111%) Amount of electricity (%)

Claims (1)

【特許請求の範囲】 1、電池内に遊離の電解液が実質的に存在しないように
制限した電解液量制限型のものであって、放電状態での
陰極の未充電容量を陽極の未充電容量よりも実質的に小
さく構成したことを特徴とする密閉型アルカリ蓄電池。 2、陰極活物質より水素過電圧が大きい金属または金属
化合物を陰極に添加・含有させたことを特徴とする特許
請求の範囲第1項記載の密閉型アルカリ蓄電池。
[Scope of Claims] 1. An electrolyte amount-limiting type battery in which the amount of electrolyte is limited so that there is substantially no free electrolyte in the battery, and the uncharged capacity of the cathode in a discharged state is equal to the uncharged capacity of the anode. A sealed alkaline storage battery characterized by being configured to be substantially smaller than its capacity. 2. The sealed alkaline storage battery according to claim 1, wherein a metal or a metal compound having a higher hydrogen overvoltage than the cathode active material is added to and contained in the cathode.
JP61131521A 1986-06-06 1986-06-06 Sealed alkaline storage battery Expired - Lifetime JPH0644491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61131521A JPH0644491B2 (en) 1986-06-06 1986-06-06 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61131521A JPH0644491B2 (en) 1986-06-06 1986-06-06 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62287578A true JPS62287578A (en) 1987-12-14
JPH0644491B2 JPH0644491B2 (en) 1994-06-08

Family

ID=15059998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61131521A Expired - Lifetime JPH0644491B2 (en) 1986-06-06 1986-06-06 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0644491B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716471A (en) * 1980-07-03 1982-01-27 Ricoh Co Ltd Controller for tonor density
JPS58131668A (en) * 1982-01-30 1983-08-05 Matsushita Electric Ind Co Ltd Rechargeable silver oxide cell
JPS6191882A (en) * 1984-10-12 1986-05-09 Asahi Glass Co Ltd Metal oxide-hydrogen secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716471A (en) * 1980-07-03 1982-01-27 Ricoh Co Ltd Controller for tonor density
JPS58131668A (en) * 1982-01-30 1983-08-05 Matsushita Electric Ind Co Ltd Rechargeable silver oxide cell
JPS6191882A (en) * 1984-10-12 1986-05-09 Asahi Glass Co Ltd Metal oxide-hydrogen secondary battery

Also Published As

Publication number Publication date
JPH0644491B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
EP0354966B1 (en) Alkaline secondary battery and process for its production
KR102039205B1 (en) Management of gas pressure and electrode state of charge in alkaline batteries
GB1472695A (en) Hermetically sealed alkaline storage batteries
US5569554A (en) Sealed rechargeable battery with stabilizer
JPS5928027B2 (en) Rechargeable chemical battery or storage battery
JPS5832473B2 (en) Manufacturing method of sealed nickel-cadmium alkaline storage battery
JP2001176455A (en) Cylindrical secondary battery
KR20000069898A (en) Alkaline storage battery and method for charging battery
JPS62287578A (en) Enclosed alkaline storage battery
JP2000150000A (en) Backup power supply control method
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JPS60198066A (en) Alkaline storage battery
JPH09204931A (en) Method of charging sealed nickel hydrogen secondary battery, and charging device thereof
JPS635866B2 (en)
KR870001471B1 (en) Solid battery
JPH0544784B2 (en)
JPH028419B2 (en)
JPH05307973A (en) Chemical conversion charging method of nickel-cadmium battery
JP2001076753A (en) Nickel-hydrogenized metal sealed storage battery
JPH038269A (en) Alkaline secondary battery
JPH0665067B2 (en) Nickel zinc battery
JPS6351350B2 (en)
JPH0443571A (en) Sealed nickel-cadmium battery and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term