JP2000150000A - Backup power supply control method - Google Patents

Backup power supply control method

Info

Publication number
JP2000150000A
JP2000150000A JP10343118A JP34311898A JP2000150000A JP 2000150000 A JP2000150000 A JP 2000150000A JP 10343118 A JP10343118 A JP 10343118A JP 34311898 A JP34311898 A JP 34311898A JP 2000150000 A JP2000150000 A JP 2000150000A
Authority
JP
Japan
Prior art keywords
nickel
charging
battery
hydrogen storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10343118A
Other languages
Japanese (ja)
Inventor
Takashi Yao
剛史 八尾
Hideki Kasahara
英樹 笠原
Tatsuhiko Suzuki
達彦 鈴木
Motohide Masui
基秀 増井
Hajime Konishi
始 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10343118A priority Critical patent/JP2000150000A/en
Publication of JP2000150000A publication Critical patent/JP2000150000A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method at a low cost for a power supply device capable of maintaining a nickel-hydrogen storage battery capacity over long periods of time and suitable for backup power supply control of a guide light, emergency lighting, information communication system, and the like. SOLUTION: In this backup power supply control with the use of a nickel- hydrogen storage battery including a positive electrode composed mainly of a nickel oxide, a negative electrode composed of hydrogen-storage alloys, a separator and an alkaline electrolytic solution, the nickel-hydrogen storage battery being intermittently charged, a self-discharge quantity during stopping of the charging is computed on the basis of temperature of the nickel-hydrogen storage battery during the stopping of the charging, and the nickel-hydrogen storage battery charging is controlled on the basis of the self-discharge quantity computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導灯、非常用照
明、情報通信システム等のバックアップ電源の管理方法
に関するものであって、特にそれに用いられるニッケル
−水素蓄電池の充電方法および劣化判定方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of managing a backup power supply for an induction lamp, emergency lighting, an information communication system, etc., and more particularly to a method of charging a nickel-metal hydride storage battery and a method of determining deterioration thereof. Things.

【0002】[0002]

【従来の技術】水素の吸蔵・放出が可能な水素吸蔵合金
を負極材料として用いるニッケル−水素蓄電池は、密閉
化が可能であり、ニッケル−カドミウム蓄電池(以下、
ニカド電池という)を凌ぐ高エネルギー密度化が可能で
あることから、これまでのニカド電池に代わって、通信
機、コンピュータ、ビデオ機器等のコードレス機器の電
源として利用されてきている。さらに、近年では、これ
までニカド電池が用いられてきた誘導灯、非常用照明、
コンピュータ、情報通信システム等のバックアップ電源
においても、機器の小型化、環境への配慮等によりニッ
ケル−水素蓄電池を使用したいとの要望が高まってい
る。バックアップ電源は、緊急の非常時に代替電源とし
て用いられるものであるため、充分な放電容量を常に確
保している必要がある。しかしながら、ニッケル−水素
蓄電池は、バックアップ電源用途に適した充電方法が無
いことから、バックアップ電源としては広く利用される
には至ってはいなかった。
2. Description of the Related Art A nickel-hydrogen storage battery using a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode material can be hermetically sealed and has a nickel-cadmium storage battery (hereinafter, referred to as a nickel-cadmium storage battery).
Since it is possible to achieve a higher energy density than a nickel-cadmium battery, it has been used as a power source for cordless devices such as communication devices, computers, and video devices in place of conventional nickel-cadmium batteries. Furthermore, in recent years, guide lights, emergency lighting,
In backup power supplies for computers, information communication systems, and the like, there is an increasing demand for using nickel-hydrogen storage batteries due to miniaturization of equipment and consideration for the environment. Since the backup power supply is used as an alternative power supply in an emergency, it is necessary to always secure a sufficient discharge capacity. However, nickel-hydrogen storage batteries have not been widely used as backup power sources because there is no charging method suitable for backup power source applications.

【0003】従来のニカド電池を用いたバックアップ電
源では、常に電池に微小な充電電流を供給するトリクル
充電が採用されている。ニッケル−水素蓄電池にトリク
ル充電を施した場合、容量の低下が激しく、充分な放電
容量を確保することができない。これは、トリクル充電
中に電池が過充電状態になり、負極に含まれる水素吸蔵
合金の酸化が進行して水素吸蔵能力が低下し、さらにこ
の酸化によって電解液が消費されて内部抵抗が増大する
ことによる。
In a conventional backup power supply using a nickel-cadmium battery, trickle charging for always supplying a minute charging current to the battery is employed. When trickle charging is performed on a nickel-hydrogen storage battery, the capacity is greatly reduced, and a sufficient discharge capacity cannot be secured. This is because the battery becomes overcharged during trickle charge, the oxidation of the hydrogen storage alloy contained in the negative electrode progresses, the hydrogen storage capacity decreases, and the oxidation consumes the electrolyte and increases the internal resistance. It depends.

【0004】そこで、ニッケル−水素蓄電池を用いたバ
ックアップ電源に適した充電方法として、例えば特開平
9−117074号公報や電子情報通信学会1997年
通信ソサイエティ大会(講演論文集2の531ページ参
照)において、間欠充電が提案されている。間欠充電と
は、電池を間欠的に充電することにより、充電休止期間
の自己放電分を充電時に補い、電池を常に満充電に近い
状態で維持する方法である。これらの提案によると、電
池の電圧を測定しながら、電池電圧が最大閾値に達する
と充電を停止し、充電停止中に電池電圧が最小閾値まで
低下すると充電を再開する。しかしながら、このような
充電制御は、常時電池電圧を監視する必要があることか
ら、その制御装置が高価になるため、コストの制約が厳
しい誘導灯、非常用照明、情報通信システム等に導入す
るのは困難である。また、寿命末期など内部抵抗が上昇
した電池の場合、自己放電量が設定した値に達しても電
圧は設定値まで低下せず、充電が開始されない場合があ
る。
[0004] Therefore, as a charging method suitable for a backup power supply using a nickel-hydrogen storage battery, for example, Japanese Unexamined Patent Publication No. Hei 9-117074 and the Communication Society Conference of the Institute of Electronics, Information and Communication Engineers, 1997 (see page 531 of Lecture Paper 2). , Intermittent charging has been proposed. The intermittent charging is a method of intermittently charging a battery to compensate for a self-discharge during a charging suspension period at the time of charging, and to constantly maintain the battery in a state close to full charge. According to these proposals, while measuring the battery voltage, charging is stopped when the battery voltage reaches the maximum threshold, and charging is restarted when the battery voltage drops to the minimum threshold while charging is stopped. However, since such charge control requires constant monitoring of the battery voltage, the control device becomes expensive, so that such control is introduced into guide lights, emergency lighting, information communication systems, and the like, which have severe cost restrictions. It is difficult. Further, in the case of a battery having an increased internal resistance such as at the end of its life, even if the self-discharge amount reaches a set value, the voltage does not decrease to the set value and charging may not be started.

【0005】コンピュータや情報通信システムのための
バックアップ電源には、バッテリ−マネージメントユニ
ット(BMU)が用いられている。BMUは、残容量を
検出して電池があとどれくらい使用できるかを判定する
機能を有するとともに、電池の劣化の程度を検出して電
池の交換時期を判定する機能を有する。BMUは、その
構造上非常に高価なものであり、コンピュータのための
バックアップ電源の管理には適用されるが、比較的本体
の価格が安い誘導灯、非常用照明、情報通信システム等
の管理にはそのコスト的な制約から導入が難しい。上記
公報等には、電池の劣化の判定のために、充電休止直後
の電圧降下値を検出する方法が開示されている。この方
法の場合、小電流で充電すると充電電圧が低くなるた
め、検出しようとする電圧降下の値も小さい。従って、
電圧の検出が難しく、高い精度で劣化を判定することは
困難である。
[0005] A battery management unit (BMU) is used as a backup power supply for a computer or an information communication system. The BMU has a function of detecting the remaining capacity and determining how much the battery can be used, and a function of detecting the degree of deterioration of the battery and determining the time to replace the battery. The BMU is very expensive due to its structure, and is applied to the management of a backup power supply for a computer. However, the BMU is used for the management of guide lights, emergency lighting, information communication systems, and the like, which are relatively inexpensive. Is difficult to introduce due to its cost constraints. The above-mentioned publications and the like disclose a method of detecting a voltage drop value immediately after the suspension of charging in order to determine the deterioration of the battery. In the case of this method, when the battery is charged with a small current, the charging voltage becomes low, so that the value of the voltage drop to be detected is also small. Therefore,
It is difficult to detect the voltage, and it is difficult to determine the deterioration with high accuracy.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決し、ニッケル−水素蓄電池の容量を長期にわた
って維持することができ、誘導灯、非常用照明、情報通
信システム等のバックアップ電源の管理に適した電源装
置の管理方法を安価で提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems and can maintain the capacity of a nickel-metal hydride storage battery for a long period of time. It is an object of the present invention to provide an inexpensive power supply management method suitable for power management.

【0007】[0007]

【課題を解決するための手段】本発明では、ニッケル−
水素蓄電池を間欠充電しながら、充電休止中の自己放電
量を温度により補正する。補正して得られた自己放電量
を次回の充電時に補償する。
According to the present invention, nickel-
While the hydrogen storage battery is intermittently charged, the self-discharge amount during charging suspension is corrected based on the temperature. The self-discharge amount obtained by the correction is compensated at the next charging.

【0008】[0008]

【発明の実施の形態】本発明のバックアップ電源の管理
方法は、ニッケル酸化物を主体とする正極、水素吸蔵合
金からなる負極、セパレータおよびアルカリ電解液を備
えたニッケル−水素蓄電池を用いたバックアップ電源の
管理方法において、ニッケル−水素蓄電池を間欠充電し
ながら、その充電休止中のニッケル−水素蓄電池の温度
に基づいてニッケル−水素蓄電池の充電休止中の自己放
電量を算出して、得られた自己放電量に基づいてニッケ
ル−水素蓄電池の充電を制御する。上記の充電制御にお
いて、算出された自己放電量相当分を充電することで、
電池の過充電を防ぎ、劣化の進行を抑制することができ
る。ここで、必ずしもニッケル−水素蓄電池の温度を用
いる必要はなく、その変動が小さければ、雰囲気温度で
代用することができる。たとえば、一定の充電休止期間
におけるの自己放電量に基づいて、次に行う間欠充電の
継続時間を決定する。また、算出された自己放電量が所
定値、たとえば蓄電池の容量の10〜30%に達したと
きに、ニッケル−水素蓄電池の充電を再開させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A backup power supply management method according to the present invention is directed to a backup power supply using a nickel-hydrogen battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode composed of a hydrogen storage alloy, a separator and an alkaline electrolyte. The intermittent charging of the nickel-hydrogen storage battery, the self-discharge amount of the nickel-hydrogen storage battery during the suspension of charging is calculated based on the temperature of the nickel-hydrogen storage battery during the suspension of charging, and the obtained self-discharge amount is calculated. The charge of the nickel-hydrogen storage battery is controlled based on the amount of discharge. In the above charge control, by charging the calculated self-discharge amount,
The battery can be prevented from being overcharged, and the progress of deterioration can be suppressed. Here, it is not necessary to use the temperature of the nickel-hydrogen storage battery, and if the fluctuation is small, the ambient temperature can be used instead. For example, the duration of the next intermittent charge to be performed is determined based on the amount of self-discharge during a fixed charge suspension period. When the calculated self-discharge amount reaches a predetermined value, for example, 10 to 30% of the capacity of the storage battery, charging of the nickel-hydrogen storage battery is restarted.

【0009】充電休止中の一定時間におけるニッケル−
水素蓄電池の平均温度に基づいて同時間におけるニッケ
ル−水素蓄電池の自己放電量を算出する。算出された自
己放電量が所定値に達していない場合、次に続く一定時
間におけるニッケル−水素蓄電池の平均温度に基づいて
その時間におけるニッケル−水素蓄電池の自己放電量を
算出し、算出された自己放電量の積算値を所定値と比較
する。このように、一定時間(たとえば3〜48時間)
毎に、電池の自己放電量を算出し、この値が上記の所定
値以上になると充電を再開する。このときの充電電流は
たとえば1/30C〜1Cとする。これにより、充電休
止中にその時点の電池の自己放電量を把握することがで
きる。また、充電休止中に環境温度等が変動しても、自
己放電量を補正することができ、より精度の高い充電制
御が可能になる。
[0009] Nickel for a certain period of time during charging suspension
The self-discharge amount of the nickel-hydrogen storage battery at the same time is calculated based on the average temperature of the hydrogen storage battery. If the calculated self-discharge amount has not reached the predetermined value, the self-discharge amount of the nickel-hydrogen storage battery at that time is calculated based on the average temperature of the nickel-hydrogen storage battery for the next fixed time, and the calculated self-discharge amount is calculated. The integrated value of the discharge amount is compared with a predetermined value. Thus, for a certain period (for example, 3 to 48 hours)
Each time, the self-discharge amount of the battery is calculated, and when this value becomes equal to or more than the above-mentioned predetermined value, charging is restarted. The charging current at this time is, for example, 1 / 30C to 1C. Thereby, the self-discharge amount of the battery at that time can be grasped during the suspension of charging. Further, even if the environmental temperature or the like fluctuates during the suspension of charging, the amount of self-discharge can be corrected, and more accurate charge control can be performed.

【0010】本発明の他のバックアップ電源の管理方法
は、ニッケル酸化物を主体とする正極、水素吸蔵合金か
らなる負極、セパレータおよびアルカリ電解液を備えた
ニッケル−水素蓄電池を用いたバックアップ電源の管理
方法において、ニッケル−水素蓄電池に対して0.2〜
1Cで、−ΔV制御方式またはdT/dt制御方式によ
り満充電を検出する間欠充電を行う。上記のような充電
時間を一定にするいわゆるタイマー制御により充電する
場合、常に休止中の自己放電量が一定であれば過充電ま
たは充電不足になる心配はない。しかし、雰囲気温度が
変化すると自己放電量も変わってくる。したがって、タ
イマー制御によると、電池が過充電されてその寿命が短
くなる可能性がある。そこで、電池を確実に満充電状態
まで充電しかつ過充電を防ぐためには、タイマー方式に
代えて、−ΔV制御方式またはdT/dt制御方式によ
り満充電を検出する間欠充電を行う。−ΔV制御方式
は、電池を定電流で充電した場合、電池電圧が充電の進
行に伴って上昇していき、満充電に達するとそれ以降は
徐々に降下する特性を用いたものであり、検出した電圧
降下の値(−ΔV)をあらかじめ設定された値と比較し
て充電制御を行う方式である。dT/dt制御方式は、
電池温度の上昇勾配(dT/dt)を検出する制御方式
である。
Another method of managing a backup power supply according to the present invention is directed to a method of managing a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode composed of a hydrogen storage alloy, a separator and an alkaline electrolyte. The method, wherein the nickel-hydrogen storage battery has a
At 1C, intermittent charging for detecting full charge is performed by the -ΔV control method or the dT / dt control method. In the case of charging by the so-called timer control for keeping the charging time constant as described above, there is no fear of overcharging or insufficient charging if the amount of self-discharge during pause is always constant. However, when the ambient temperature changes, the amount of self-discharge also changes. Therefore, according to the timer control, the battery may be overcharged and its life may be shortened. Therefore, in order to reliably charge the battery to the full charge state and prevent overcharge, intermittent charge for detecting full charge is performed by the -ΔV control method or the dT / dt control method instead of the timer method. The -ΔV control method uses a characteristic in which when a battery is charged with a constant current, the battery voltage rises with the progress of charging, and gradually drops after reaching a full charge. In this method, the charge control is performed by comparing the value of the voltage drop (−ΔV) with a preset value. The dT / dt control method is as follows:
This is a control method for detecting a rising gradient (dT / dt) of the battery temperature.

【0011】バックアップに用いたときに確実に残容量
を確保するためには、休止中の電池電圧を検出しなが
ら、その値が所定値まで低下すると充電を再開すること
が好ましい。充電制御をより簡易にするためには、タイ
マー制御により所定の間隔(たとえば1〜7日)で定期
的に充電を再開することが好ましい。
In order to ensure the remaining capacity when used for backup, it is preferable to restart charging when the battery voltage drops to a predetermined value while detecting the battery voltage during sleep. In order to make charging control easier, it is preferable to periodically restart charging at predetermined intervals (for example, 1 to 7 days) by timer control.

【0012】本発明のさらに他のバックアップ電源の管
理方法は、ニッケル酸化物を主体とする正極、水素吸蔵
合金からなる負極、セパレータおよびアルカリ電解液を
備えたニッケル−水素蓄電池を用いたバックアップ電源
の管理方法において、ニッケル−水素蓄電池を間欠充電
しながら、その充電開始時の環境温度と充電終了時の電
池電圧に基づいてニッケル−水素蓄電池の劣化を判定す
ることを特徴とする。
Still another method of managing a backup power supply according to the present invention is directed to a backup power supply using a nickel-hydrogen storage battery including a positive electrode mainly composed of nickel oxide, a negative electrode composed of a hydrogen storage alloy, a separator and an alkaline electrolyte. The management method is characterized in that the nickel-hydrogen storage battery is intermittently charged and the deterioration of the nickel-hydrogen storage battery is determined based on the environmental temperature at the start of charging and the battery voltage at the end of charging.

【0013】本発明のさらに他のバックアップ電源の管
理方法は、ニッケル酸化物を主体とする正極、水素吸蔵
合金からなる負極、セパレータおよびアルカリ電解液を
備えたニッケル−水素蓄電池を用いたバックアップ電源
の管理方法において、ニッケル−水素蓄電池を間欠充電
しながら、その充電中のニッケル−水素蓄電池の表面温
度と充電中の電池電圧に基づいてニッケル−水素蓄電池
の劣化を判定することを特徴とする。この方法による
と、電池温度と電池電圧からニッケル−水素蓄電池の劣
化を判定する。電池の充電電圧はその内部抵抗及び充電
電流の双方に依存することから、この方法によると、充
電電流値に関わらず電池劣化を判定することができる。
Still another method of managing a backup power supply according to the present invention is directed to a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode composed of a hydrogen storage alloy, a separator and an alkaline electrolyte. The method is characterized in that, while the nickel-hydrogen storage battery is intermittently charged, deterioration of the nickel-hydrogen storage battery is determined based on the surface temperature of the nickel-hydrogen storage battery being charged and the battery voltage being charged. According to this method, the deterioration of the nickel-hydrogen storage battery is determined from the battery temperature and the battery voltage. Since the charging voltage of a battery depends on both its internal resistance and charging current, this method can determine battery deterioration regardless of the charging current value.

【0014】[0014]

【実施例】以下、本発明のバックアップ電源の管理方法
として、電池の充電方法および劣化判定方法の好ましい
実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method of managing a backup power supply according to the present invention will be described in detail below with reference to a battery charging method and a deterioration judging method.

【0015】《実施例1》水酸化ニッケル粉末と導電剤
としてのコバルト化合物粉末を主体とするペーストを調
製した。ついで、このペーストを発泡ニッケルからなる
基体に充填した。このペーストを充填された基体をプレ
スによって所定の厚さにし、さらにAAサイズ用の寸法
に裁断して正極板を得た。一方、穿孔を有するNiめっ
き鋼鈑の両面に水素吸蔵合金粉末を主体とするペースト
を塗布した。このNiめっき鋼鈑をプレスによって押圧
し、さらに所定の寸法に裁断して負極板を得た。
Example 1 A paste mainly composed of nickel hydroxide powder and a cobalt compound powder as a conductive agent was prepared. Next, the paste was filled in a substrate made of foamed nickel. The base material filled with the paste was pressed to a predetermined thickness, and cut into dimensions for AA size to obtain a positive electrode plate. On the other hand, a paste mainly composed of a hydrogen storage alloy powder was applied to both surfaces of a perforated Ni-plated steel sheet. The Ni-plated steel sheet was pressed by a press and cut into a predetermined size to obtain a negative electrode plate.

【0016】以上のようにして得られた正極板および負
極板を、両者の間にポリプロピレン製の不織布からなる
セパレータを挟んで重ね合わせたのち、渦巻状に巻回し
て電極群を得た。得られた電極群を外装缶に収納したの
ち、外装缶に比重が1.30のKOH水溶液に30g/
lの水酸化リチウムを溶解して得られたアルカリ電解液
を所定量注入した。ついで、これを雰囲気温度25℃で
12時間放置し、さらに初充放電(充電は0.1Cの電
流で15時間、放電は0.2Cの電流で4時間)を行
い、定格容量が1200mAhのAAサイズのニッケル
−水素蓄電池を得た。得られたニッケル−水素蓄電池を
6本直列に接続して電池パックを組み立てた。これを電
池パックAとする。一方、定格容量が600mAhのニ
ッケル−カドミウム蓄電池を6本直列に接続して電池パ
ックを組み立てた。これを電池パックBとする。
The positive electrode plate and the negative electrode plate obtained as described above were overlapped with a separator made of a nonwoven fabric made of polypropylene interposed therebetween, and then spirally wound to obtain an electrode group. After the obtained electrode group was stored in an outer can, 30 g / KOH aqueous solution having a specific gravity of 1.30 was added to the outer can.
A predetermined amount of an alkaline electrolyte obtained by dissolving 1 liter of lithium hydroxide was injected. Then, this was left at an ambient temperature of 25 ° C. for 12 hours, and further subjected to initial charging and discharging (charging was performed at a current of 0.1 C for 15 hours and discharging was performed at a current of 0.2 C for 4 hours), and an AA having a rated capacity of 1200 mAh was performed. A nickel-hydrogen storage battery of a size was obtained. A battery pack was assembled by connecting six of the obtained nickel-hydrogen storage batteries in series. This is called battery pack A. On the other hand, a battery pack was assembled by connecting six nickel-cadmium storage batteries having a rated capacity of 600 mAh in series. This is referred to as a battery pack B.

【0017】以上のようにして得られた電池パックAお
よびBを、25℃の雰囲気下で以下のようにして間欠充
電した。充電休止中に電池電圧が予め設定した電圧値
(1.3V/セル)まで降下したときにタイマー制御に
よる充電を開始した。また、充電休止時における電池パ
ックの自己放電量(電池容量の約20%)及び充電時の
充電効率を考慮して、電池パックをその充電電気量が電
池容量の25%になるように、1/2CmAの充電電流
で30分間充電した。上記の間欠充電を繰り返しなが
ら、6ヶ月に一度、セル当たりの電圧が1.0Vに低下
するまで放電させ、電池容量を求めた。その結果を図1
に示す。図1から明らかなように、間欠充電ではニッケ
ル−水素蓄電池を用いた電池パックAの容量は殆んど低
下しない。一方、ニッケル−カドミウム蓄電池を用いた
電池パックBの容量は、間欠充電を繰り返すにつれて大
きく低下することがわかる。
The battery packs A and B obtained as described above were intermittently charged at 25 ° C. in the following manner. When the battery voltage dropped to a preset voltage value (1.3 V / cell) during charging suspension, charging by timer control was started. In consideration of the amount of self-discharge (about 20% of the battery capacity) of the battery pack at the time of suspension of charging and the charging efficiency at the time of charging, the battery pack is set so that the amount of electricity charged becomes 25% of the battery capacity. The battery was charged at a charging current of / 2 CmA for 30 minutes. While repeating the intermittent charging, the battery was discharged once every six months until the voltage per cell dropped to 1.0 V, and the battery capacity was determined. Figure 1 shows the results.
Shown in As is clear from FIG. 1, the capacity of the battery pack A using the nickel-hydrogen storage battery hardly decreases during the intermittent charging. On the other hand, it can be seen that the capacity of the battery pack B using the nickel-cadmium storage battery greatly decreases as intermittent charging is repeated.

【0018】次に、電池パックAおよびBを、それぞれ
トリクル充電により充電した。このとき、バックアップ
用ニッケル−カドミウム蓄電池の代表的な充電条件にし
たがって、25℃の雰囲気下で、1/20CmAの充電
電流で充電した。電池パックAおよびBは、いずれも6
ヶ月に一度、電圧が1.0V/セルに低下するまで放電
させ、そのときの放電量より電池容量を求めた。電池パ
ックAおよびBの電池容量の変化を図2に示す。図1お
よび図2より明らかなように、ニッケル−水素蓄電池
は、間欠充電により長期にわたってその容量が保持され
る。間欠充電によると、過充電量やそれに比例する酸素
発生量を、トリクル充電を行ったときのそれらの約1/
40に抑制することができる。したがって、水素吸蔵合
金負極の酸化が抑制され、電解液もほとんど減少しない
と考えられる。
Next, the battery packs A and B were charged by trickle charging, respectively. At this time, the battery was charged at a charging current of 1/20 CmA under an atmosphere of 25 ° C. according to typical charging conditions of the nickel-cadmium backup battery. Battery packs A and B each have 6
The battery was discharged once a month until the voltage dropped to 1.0 V / cell, and the battery capacity was determined from the discharge amount at that time. FIG. 2 shows changes in the battery capacities of the battery packs A and B. As is clear from FIGS. 1 and 2, the capacity of the nickel-hydrogen storage battery is maintained for a long period of time by intermittent charging. According to intermittent charging, the amount of overcharge and the amount of oxygen generated in proportion to it are reduced by about 1 /
It can be suppressed to 40. Therefore, it is considered that the oxidation of the hydrogen storage alloy negative electrode is suppressed, and the amount of the electrolyte is hardly reduced.

【0019】一方で、ニッケル−水素蓄電池は、トリク
ル充電では容量を長期にわたって維持することができな
い。劣化したニッケル−水素蓄電池を解析したところ、
容量低下の主な原因は、トリクル充電によって正極から
連続的に発生した酸素によって負極の水素吸蔵合金が酸
化されたことによって、水素吸蔵合金の水素吸蔵能力が
低下したことと、さらに電解液が消費されて減少して内
部抵抗の上昇したことであることが明らかになった。こ
れに対して、ニッケル−カドミウム蓄電池は、間欠充電
によるとその容量の低下が大きいのに対して、トリクル
充電を行った場合には、容量の低下が抑制される。これ
は、微小電流で連続的に充電するよりも、充放電を繰り
返すことにより、電池の負極に用いられているカドミウ
ムのデンドライトが生成されやすくなることによると考
えられる。
On the other hand, a nickel-hydrogen storage battery cannot maintain its capacity for a long period by trickle charging. Analysis of the deteriorated nickel-hydrogen storage battery,
The main causes of the decrease in capacity are that the hydrogen storage alloy of the negative electrode was oxidized by oxygen continuously generated from the positive electrode due to trickle charging, which reduced the hydrogen storage capacity of the hydrogen storage alloy and further consumed the electrolyte. It has become clear that the internal resistance has risen. On the other hand, the nickel-cadmium storage battery has a large reduction in capacity due to intermittent charging, whereas the reduction in capacity is suppressed when trickle charging is performed. This is presumably because cadmium dendrite used for the negative electrode of the battery is more likely to be generated by repeating charge and discharge than by continuous charging with a small current.

【0020】ここで、充電を一定時間で停止するいわゆ
るタイマー制御によると、電池電圧を検出しながら充放
電を制御する方法と比べて、装置の構成が簡易になる。
また、雰囲気温度が安定している場合には高い精度で充
電量を制御することができる。ただし、タイマー制御に
よると、いわゆる見込みの容量低下量を補充することに
なるため、雰囲気温度の変動等によっては、電池が満充
電されない場合や過充電される場合もある。また、単純
に一定時間充電するようなタイマー制御によると、実際
に電池がバックアップ電源として用いられた場合、放電
直後の充電においては満充電されない。したがって、放
電後しばらくは、バックアップ電源として充分な機能を
発揮することができない。
Here, according to the so-called timer control in which charging is stopped for a fixed time, the configuration of the apparatus is simplified as compared with a method of controlling charging and discharging while detecting the battery voltage.
In addition, when the ambient temperature is stable, the charge amount can be controlled with high accuracy. However, according to the timer control, a so-called expected capacity reduction amount is replenished, so that the battery may not be fully charged or may be overcharged depending on a change in ambient temperature or the like. Further, according to the timer control for simply charging for a certain period of time, when the battery is actually used as a backup power source, the battery is not fully charged immediately after discharging. Therefore, for a while after the discharge, a sufficient function as a backup power supply cannot be exhibited.

【0021】そこで、より確実に電池を満充電するため
には、いわゆる−ΔV制御方式での充電が望ましい。−
ΔV制御方式は、電池を定電流で充電した場合、電池電
圧が充電の進行に伴って上昇してゆき、満充電に達する
とそれ以降は徐々に降下する特性を利用したものであ
り、この電池電圧のピーク値からの電圧降下の値(−Δ
V)を検出して充電制御を行う方式である。したがっ
て、−ΔV制御方式によると、過充電を防ぎながら、電
池を満充電状態まで充電することができる。なお、−Δ
V制御方式の場合、小電流で充電すると、高温下では−
ΔV値を検出しにくくなるため、1/5C〜1Cで充電
することが望ましい。電池を満充電状態まで充電するた
めの充電制御方式としては、上記のほか、電池温度の上
昇勾配(dT/dt)を検出する制御方式、電池温度の
上限値(TCO)を検出して制御する方式を用いてもよ
い。以上のように、ニッケル−水素蓄電池をバックアッ
プ用電源として用いる場合、間欠充電が好ましい。
Therefore, in order to more fully charge the battery, it is desirable to perform charging by the so-called -ΔV control method. −
The ΔV control method utilizes the characteristic that when a battery is charged with a constant current, the battery voltage increases with the progress of charging, and then gradually decreases when the battery reaches a full charge. The value of the voltage drop from the voltage peak value (−Δ
V) is detected and charge control is performed. Therefore, according to the -ΔV control method, the battery can be charged to a fully charged state while preventing overcharge. Note that -Δ
In the case of the V control method, when charging with a small current, under high temperature,-
Since it is difficult to detect the ΔV value, it is desirable to charge at 1 / 5C to 1C. In addition to the above, as a charge control method for charging the battery to a fully charged state, a control method for detecting a rising gradient (dT / dt) of the battery temperature and a control for detecting and controlling an upper limit value (TCO) of the battery temperature are performed. A scheme may be used. As described above, when a nickel-hydrogen storage battery is used as a backup power source, intermittent charging is preferable.

【0022】《実施例2》実施例1のように、ある自己
放電量に相当する電圧値を設定し、休止時にその電圧値
まで電圧が低下した場合に充電を開始するような機能に
することによっても雰囲気温度による過充電や、充電不
足を解決することが可能である。但し、電池の寿命末期
など内部抵抗が上昇した場合、自己放電量が設定した値
に達しても電圧値は設定値まで低下せず、充電が開始さ
れない場合がある。そこで、本実施例では、電池の内部
抵抗に関わらず安定して動作する充電制御方法について
説明する。実施例1で用いたものと同様のニッケル−水
素蓄電池を用いた電池パックA及びニッケル−カドミウ
ム蓄電池を用いた電池パックBを、以下のようにして間
欠充電した。電池パックAおよびBを1/2CmAで1
8分間充電し、3日間充電を休止するサイクルを繰り返
した。ここで、25℃の雰囲気下における3日間の保存
で電池の容量は約10%程度低下する。この容量低下分
を18分間の充電で補うものである。ここで、6ヶ月に
一度、電池電圧が1.0V/セルに低下するまで完全放
電させ、電池容量を求めた。
<< Embodiment 2 >> A function of setting a voltage value corresponding to a certain self-discharge amount as in Embodiment 1 and starting charging when the voltage drops to the voltage value during a pause. It is also possible to solve overcharging due to ambient temperature and insufficient charging. However, when the internal resistance increases, such as at the end of the life of the battery, even when the self-discharge amount reaches the set value, the voltage value does not decrease to the set value and charging may not be started. Therefore, in the present embodiment, a charge control method that operates stably regardless of the internal resistance of the battery will be described. A battery pack A using a nickel-hydrogen storage battery and a battery pack B using a nickel-cadmium storage battery similar to those used in Example 1 were intermittently charged as follows. Battery packs A and B at 1/2 CmA
The cycle of charging for 8 minutes and suspending charging for 3 days was repeated. Here, the capacity of the battery is reduced by about 10% when stored for 3 days in an atmosphere at 25 ° C. This capacity reduction is compensated for by charging for 18 minutes. Here, the battery was completely discharged once every six months until the battery voltage dropped to 1.0 V / cell, and the battery capacity was determined.

【0023】このときの電池容量の変化を図3に示す。
図3から明らかなように、電池パックBの容量が大きく
低下するのに対して、電池パックAの容量は、長期にわ
たってほとんど低下しない。間欠充電時によると、過充
電量や、過充電により正極で発生する酸素の量がトリク
ル充電の場合のそれらの約1/24に抑制されるため、
負極中の水素吸蔵合金の酸化/劣化や電解液の消費が抑
制されることによる。したがって、間欠充電によると長
期の保存においてもニッケル−水素蓄電池の容量の低下
を抑制することができる。電池パックBの容量が大きく
低下したのは、この蓄電池の負極に用いられているカド
ミウムが、充放電の繰り返しによってデンドライトを生
成し易くなり、内部短絡が起こったためと考えられる。
FIG. 3 shows the change in the battery capacity at this time.
As is clear from FIG. 3, while the capacity of the battery pack B greatly decreases, the capacity of the battery pack A hardly decreases for a long period of time. According to intermittent charging, the amount of overcharge and the amount of oxygen generated at the positive electrode due to overcharge are suppressed to about 1/24 of those in trickle charge,
This is because oxidation / deterioration of the hydrogen storage alloy in the negative electrode and consumption of the electrolyte are suppressed. Therefore, according to the intermittent charging, a decrease in the capacity of the nickel-hydrogen storage battery can be suppressed even during long-term storage. It is considered that the reason why the capacity of the battery pack B was greatly reduced is that cadmium used for the negative electrode of the storage battery was liable to generate dendrites by repeated charging and discharging, and an internal short circuit occurred.

【0024】《実施例3》電池パックAおよびBを1/
10CmAで38分間充電し、12時間充電を休止する
サイクルを繰り返した。ここで、25℃の雰囲気下にお
ける12時間の保存で電池の残容量は約4%程度低下す
る。そこで、充電により電池容量の6%を充電する。こ
こで、6ヶ月に一度、電池電圧が1.0V/セルに低下
するまで完全放電させ、電池容量を求めた。このときの
電池容量の変化を図4に示す。図4から明らかなよう
に、電池パックBの容量が大きく低下するのに対して、
電池パックAの容量は、長期にわたってほとんど低下し
ない。ニッケル−水素蓄電池を用いた電池パックAは、
間欠充電により過充電量(酸素発生量)が約1/7に抑
制され、負極の水素吸蔵合金の劣化が抑制されたためと
考えられる。またニッケル−カドミウム蓄電池を用いた
電池パックBは、充放電の繰り返しによって負極に用い
られているカドミウムのデンドライトが生成し、内部短
絡が起こったためと考えられる。
<< Embodiment 3 >> Battery packs A and B are divided by 1 /
The cycle of charging at 10 CmA for 38 minutes and suspending charging for 12 hours was repeated. Here, the remaining capacity of the battery is reduced by about 4% when stored for 12 hours in an atmosphere at 25 ° C. Therefore, 6% of the battery capacity is charged by charging. Here, the battery was completely discharged once every six months until the battery voltage dropped to 1.0 V / cell, and the battery capacity was determined. FIG. 4 shows the change in the battery capacity at this time. As is apparent from FIG. 4, while the capacity of the battery pack B is greatly reduced,
The capacity of the battery pack A hardly decreases over a long period of time. Battery pack A using a nickel-hydrogen storage battery is:
It is considered that the amount of overcharge (the amount of generated oxygen) was suppressed to about 1/7 by the intermittent charging, and the deterioration of the hydrogen storage alloy of the negative electrode was suppressed. In addition, it is considered that the battery pack B using the nickel-cadmium storage battery generated cadmium dendrite used for the negative electrode due to repetition of charge and discharge, and an internal short circuit occurred.

【0025】《実施例4》上記実施例で用いたものと同
様の電池パックAを、以下の充電条件A1およびA2で
それぞれ間欠充電した。 A1: 0℃の雰囲気下で、充電電流1/10CmAで
19分間充電(電池容量の3%に相当)し、12時間充
電を休止するサイクルを繰り返す。0℃の雰囲気下、1
2時間保存で2%程度容量低下が見込まれる。そこでそ
の自己放電量を充電により補うものである。 A2: 0℃の雰囲気下で、上記実施例で行った充電方
法に対応するものであって、充電電流1/10CmAで
38分間充電(電池容量の6%に相当)し、12時間充
電を休止するサイクルを繰り返す。
Example 4 A battery pack A similar to that used in the above example was intermittently charged under the following charging conditions A1 and A2. A1: A cycle of charging at 1/10 CmA for 19 minutes (corresponding to 3% of the battery capacity) in an atmosphere of 0 ° C. and suspending charging for 12 hours is repeated. In an atmosphere of 0 ° C, 1
A storage capacity of about 2% is expected to be reduced by storage for 2 hours. Therefore, the self-discharge amount is supplemented by charging. A2: Corresponding to the charging method performed in the above example in an atmosphere of 0 ° C., charging at a charging current of 1/10 CmA for 38 minutes (corresponding to 6% of the battery capacity), and suspending charging for 12 hours Repeat cycle.

【0026】ここで、6ヶ月に一度、電池電圧が1.0
V/セルに低下するまで完全放電させ、電池容量を求め
た。このときの電池容量の変化を図5に示す。図5に示
すように、条件A2で充電した電池パックは、条件A1
で充電した電池パックと比べてその容量が早期に低下す
る。条件A1では、電池温度に基づいて推定した自己放
電量に見合った充電により、正極が過充電にならなかっ
たのに対して、条件A2では、正極が過充電になって、
正極中にγ型NiOOHが生成され、電池の内部抵抗が
上昇したために、容量が低下したと推定される。
Here, once every six months, the battery voltage becomes 1.0
The battery was completely discharged until it decreased to V / cell, and the battery capacity was determined. FIG. 5 shows the change in the battery capacity at this time. As shown in FIG. 5, the battery pack charged under the condition A2 has the condition A1.
The capacity of the battery pack decreases earlier than that of the battery pack charged with the battery. Under condition A1, the positive electrode did not become overcharged due to charging corresponding to the self-discharge amount estimated based on the battery temperature, whereas under condition A2, the positive electrode became overcharged,
It is presumed that γ-type NiOOH was generated in the positive electrode and the internal resistance of the battery increased, so that the capacity decreased.

【0027】《実施例5》上記実施例で用いたものと同
様の電池パックAを、以下の充電条件A3およびA4で
それぞれ間欠充電した。 A3: 55℃の雰囲気下で、充電電流1/10CmA
で1時間30分間充電(電池容量の15%に相当)し、
12時間充電を休止するサイクルを繰り返す。55℃の
雰囲気下、12時間保存で10%程度の容量低下が見込
まれる。そこでその自己放電量を補うように充電する。 A4: 55℃の雰囲気下で、上記実施例で行った充電
方法に対応するものであって、充電電流1/10CmA
で38分間充電(電池容量の6%に相当)し、12時間
充電を休止するサイクルを繰り返す。
Example 5 A battery pack A similar to that used in the above example was intermittently charged under the following charging conditions A3 and A4. A3: Charging current 1/10 CmA in an atmosphere of 55 ° C.
To charge for 1 hour and 30 minutes (equivalent to 15% of battery capacity)
The cycle of suspending charging for 12 hours is repeated. A storage capacity of about 10% is expected to be reduced by storage for 12 hours in an atmosphere at 55 ° C. Therefore, charging is performed so as to compensate for the self-discharge amount. A4: This corresponds to the charging method performed in the above example in an atmosphere of 55 ° C., and has a charging current of 1/10 CmA.
For 38 minutes (corresponding to 6% of the battery capacity), and the cycle of suspending charging for 12 hours is repeated.

【0028】ここで、6ヶ月に一度、電池電圧が1.0
V/セルに低下するまで完全放電させ、電池容量を求め
た。このときの電池容量の変化を図6に示す。図6に示
すように、条件A3で充電した電池パックの方が、A4
で充電した電池パックよりも容量が大きい。これは、条
件A3によると、電池温度より求めた自己放電量に相当
する量を充電したため、正極が満充電状態になり、十分
な残容量を確保されたためである。一方、条件A4によ
ると、実際の自己放電分よりも少量の25℃における自
己放電相当分しか充電されず、充電不足によって正極が
満充電状態にならなかったためと推定される。
Here, once every six months, the battery voltage becomes 1.0
The battery was completely discharged until it decreased to V / cell, and the battery capacity was determined. FIG. 6 shows the change in the battery capacity at this time. As shown in FIG. 6, the battery pack charged under the condition A3 has a larger A4
The capacity is larger than the battery pack charged with. This is because, according to the condition A3, since the amount corresponding to the self-discharge amount obtained from the battery temperature was charged, the positive electrode was fully charged, and a sufficient remaining capacity was secured. On the other hand, according to the condition A4, it is presumed that only the amount equivalent to the self-discharge at 25 ° C., which is smaller than the actual amount of the self-discharge, was charged, and the positive electrode was not fully charged due to insufficient charging.

【0029】なお、時間率に換算して1/30C〜1C
で間欠充電することが好ましい。休止時間は、たとえば
3時間〜7日間とする。以上のように、バックアップ電
源用ニッケル−水素蓄電池の間欠充電において、充電休
止期間中の電池温度により算出された自己放電量を充電
することにより、広い温度領域において充電特性及び寿
命特性を向上させることができる。
In addition, 1 / 30C-1C
It is preferable to charge the battery intermittently. The suspension time is, for example, 3 hours to 7 days. As described above, in the intermittent charging of the nickel-hydrogen storage battery for the backup power source, the self-discharge amount calculated based on the battery temperature during the charging suspension period is charged to improve the charging characteristics and the life characteristics in a wide temperature range. Can be.

【0030】《実施例6》本実施例では、実際に電池温
度を検出し、充電条件を設定する方法の一例について説
明する。上記実施例で用いたものと同様の電池パックA
を用い、その充電休止期間を72時間とする。充電休止
から24時間の電池の平均温度を測定する。さらに、そ
の後の24時間の電池の平均温度、および続いた24時
間の電池の平均温度を求める。ここで、各電池温度にお
ける電池の残容量と充電休止中の自己放電量は、たとえ
ば図8に示すようになる。したがって、図8より充電休
止中の電池の自己放電量が求められる。たとえば、図7
に示すように、満充電状態で充電を休止した直後から2
4時間の電池の平均温度が35℃であり、その後の24
時間およびさらに後の24時間の電池の平均温度がそれ
ぞれ25℃および45℃であったとする。
Embodiment 6 In this embodiment, an example of a method of actually detecting a battery temperature and setting a charging condition will be described. Battery pack A similar to that used in the above embodiment
And the charging suspension period is set to 72 hours. The average temperature of the battery for 24 hours from the suspension of charging is measured. Further, the average temperature of the battery for the next 24 hours and the average temperature of the battery for the next 24 hours are determined. Here, the remaining capacity of the battery and the amount of self-discharge during suspension of charging at each battery temperature are as shown in FIG. 8, for example. Therefore, the self-discharge amount of the battery during charging suspension can be obtained from FIG. For example, FIG.
As shown in FIG.
The average temperature of the battery for 4 hours was 35 ° C.
Suppose that the average temperature of the battery for the hour and for the subsequent 24 hours was 25 ° C. and 45 ° C., respectively.

【0031】図8によると、電池平均温度が35℃であ
った最初の24時間の電池の自己放電量は13%であ
る。続く24時間(電池平均温度が25℃)の電池の自
己放電量は、そのときの電池の残容量が87%であるか
ら、1%である。さらに次の24時間(電池平均温度が
45℃)の電池の自己放電量は、そのときの電池の残容
量が86%であるから、4%である。これらを積算する
と、72時間の充電休止中の電池の自己放電量は18%
となる。したがって、このように算出された自己放電量
に相当する量を充電すると、電池は満充電状態になる。
したがって、その充電休止期間の直後の充電時間を、こ
の自己放電量に基づいて決定する。このように、電池の
温度を測定して次の充電条件を決定することにより、ニ
ッケル−水素蓄電池の過充電による劣化を低減すること
ができる。特に、充電休止期間を複数の期間に区分し、
各期間毎にその期間中の平均温度から自己放電量を求め
ることにより、電池温度や雰囲気温度が変化しても、長
期にわたって電池の容量を維持することができる。
According to FIG. 8, the self-discharge amount of the battery during the first 24 hours when the average battery temperature was 35 ° C. was 13%. The amount of self-discharge of the battery for the next 24 hours (average battery temperature is 25 ° C.) is 1% because the remaining capacity of the battery at that time is 87%. The self-discharge amount of the battery for the next 24 hours (the average battery temperature is 45 ° C.) is 4% because the remaining capacity of the battery at that time is 86%. When these are integrated, the amount of self-discharge of the battery during the 72-hour charging pause is 18%.
Becomes Therefore, when the amount corresponding to the self-discharge amount calculated in this way is charged, the battery becomes fully charged.
Therefore, the charging time immediately after the charging suspension period is determined based on the self-discharge amount. As described above, by measuring the temperature of the battery and determining the next charging condition, it is possible to reduce deterioration due to overcharging of the nickel-hydrogen storage battery. In particular, the charging suspension period is divided into multiple periods,
By calculating the self-discharge amount from the average temperature during each period, the battery capacity can be maintained for a long time even if the battery temperature or the ambient temperature changes.

【0032】以下、本充電制御方法の一例を説明する。
実施例1で用いた電池パックAおよびBに対して、充電
休止期間を24時間とし、前半の12時間および後半の
12時間の電池の平均温度から、上記と同様に電池パッ
クの自己放電量を算出した。ついで、1/10CmAで
その自己放電量を充当するようにして決定された時間電
池パックを充電した。以上のサイクルを繰り返しなが
ら、6ヶ月に一度、電池電圧が1.0V/セルに低下す
るまで完全放電させ、電池容量を求めた。このときの電
池容量の変化を図9に示す。図9より明らかなように、
ニッケル−カドミウム蓄電池を用いた電池パックBはそ
の容量が早期に低下するのに対して、ニッケル−水素蓄
電池を用いた電池パックAは、長期にわたってその容量
が維持される。
Hereinafter, an example of the present charging control method will be described.
For the battery packs A and B used in Example 1, the charging suspension period was set to 24 hours, and the self-discharge amount of the battery packs was calculated from the average temperature of the batteries for the first 12 hours and the second 12 hours in the same manner as described above. Calculated. Next, the battery pack was charged for 1/10 CmA at a time determined so as to cover the self-discharge amount. While repeating the above cycle, the battery was completely discharged once every six months until the battery voltage dropped to 1.0 V / cell, and the battery capacity was determined. FIG. 9 shows the change in the battery capacity at this time. As is clear from FIG.
The capacity of the battery pack B using the nickel-cadmium storage battery decreases early, whereas the capacity of the battery pack A using the nickel-hydrogen storage battery is maintained for a long time.

【0033】なお、充電休止期間は、上記実施例のよう
に24時間とする必要はなく、実用上3時間〜7日間と
することが望ましい。また、電池の平均温度を求める期
間も、上記実施例のように12時間に限られるものでな
く、実用上3〜48時間とすることが望ましい。充電電
流量は、1/10Cに限られるものでなく、1/30C
〜1Cであることが望ましい。以上のように、バックア
ップ電源用ニッケル−水素蓄電池の充電において、充電
休止期間(たとえば3時間〜7日間)を一定期間ごとに
区分し、区分された各期間中の電池の平均温度を用いて
電池の残容量を算出し、この自己放電相当分を次の充電
により補うことにより、広い温度領域において充電特性
及び寿命特性を向上させることができる。
The charging suspension period need not be 24 hours as in the above embodiment, but is preferably 3 hours to 7 days for practical use. Further, the period for obtaining the average temperature of the battery is not limited to 12 hours as in the above embodiment, but is preferably 3 to 48 hours for practical use. The charging current amount is not limited to 1 / 10C, but is 1 / 30C
11C is desirable. As described above, in charging a nickel-metal hydride storage battery for a backup power supply, a charging suspension period (for example, 3 hours to 7 days) is divided into certain periods, and the battery is averaged by using the average temperature of the battery during each period. By calculating the remaining capacity of the battery and compensating for the self-discharge equivalent by the next charging, the charging characteristics and the life characteristics can be improved in a wide temperature range.

【0034】《実施例7》それぞれニッケル−水素蓄電
池を6本直列に接続して、電池パックCおよびDを得
た。得られた電池パックCおよびDを、0℃の環境下で
以下のようにしてそれぞれ間欠充電した。電池パックC
は、充電休止中に24時間間隔で区分された各時間内に
おいて電池パックの平均温度を測定し、その時間内の電
池パックの自己放電量を算出した。算出された自己放電
量の積算値が電池容量の20%に達すると、この自己放
電量相当分を1/10CmAで間欠充電した。一方、電
池パックDは、実施例6の電池パックAと同様に、12
時間の充電休止と1/10CmAで38分間の充電(電
池容量の6%に相当)を繰り返した。なお、6ヶ月に一
度、電池電圧が1.0V/セルに低下するまで完全放電
させ、電池容量を測定した。
Embodiment 7 Battery packs C and D were obtained by connecting six nickel-hydrogen storage batteries in series. The obtained battery packs C and D were intermittently charged in an environment of 0 ° C. as follows. Battery pack C
Measured the average temperature of the battery pack during each of the 24 hours during the suspension of charging, and calculated the amount of self-discharge of the battery pack during that time. When the integrated value of the calculated self-discharge amount reached 20% of the battery capacity, the self-discharge amount was intermittently charged at 1/10 CmA. On the other hand, like the battery pack A of the sixth embodiment, the battery pack D
The charging pause for time and the charging at 1/10 CmA for 38 minutes (corresponding to 6% of the battery capacity) were repeated. The battery was completely discharged once every six months until the battery voltage dropped to 1.0 V / cell, and the battery capacity was measured.

【0035】このときの充電期間と電池容量との関係を
図10に示す。図10から明らかなように、電池パック
Cは、電池パックDよりも長期にわたって容量が維持さ
れていることがわかる。すなわち、電池パックCは、温
度による自己放電の影響を考慮に入れた間欠充電によ
り、正極が過充電にならなかったのに対し、電池パック
Dは、実際の自己放電量よりも大きい25℃における自
己放電量を充電したため、充電時に過充電されて正極で
γ型NiOOHが生成されて電池の内部抵抗が上昇し、
容量が低下したと推定される。
FIG. 10 shows the relationship between the charging period and the battery capacity at this time. As is clear from FIG. 10, the battery pack C has a longer capacity than the battery pack D. That is, the battery pack C did not overcharge the positive electrode due to intermittent charging in consideration of the effect of self-discharge due to temperature, whereas the battery pack D at 25 ° C. was larger than the actual self-discharge amount. Since the self-discharge amount was charged, the battery was overcharged during charging, γ-type NiOOH was generated at the positive electrode, and the internal resistance of the battery increased,
It is estimated that the capacity has decreased.

【0036】《実施例8》それぞれニッケル−水素蓄電
池を6本直列に接続して、電池パックEおよびFを得
た。得られた電池パックEおよびFを、55℃の環境下
で以下のようにしてそれぞれ間欠充電した。電池パック
Eは、充電休止中に24時間間隔でその区分された時間
内の電池パックの平均温度を測定し、その時間内の電池
パックの自己放電量を算出した。算出された自己放電量
の積算値が電池容量の20%に達すると、この自己放電
量相当分を1/10CmAで間欠充電した。一方、電池
パックFは、実施例6の電池パックAと同様に、12時
間の充電休止と1/10CmAで38分間の充電(電池
容量の6%に相当)を繰り返した。なお、6ヶ月に一
度、電池電圧が1.0V/セルに低下するまで完全放電
させ、電池容量を求めた。
Example 8 Battery packs E and F were obtained by connecting six nickel-hydrogen storage batteries in series. The obtained battery packs E and F were intermittently charged at 55 ° C. in the following manner. The battery pack E measured the average temperature of the battery pack during the divided time at 24 hour intervals during the suspension of charging, and calculated the amount of self-discharge of the battery pack during the time. When the integrated value of the calculated self-discharge amount reached 20% of the battery capacity, the self-discharge amount was intermittently charged at 1/10 CmA. On the other hand, as with the battery pack A of Example 6, the battery pack F was repeatedly charged for 12 hours and charged at 1/10 CmA for 38 minutes (corresponding to 6% of the battery capacity). The battery was completely discharged once every six months until the battery voltage dropped to 1.0 V / cell, and the battery capacity was determined.

【0037】このときの充電期間と電池容量との関係を
図11に示す。図11から明らかなように、電池パック
Eは、電池パックFよりも容量が大きいことがわかる。
すなわち、電池パックEは、温度による自己放電の影響
を考慮に入れた間欠充電により、満充電されたのに対
し、電池パックFは、充電量が不足して電池容量が低下
したものと推定される。
FIG. 11 shows the relationship between the charging period and the battery capacity at this time. As is clear from FIG. 11, the battery pack E has a larger capacity than the battery pack F.
That is, it is presumed that the battery pack E was fully charged by intermittent charging in consideration of the effect of self-discharge due to temperature, while the battery pack F was insufficiently charged and the battery capacity was reduced. You.

【0038】《実施例9》本実施例では、間欠充電にお
ける電池の劣化判定の一例について説明する。水酸化ニ
ッケル粉末と導電剤としてのコバルト化合物粉末を主体
とするペーストを調製した。ついで、このペーストを発
泡ニッケルからなる基体に充填した。この基体をプレス
によって所定の厚さにし、さらにAAサイズ用の寸法に
裁断して正極板を得た。一方、ニッケルめっきされたス
テンレス鋼からなるパンチングメタル基板の両面に水素
吸蔵合金(MmNi5タイプ)の粉末を主体とするペー
ストを塗布した。このパンチングメタル基板をプレスに
よって押圧し、さらに所定の寸法に裁断して負極板を得
た。得られた正極板および負極板を、両者の間にポリプ
ロピレン製の不織布からなるセパレータを挟んで重ね合
わせたのち、渦巻状に巻回して電極群を得た。得られた
電極群を外装缶に収納したのち、外装缶に比重が1.3
0のKOH水溶液に30g/lの水酸化リチウムを溶解
して得られたアルカリ電解液を所定量注入した。つい
で、これを周囲温度25℃で12時間放置後、初充放電
(充電は0.1Cの電流で15時間、放電は0.2Cの
電流で4時間)を行い、定格容量1200mAhのAA
サイズのニッケル−水素蓄電池を得た。
Ninth Embodiment In a ninth embodiment, an example of determination of battery deterioration during intermittent charging will be described. A paste mainly composed of nickel hydroxide powder and a cobalt compound powder as a conductive agent was prepared. Next, the paste was filled in a substrate made of foamed nickel. The substrate was formed into a predetermined thickness by a press, and further cut into dimensions for AA size to obtain a positive electrode plate. On the other hand, a paste mainly composed of a powder of a hydrogen storage alloy (MmNi 5 type) was applied to both surfaces of a punched metal substrate made of nickel-plated stainless steel. The punched metal substrate was pressed by a press and cut into a predetermined size to obtain a negative electrode plate. The obtained positive electrode plate and negative electrode plate were stacked with a separator made of a nonwoven fabric made of polypropylene interposed therebetween, and then wound spirally to obtain an electrode group. After storing the obtained electrode group in an outer can, the specific gravity of the outer can was 1.3.
A predetermined amount of an alkaline electrolyte obtained by dissolving 30 g / l of lithium hydroxide in a 0 KOH aqueous solution was injected. Then, after leaving it at an ambient temperature of 25 ° C. for 12 hours, it is subjected to initial charging and discharging (charging is performed at a current of 0.1 C for 15 hours and discharging is performed at a current of 0.2 C for 4 hours), and an AA having a rated capacity of 1200 mAh is performed.
A nickel-hydrogen storage battery of a size was obtained.

【0039】以上のようにして得られたニッケル−水素
蓄電池の初充電直後(内部インピーダンス:16.1m
Ω)の間欠充電時の電圧挙動と、サイクル寿命試験(温
度40℃,充電を1CmAで120%,1CmAで1V
まで放電)を400サイクル終了後(内部インピーダン
ス:161mΩ)の間欠充電時の電圧挙動を図12に示
す。図中、初充電直後の電池を電池Gで表し、400サ
イクル終了後の電池を電池Hで表している。なお、いず
れも、35℃の温度雰囲気下で、0.1CmAで充電し
たものである。内部インピーダンスが161mΩまで上
昇した電池Hは、初充電直後の電池Gよりも充電終了電
圧が約0.1V高い。この試験では、単電池での試験を
しているため充電終了電圧の差はわずかであるが、実際
使用される誘導灯、非常灯、情報通信システム等のバッ
クアップ電源においては、複数の単電池を直列に接続し
た電池パックとして使用することから、この充電終了時
の電圧差は数倍となって現れ、容易に劣化を判定でき
る。
Immediately after the first charge of the nickel-hydrogen storage battery obtained as described above (internal impedance: 16.1 m
Ω) voltage behavior during intermittent charging and cycle life test (temperature 40 ° C., charging 120% at 1 CmA, 1 V at 1 CmA)
FIG. 12 shows the voltage behavior at the time of intermittent charging after 400 cycles (discharge until the end) (internal impedance: 161 mΩ). In the drawing, the battery immediately after the initial charge is represented by battery G, and the battery after 400 cycles is completed is represented by battery H. In each case, the battery was charged at 0.1 CmA in a 35 ° C. temperature atmosphere. Battery H whose internal impedance has risen to 161 mΩ has a charge end voltage higher by about 0.1 V than battery G immediately after initial charge. In this test, the difference in the charge termination voltage is small because the test is performed with single cells.However, in a backup power supply such as an induction light, an emergency light, and an information communication system that is actually used, a plurality of single cells are used. Since the battery pack is used as a battery pack connected in series, the voltage difference at the end of charging appears several times, and deterioration can be easily determined.

【0040】また、上述の電池Gと電池Hを用いて、充
電開始時の電池温度と充電終了時の電圧との関係を求め
た。その結果を図13に示す。図13より明らかなよう
に、充電開始時の電池温度と充電終了時の電圧には、相
関関係がある。したがって、電池に充電開始時の電池温
度を測定するための温度モニターを装備し、その温度に
対応した充電終了時の電池電圧を見ることで、さらに高
精度の劣化判定が可能になる。以上のように、充電開始
時の電池温度と充電終了時の電池電圧を検出することに
より、精度の高い電池の寿命劣化の判定が可能になる。
さらに、モニターを用いて、充電中の電池温度と充電中
の電池電圧を常に監視することによって、高精度の寿命
劣化の判定が可能になる。
Further, the relationship between the battery temperature at the start of charging and the voltage at the end of charging was determined using the batteries G and H described above. The result is shown in FIG. As is clear from FIG. 13, there is a correlation between the battery temperature at the start of charging and the voltage at the end of charging. Therefore, the battery is equipped with a temperature monitor for measuring the battery temperature at the start of charging, and the battery voltage at the end of charging corresponding to that temperature can be checked to determine the deterioration with higher accuracy. As described above, by detecting the battery temperature at the start of charging and the battery voltage at the end of charging, it is possible to determine the deterioration of the life of the battery with high accuracy.
Further, by constantly monitoring the battery temperature during charging and the battery voltage during charging using a monitor, it is possible to determine the life degradation with high accuracy.

【0041】[0041]

【発明の効果】本発明によると、ニッケル−水素蓄電池
の容量を長期にわたって維持することができ、誘導灯、
非常用照明、情報通信システム等のバックアップ電源の
管理に適した電源装置の管理方法を安価で提供すること
ができる。
According to the present invention, the capacity of a nickel-metal hydride storage battery can be maintained for a long period of time.
A method for managing a power supply device suitable for managing a backup power supply such as emergency lighting and an information communication system can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例において、ニッケル−水素蓄
電池およびニッケル−カドミウム蓄電池を間欠充電した
ときの電池容量の変化を示す特性図である。
FIG. 1 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery and a nickel-cadmium storage battery are intermittently charged in one embodiment of the present invention.

【図2】同実施例において、ニッケル−水素蓄電池およ
びニッケル−カドミウム蓄電池をトリクル充電したとき
の電池容量の変化を示す特性図である。
FIG. 2 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery and a nickel-cadmium storage battery are trickle-charged in the embodiment.

【図3】本発明の他の実施例において、ニッケル−水素
蓄電池およびニッケル−カドミウム蓄電池を間欠充電し
たときの電池容量の変化を示す特性図である。
FIG. 3 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery and a nickel-cadmium storage battery are intermittently charged in another embodiment of the present invention.

【図4】本発明のさらに他の実施例において、ニッケル
−水素蓄電池およびニッケル−カドミウム蓄電池を間欠
充電したときの電池容量の変化を示す特性図である。
FIG. 4 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery and a nickel-cadmium storage battery are intermittently charged in still another embodiment of the present invention.

【図5】本発明のさらに他の実施例のバックアップ電源
の管理方法によりニッケル−水素蓄電池を間欠充電した
ときの電池容量の変化を示す特性図である。
FIG. 5 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図6】本発明のさらに他の実施例のバックアップ電源
の管理方法によりニッケル−水素蓄電池を間欠充電した
ときの電池容量の変化を示す特性図である。
FIG. 6 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図7】本発明のさらに他の実施例におけるバックアッ
プ電源の管理方法の概要を示すモデル図である。
FIG. 7 is a model diagram showing an outline of a backup power supply management method according to still another embodiment of the present invention.

【図8】ニッケル−水素蓄電池の残容量と自己放電量の
関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a remaining capacity and a self-discharge amount of a nickel-hydrogen storage battery.

【図9】本発明のさらに他の実施例のバックアップ電源
の管理方法によりニッケル−水素蓄電池を間欠充電した
ときの電池容量の変化を示す特性図である。
FIG. 9 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図10】本発明のさらに他の実施例のバックアップ電
源の管理方法によりニッケル−水素蓄電池を間欠充電し
たときの電池容量の変化を示す特性図である。
FIG. 10 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図11】本発明のさらに他の実施例のバックアップ電
源の管理方法によりニッケル−水素蓄電池を間欠充電し
たときの電池容量の変化を示す特性図である。
FIG. 11 is a characteristic diagram showing a change in battery capacity when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図12】本発明のさらに他の実施例のバックアップ電
源の管理方法によりニッケル−水素蓄電池を間欠充電し
たときの電池電圧の挙動を示す特性図である。
FIG. 12 is a characteristic diagram showing a behavior of a battery voltage when a nickel-hydrogen storage battery is intermittently charged by a backup power supply management method according to still another embodiment of the present invention.

【図13】充電開示時の電池温度と充電終了時の電池電
圧の関係を示す特性図である。
FIG. 13 is a characteristic diagram showing a relationship between a battery temperature when charging is started and a battery voltage at the end of charging.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平10−136385 (32)優先日 平成10年5月19日(1998.5.19) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平10−246786 (32)優先日 平成10年9月1日(1998.9.1) (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平10−252406 (32)優先日 平成10年9月7日(1998.9.7) (33)優先権主張国 日本(JP) (72)発明者 鈴木 達彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 増井 基秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小西 始 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5G003 AA01 BA01 CA06 CA17 CA20 CB01 DA05 DA07 EA05 EA09 5H028 AA01 FF00 5H030 AA03 AA08 AS03 AS11 AS15 BB01 FF22  ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application No. Hei 10-136385 (32) Priority date May 19, 1998 (May 19, 1998) (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application No. Hei 10-246786 (32) Priority date September 1, 1998 (1998.9.1) (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application No. 10-252406 (32) Priority date September 7, 1998 (September 7, 1998) (33) Priority claiming country Japan (JP) (72) Inventor Tatsuhiko Suzuki 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Address: Matsushita Electric Industrial Co., Ltd. F term (reference) 5G003 AA01 BA01 CA06 CA17 CA20 CB01 DA05 DA07 EA05 EA 09 5H028 AA01 FF00 5H030 AA03 AA08 AS03 AS11 AS15 BB01 FF22

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル酸化物を主体とする正極、水素
吸蔵合金からなる負極、セパレータおよびアルカリ電解
液を備えたニッケル−水素蓄電池を用いたバックアップ
電源の管理方法において、前記ニッケル−水素蓄電池を
間欠充電しながら、その充電休止中の前記ニッケル−水
素蓄電池の温度に基づいて前記ニッケル−水素蓄電池の
充電休止中の自己放電量を算出して、得られた自己放電
量に基づいて前記ニッケル−水素蓄電池の充電を制御す
るバックアップ電源の管理方法。
In a method of managing a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode made of a hydrogen storage alloy, a separator and an alkaline electrolyte, the nickel-hydrogen storage battery is intermittently operated. While charging, the self-discharge amount of the nickel-hydrogen storage battery during the suspension of charging is calculated based on the temperature of the nickel-hydrogen storage battery during the suspension of charging, and the nickel-hydrogen is calculated based on the obtained self-discharge amount. A method of managing a backup power supply that controls charging of a storage battery.
【請求項2】 算出された自己放電量に基づいて、次の
充電継続時間を決定する請求項1記載のバックアップ電
源の管理方法。
2. The backup power supply management method according to claim 1, wherein the next charge duration is determined based on the calculated self-discharge amount.
【請求項3】 算出された自己放電量が所定値に達した
ときに、前記ニッケル−水素蓄電池の充電を再開する請
求項1記載のバックアップ電源の管理方法。
3. The management method of a backup power supply according to claim 1, wherein when the calculated self-discharge amount reaches a predetermined value, charging of the nickel-hydrogen storage battery is restarted.
【請求項4】 前記所定値が、前記ニッケル−水素蓄電
池の放電容量の10〜30%である請求項3記載のバッ
クアップ電源の管理方法。
4. The method according to claim 3, wherein the predetermined value is 10% to 30% of a discharge capacity of the nickel-metal hydride storage battery.
【請求項5】 充電休止中の一定時間における前記ニッ
ケル−水素蓄電池の平均温度に基づいて同時間における
前記ニッケル−水素蓄電池の自己放電量を算出する請求
項3記載のバックアップ電源の管理方法。
5. The management method of a backup power supply according to claim 3, wherein the self-discharge amount of the nickel-metal hydride battery is calculated in the same time based on the average temperature of the nickel-metal hydride battery in a certain time during the suspension of charging.
【請求項6】 算出された自己放電量が所定値に達して
いない場合、前記一定時間に続く次の一定時間における
前記ニッケル−水素蓄電池の平均温度に基づいてその時
間における前記ニッケル−水素蓄電池の自己放電量を算
出し、算出された自己放電量の積算値を前記所定値と比
較する請求項5記載のバックアップ電源の管理方法。
6. When the calculated amount of self-discharge has not reached a predetermined value, based on the average temperature of the nickel-hydrogen storage battery in the next fixed time following the predetermined time, the nickel-hydrogen storage battery at that time is determined. 6. The backup power supply management method according to claim 5, wherein a self-discharge amount is calculated, and an integrated value of the calculated self-discharge amount is compared with the predetermined value.
【請求項7】 前記所定時間が3〜48時間である請求
項5記載のバックアップ電源の管理方法。
7. The backup power management method according to claim 5, wherein the predetermined time is 3 to 48 hours.
【請求項8】 ニッケル酸化物を主体とする正極、水素
吸蔵合金からなる負極、セパレータおよびアルカリ電解
液を備えたニッケル−水素蓄電池を用いたバックアップ
電源を間欠充電することにより、前記ニッケル水素蓄電
池の残容量を確保するバックアップ電源の管理方法にお
いて、前記ニッケル−水素蓄電池に対して0.2〜1C
の充電電流で、−ΔV制御方式またはdT/dt制御方
式により満充電を検出する間欠充電を行うバックアップ
電源の管理方法。
8. A nickel-hydrogen storage battery is provided by intermittently charging a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode made of a hydrogen storage alloy, a separator and an alkaline electrolyte. In the method of managing a backup power source for securing a remaining capacity, the nickel-hydrogen storage battery may have a capacity of 0.2 to 1 C.
A method of managing a backup power supply that performs intermittent charging by detecting full charging by the -ΔV control method or the dT / dt control method with the charging current of.
【請求項9】 充電休止中の前記ニッケル−水素蓄電池
の電圧が所定の値まで低下すると充電を再開する請求項
8記載のバックアップ電源の管理方法。
9. The backup power supply management method according to claim 8, wherein the charging is restarted when the voltage of the nickel-hydrogen storage battery during charging suspension is reduced to a predetermined value.
【請求項10】 1〜7日の間隔で定期的に充電を再開
する請求項8記載のバックアップ電源の管理方法。
10. The backup power supply management method according to claim 8, wherein charging is periodically restarted at intervals of 1 to 7 days.
【請求項11】 ニッケル酸化物を主体とする正極、水
素吸蔵合金からなる負極、セパレータおよびアルカリ電
解液を備えたニッケル−水素蓄電池を用いたバックアッ
プ電源の管理方法において、前記ニッケル−水素蓄電池
を間欠充電しながら、その充電開始時の環境温度と充電
終了時の電池電圧に基づいて前記ニッケル−水素蓄電池
の劣化を判定することを特徴とするバックアップ電源の
管理方法。
11. A method of managing a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode made of a hydrogen storage alloy, a separator and an alkaline electrolyte, wherein the nickel-hydrogen storage battery is intermittently used. A method of managing a backup power supply, comprising determining deterioration of the nickel-metal hydride storage battery based on an environmental temperature at the start of charging and a battery voltage at the end of charging while charging.
【請求項12】 ニッケル酸化物を主体とする正極、水
素吸蔵合金からなる負極、セパレータおよびアルカリ電
解液を備えたニッケル−水素蓄電池を用いたバックアッ
プ電源の管理方法において、前記ニッケル−水素蓄電池
を間欠充電しながら、その充電中の前記ニッケル−水素
蓄電池の表面温度と充電中の電池電圧に基づいて前記ニ
ッケル−水素蓄電池の劣化を判定することを特徴とする
バックアップ電源の管理方法。
12. A method of managing a backup power supply using a nickel-hydrogen storage battery provided with a positive electrode mainly composed of nickel oxide, a negative electrode made of a hydrogen storage alloy, a separator and an alkaline electrolyte, wherein the nickel-hydrogen storage battery is intermittently used. A method for managing a backup power supply, comprising determining, while charging, a deterioration of the nickel-hydrogen storage battery based on a surface temperature of the nickel-hydrogen storage battery during charging and a battery voltage during charging.
JP10343118A 1997-12-03 1998-12-02 Backup power supply control method Pending JP2000150000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10343118A JP2000150000A (en) 1997-12-03 1998-12-02 Backup power supply control method

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP33261297 1997-12-03
JP35960997 1997-12-26
JP13638498 1998-05-19
JP13638598 1998-05-19
JP24678698 1998-09-01
JP10-252406 1998-09-07
JP25240698 1998-09-07
JP10-136384 1998-09-07
JP9-359609 1998-09-07
JP9-332612 1998-09-07
JP10-136385 1998-09-07
JP10-246786 1998-09-07
JP10343118A JP2000150000A (en) 1997-12-03 1998-12-02 Backup power supply control method

Publications (1)

Publication Number Publication Date
JP2000150000A true JP2000150000A (en) 2000-05-30

Family

ID=27566034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10343118A Pending JP2000150000A (en) 1997-12-03 1998-12-02 Backup power supply control method

Country Status (1)

Country Link
JP (1) JP2000150000A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022317A (en) * 2002-06-14 2004-01-22 Panasonic Ev Energy Co Ltd Uninterruptible power supply
CN102790243A (en) * 2012-08-28 2012-11-21 江苏力天新能源科技有限公司 Lithium iron phosphate battery pack charging method for base station
CN104170207A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Charging device for secondary battery, and charging method for secondary battery
US9641009B2 (en) 2012-08-20 2017-05-02 Nissan Motor Co., Ltd. Charging device for secondary battery and charging method for secondary battery
KR102049002B1 (en) * 2018-06-21 2019-11-26 주식회사 비씨엔에스 Dc uninterruptable power supply for small sector base station and charging method for secondary battery in the dc uninterruptable power supply
JP7431192B2 (en) 2021-04-16 2024-02-14 プライムアースEvエナジー株式会社 Control method for alkaline secondary batteries
JP7440455B2 (en) 2021-04-16 2024-02-28 プライムアースEvエナジー株式会社 Control method for alkaline secondary batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022317A (en) * 2002-06-14 2004-01-22 Panasonic Ev Energy Co Ltd Uninterruptible power supply
CN104170207A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Charging device for secondary battery, and charging method for secondary battery
EP2827470A4 (en) * 2012-03-13 2015-04-29 Nissan Motor Charging device for secondary battery, and charging method for secondary battery
US9525299B2 (en) 2012-03-13 2016-12-20 Nissan Motor Co., Ltd. Charging device for storage battery, and charging method for storage battery
US9641009B2 (en) 2012-08-20 2017-05-02 Nissan Motor Co., Ltd. Charging device for secondary battery and charging method for secondary battery
CN102790243A (en) * 2012-08-28 2012-11-21 江苏力天新能源科技有限公司 Lithium iron phosphate battery pack charging method for base station
KR102049002B1 (en) * 2018-06-21 2019-11-26 주식회사 비씨엔에스 Dc uninterruptable power supply for small sector base station and charging method for secondary battery in the dc uninterruptable power supply
JP7431192B2 (en) 2021-04-16 2024-02-14 プライムアースEvエナジー株式会社 Control method for alkaline secondary batteries
JP7440455B2 (en) 2021-04-16 2024-02-28 プライムアースEvエナジー株式会社 Control method for alkaline secondary batteries

Similar Documents

Publication Publication Date Title
US11735940B2 (en) Methods and systems for recharging a battery
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
TWI536702B (en) Method and apparatus for recharging a battery
US7135839B2 (en) Battery pack and method of charging and discharging the same
EP1111705A1 (en) Method for detecting deterioration of electrochemical device, method for measuring remaining capacity, charger comprising them, and discharge controller
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JP3303857B2 (en) Charging method for sealed nickel-metal hydride battery
EP0921620B1 (en) Method for temperature dependent charging of a back-up power source which is subject to self-discharging
WO2000054359A1 (en) Dual battery systems and methods for maintaining the charge state of high power batteries
JP2000150000A (en) Backup power supply control method
JPH09178827A (en) Remainder detecting device for battery capacity
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP2000278874A (en) Charging of storage battery
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JP3594879B2 (en) Charging method of alkaline aqueous secondary battery for backup
Barsukov Battery selection, safety, and monitoring in mobile applications
Spiers Battery issues
JPH056311B2 (en)
KR100989120B1 (en) Method for sensing full-charge of battery pack
Gibbard Nickel metal hydride battery technology
CN116137354A (en) Electrochemical device management method and system, battery module and electronic equipment
JPH08308114A (en) Method for judging service life of sealed lead storage battery
Daniel-Ivad et al. High-rate performance improvements of rechargeable alkaline (RAM™) batteries
CN1828328A (en) Nickel-hydrogen batteries charge monitor