JPS62285353A - Corpuscular ray mapping device - Google Patents

Corpuscular ray mapping device

Info

Publication number
JPS62285353A
JPS62285353A JP12876186A JP12876186A JPS62285353A JP S62285353 A JPS62285353 A JP S62285353A JP 12876186 A JP12876186 A JP 12876186A JP 12876186 A JP12876186 A JP 12876186A JP S62285353 A JPS62285353 A JP S62285353A
Authority
JP
Japan
Prior art keywords
sample
measurement
intensity
irradiation
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12876186A
Other languages
Japanese (ja)
Other versions
JP2611200B2 (en
Inventor
Teruji Hirai
平居 暉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61128761A priority Critical patent/JP2611200B2/en
Publication of JPS62285353A publication Critical patent/JPS62285353A/en
Application granted granted Critical
Publication of JP2611200B2 publication Critical patent/JP2611200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure accurately even a minute change in a sample surface, by accurately grasping the change in the intensity of irradiation during a measurement time. CONSTITUTION:In mapping a measured region C, a corpuscular ray measuring plate 1 is set near the measured region C, and the plate is also scanned on every X-axis scanning line to perform line analysis. After that, scanning is performed on the next scanning line in the direction of a Y-axis. All the measured region C is thus scanned to perform surface analysis. Since a substance of uniform quality is applied or stuck as a reference sample to the surface of the measuring plate 1, X-rays emitted from the measuring plate are proportional to the intensity of irradiated corpuscular rays. The position of the irradiation (measurement) of the corpuscular rays is detected in terms of a driving signal which is supplied to a stage driver 8. A detected value in the measurement position is stored in a CPU 9. Data on the measuring plate 1 are extracted out of the stored data in the CPU 9 to measure the change in the intensity of the irradiation of the corpuscular rays. The data are corrected on each X-axis scanning line to which the data belong.

Description

【発明の詳細な説明】 3、発明の詳細な説明 イ、産業上の利用分野 本発明は、電子線、イオンビーム、中性子ビーム等の粒
子線で試料を励起し、試料より発生する信号を用いて、
試料表面の元素分布等の特性を分析する粒子線マツピン
グ装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention A. Industrial Application Field The present invention excites a sample with a particle beam such as an electron beam, ion beam, or neutron beam, and uses the signal generated by the sample. hand,
This invention relates to a particle beam mapping device that analyzes characteristics such as element distribution on a sample surface.

−町    停sk  ns +七引鴫粒子線で試料面
を走査して、試料面を構成する各画素毎に、試料から発
生する信号を計測し、これを処理表示するマツピング法
は、分析方法として非常に有効な手法であるが、点分析
や線分析法等他の分析法とは異なって、面分析であるか
ら測定に長時間を要する0通常これらの手法は市販のマ
イクロアナライザ等で行う場合が多く、数時間以上の測
定では、粒子線の照射強度の安定度が分析結果に影響す
る場合が多い。
The mapping method, in which the sample surface is scanned with a particle beam and the signals generated from the sample are measured for each pixel that makes up the sample surface, and the signals are processed and displayed, is an analytical method. This is a very effective method, but unlike other analysis methods such as point analysis and line analysis, it requires a long time to measure because it is an area analysis.Normally, these methods are performed using a commercially available microanalyzer, etc. When measuring over several hours, the stability of the particle beam irradiation intensity often affects the analysis results.

従来、粒子線の照射強度の変動が分析結果に影響する場
合、測定誤差の補正法としては2通りの方法が行われて
いる。即ち、照射ビームそのものを測定して照射強度の
変化を検出する方法(照射ビーム電流等)と照射された
試料が受けたji、(吸収電流等)を測定して照射強度
の変化を検出する方法である。
Conventionally, when fluctuations in particle beam irradiation intensity affect analysis results, two methods have been used to correct measurement errors. In other words, there are two methods: one method detects changes in irradiation intensity by measuring the irradiation beam itself (irradiation beam current, etc.), and the other method detects changes in irradiation intensity by measuring the ji received by the irradiated sample (absorption current, etc.). It is.

前者の場合には、正しい補正が行えるが、照射ビームの
照射強度め測定中には、そのビームを試料へ照射するこ
とは出来ず、試料への照射率が低下して、分析効率の低
下を招く、また後者は試料照射中も平行して測定できる
が、試料の組成の変化によって吸収電流等は変動する為
に、正確に補正が出来ない。
In the former case, correct correction can be made, but the sample cannot be irradiated with the beam during measurement of the irradiation intensity of the irradiation beam, resulting in a decrease in the irradiation rate to the sample and a decrease in analysis efficiency. Although the latter can be measured in parallel during sample irradiation, accurate correction cannot be made because the absorbed current etc. vary due to changes in sample composition.

また、前者の方法では本測定と較正測定との間に時間的
ズレが発生し、後者の方法では間接的測定であるなめに
、どちらの測定方法においても、照射強度の変化を正確
に把握出来ないために、試料面の微量な変化を測定する
ことが出来ないと云う問題があった。
In addition, since the former method causes a time lag between the main measurement and the calibration measurement, and the latter method uses indirect measurement, it is not possible to accurately grasp changes in irradiation intensity with either measurement method. Therefore, there was a problem in that minute changes in the sample surface could not be measured.

ハ1発明が解決しようとする問題点 本発明は、測定時間中の照射強度の変化を正確に把握す
ることにより、試料面の微量な変化でも正確に測定でき
るようにすることを目的とする。
C1 Problems to be Solved by the Invention It is an object of the present invention to make it possible to accurately measure even minute changes in the sample surface by accurately understanding changes in irradiation intensity during measurement time.

二1問題点解決のための手段 電子線、イオンビーム、中性子ビーム等の粒子線で試料
を励起し、試料より発生する信号を用いて、試料表面の
元素分布等の特性を分析する粒子線マツピング装置にお
いて、試料を励起する手段と、試料を走査する手段と、
被測定試料の走査域に臨んで材質が均一な基準試料を保
持する手段と、上記2つの試料から放出される信号を検
出する手段と、試料の走査位置と上記信号の検出値を相
関させて記憶する手段と、−走査線毎に基準試料から得
られる検出値を走査線毎に比較演算して補正率を求める
手段、と、上記手段で求めた補正率により被測定試料に
おける検出値を補正する手段を設けた。
21 Means for solving problems Particle beam mapping involves exciting a sample with a particle beam such as an electron beam, ion beam, or neutron beam, and analyzing characteristics such as element distribution on the sample surface using signals generated from the sample. In the apparatus, means for exciting the sample, means for scanning the sample,
means for holding a reference sample of uniform material facing the scanning area of the sample to be measured; means for detecting signals emitted from the two samples; and means for correlating the scanning position of the sample with the detected value of the signal. - means for calculating a correction factor by comparing and calculating the detected value obtained from the reference sample for each scanning line, and correcting the detected value in the sample to be measured using the correction factor obtained by the above-mentioned means; We have provided a means to do so.

ホ1作用 粒子線で試料面を走査して、試料面を構成する各画素毎
に、試料から発生する信号を計測し、これを処理表示す
るマツピング法において、一定組成の均一基準試料面に
粒子線を照射して、同基準試料から発生する信号を検出
すれば、その検出値は照射粒子線強度に比例する。本発
明は、この基準試料から発生する信号強度が照射粒子線
強度に比例することを利用して、基準試料から発生する
信号強度を検出することにより、照射粒子線強度の変化
を把握しようとするのもであり、基準試料板として、マ
ツピング領域の端に臨んで、照射粒子線強度を測定する
基準試料(表面に材質が均一な物質を塗布するか、張り
付けである板)を設置し、マツピング時に、上記基準試
料を含むように面走査を行うことにより、各走査線毎に
基準試料から照射粒子線の強度変化の情報を入手できる
から、照射粒子線強度の変化をほぼ連続的に把握するこ
とが可能になり、試料面の微弱な変化を励起線の変動の
影響に埋没させることなく正確に把握出来るようになっ
た。
In the mapping method, which scans the sample surface with an active particle beam and measures the signal generated from the sample for each pixel that makes up the sample surface, and processes and displays the signals, particles are placed on a uniform reference sample surface with a constant composition. If a beam is irradiated and a signal generated from the same reference sample is detected, the detected value is proportional to the intensity of the irradiated particle beam. The present invention attempts to understand changes in the irradiated particle beam intensity by detecting the signal intensity generated from the reference sample by utilizing the fact that the signal intensity generated from the reference sample is proportional to the irradiated particle beam intensity. As a reference sample plate, a reference sample (a plate whose surface is coated with a uniform material or pasted) for measuring the irradiated particle beam intensity is placed facing the edge of the mapping area, and the mapping area is Sometimes, by performing surface scanning to include the reference sample, information on changes in the intensity of the irradiated particle beam can be obtained from the reference sample for each scanning line, so changes in the intensity of the irradiated particle beam can be grasped almost continuously. This makes it possible to accurately grasp minute changes on the sample surface without being buried in the effects of excitation line fluctuations.

へ、実施例 第1図に本発明の要部である試料ステージ付近の一実施
例を示す。第2図に本発明の一実施例のブロック図を示
す。第1図及び第2図において、Sは試料、Rは試料S
を励起させて電子線或はX線を放出させる粒子線、1は
粒子線測定板で表面に基準試料として材質の均一な物質
を塗布又は張り付けらたコ字型の板である。試料ホルダ
ー2は試料Sを止めネジ2aで保持し、粒子線測定板1
を止めとス1aで試料走査線の一方の端で試料Sの測定
域に臨ませて保持する。3は試料ステージ?1ドめビス
32プ・碧訊士?シ4−ウを厚祷1  rpU9の駆動
信号に基づいて、ステージ駆動装置8で1画素ピッチ単
位でX軸方向及ぶY軸方向に移動させられる。4はX線
分光器で試料Sから放出されたX線を分光する。5は分
光器4で分光されたX線を検出する検出器。スケーラ7
は検出器5から送られてくる信号を計数する。9はCP
Uでステージ駆動装置8に、試料ステージ3を1画素ピ
ッチ単位で、X軸方向及ぶY軸方向に移動させるための
駆動信号を出力し、またその駆動信号で試料Sの測定値
1を把握する。また試料Sが測定位置で信号を測定する
時間だけ、ゲート回路6に信号を送ってゲート回路6を
開(ON)状態として、検出器5で検出される信号をス
ケーラ7で計数させ、その計数値に試料Sの測定位置を
付加して記憶し、測定値1により取り込んだスケーラ7
の計数データが粒子線測定板1から放出された信号によ
るものであることを検知して、粒子線強度の変化を測定
し、試料SのX軸方向一走査毎に測定値の補正を行う。
Embodiment FIG. 1 shows an embodiment of the vicinity of the sample stage, which is the main part of the present invention. FIG. 2 shows a block diagram of an embodiment of the present invention. In Figures 1 and 2, S is the sample and R is the sample S.
1 is a particle beam measurement plate, which is a U-shaped plate on which a uniform material is coated or pasted as a reference sample. The sample holder 2 holds the sample S with a set screw 2a, and the particle beam measurement plate 1
Hold the sample S so that one end of the sample scanning line faces the measurement area of the sample S using the stopper 1a. Is 3 the sample stage? 1st bis 32p Aoi Kenshi? Based on the drive signal of rpU9, the stage driving device 8 moves the screen 4-c in the X-axis direction and the Y-axis direction in units of one pixel pitch. 4 spectrally spectra the X-rays emitted from the sample S with an X-ray spectrometer. A detector 5 detects the X-rays separated by the spectrometer 4. Scaler 7
counts the signals sent from the detector 5. 9 is CP
U outputs a drive signal to the stage drive device 8 to move the sample stage 3 in the X-axis direction and Y-axis direction in units of 1 pixel pitch, and also grasps the measured value 1 of the sample S using the drive signal. . Also, a signal is sent to the gate circuit 6 to open (ON) the signal detected by the detector 5 for the time period during which the sample S measures the signal at the measurement position, and the signal detected by the detector 5 is counted by the scaler 7. The scaler 7 adds the measurement position of the sample S to the numerical value and stores it, and imports it based on the measurement value 1.
It is detected that the count data is due to the signal emitted from the particle beam measurement plate 1, the change in particle beam intensity is measured, and the measured value is corrected every time the sample S is scanned in the X-axis direction.

10は表示装置で、CPU9から送られる信号を表示す
る。
A display device 10 displays signals sent from the CPU 9.

以上の構成で、本発明の要部である粒子線の照射強度の
変化に対する、測定値の補正動作について説明する。第
3図に示すような測定域Cをマ、。
With the above configuration, the operation of correcting measured values in response to changes in particle beam irradiation intensity, which is the main part of the present invention, will be explained. A measurement area C as shown in FIG.

ピングする場合、測定域Cに近接させて粒子線測定板1
をセットして、1つのX軸廻査線り毎に粒子線測定板1
上も走査して線分析を行い、次にY軸方向に1ピツチ走
査線をずらして走査を行い、測定域Cの全域を走査して
面分析を行う、測定板1の表面には材質が均一な物質が
基準試料として塗布又は張り付けであるから、測定板1
から放出されるX線は照射される粒子線強度と比例して
いる。粒子線の照射(測定)位置をステージ駆動装置8
に送る駆動信号により検知し、その測定位置における検
出値をCPU9に記憶する。その記憶したデータから測
定板1のデータを抽出して粒子線の照射強度変化を測定
し、そのデータの属するX軸廻査線毎にデータを補正す
る。
When performing ping, place the particle beam measurement plate 1 close to the measurement area C.
Set the particle beam measurement plate 1 for each X-axis rotation line.
The upper surface of the measurement plate 1 is scanned to perform line analysis, and then the scanning line is shifted by one pitch in the Y-axis direction, and the entire measurement area C is scanned to perform surface analysis. Since a uniform substance is applied or pasted as a reference sample, the measuring plate 1
The X-rays emitted from the particle beam are proportional to the intensity of the irradiated particle beam. The stage drive device 8 moves the particle beam irradiation (measurement) position.
The detected value at the measurement position is stored in the CPU 9. The data of the measurement plate 1 is extracted from the stored data, the change in the irradiation intensity of the particle beam is measured, and the data is corrected for each X-axis scanning line to which the data belongs.

512X512画素のマツピングを行う場合、1画素の
測定時間をlQmsecとすると、全面の測定には40
分以上かかるが、一本のX軸廻査線の所要時間は約5s
ecであるから、この程度の時間間隔で測定しておけば
、粒子線の照射強度変化を充分正確に把握することが可
能である。
When mapping 512 x 512 pixels, if the measurement time for one pixel is lQmsec, it will take 40 seconds to measure the entire surface.
Although it takes more than a minute, the time required for one X-axis scanning line is about 5 seconds.
ec, it is possible to grasp changes in the irradiation intensity of the particle beam with sufficient accuracy by measuring at time intervals of this order.

ト、効果 本発明によれば、粒子線の照射強度変化を略リアルタイ
ムに正確に検出することが可能になり、従って試料表面
の微細な変化に対する情報が把握できるようになったの
で、一段と測定精度が向上した。
According to the present invention, it has become possible to accurately detect changes in the irradiation intensity of particle beams in almost real time, and therefore information on minute changes on the sample surface can be grasped, further improving measurement accuracy. improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の要部の一実施例の斜視図、第2図は本
発明の一実施例のブロック図、第3図は測定域の説明図
である。
FIG. 1 is a perspective view of an embodiment of a main part of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is an explanatory diagram of a measurement area.

Claims (1)

【特許請求の範囲】[Claims] 試料を励起線にて照射しつゝ試料面を走査する手段と、
被測定試料の走査域に臨んで材質が均一な基準試料を保
持する手段と、上記2つの試料から放出される信号を検
出する手段と、試料の走査位置と同期して得られる上記
基準試料からの検出値によって走査線毎に演算して補正
率を求める手段と、上記手段で求めた補正率により被測
定試料よりの検出値を補正する手段を設けたことを特徴
とする粒子線マッピング装置。
means for scanning the sample surface while irradiating the sample with an excitation line;
means for holding a reference sample of uniform material facing the scanning area of the sample to be measured; means for detecting signals emitted from the two samples; and means for detecting signals from the reference sample obtained in synchronization with the scanning position of the sample. A particle beam mapping apparatus comprising: means for calculating a correction factor for each scanning line using the detected value; and means for correcting the detected value from the sample to be measured using the correction factor obtained by the above means.
JP61128761A 1986-06-03 1986-06-03 Particle beam mapping equipment Expired - Lifetime JP2611200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128761A JP2611200B2 (en) 1986-06-03 1986-06-03 Particle beam mapping equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128761A JP2611200B2 (en) 1986-06-03 1986-06-03 Particle beam mapping equipment

Publications (2)

Publication Number Publication Date
JPS62285353A true JPS62285353A (en) 1987-12-11
JP2611200B2 JP2611200B2 (en) 1997-05-21

Family

ID=14992812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128761A Expired - Lifetime JP2611200B2 (en) 1986-06-03 1986-06-03 Particle beam mapping equipment

Country Status (1)

Country Link
JP (1) JP2611200B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156264U (en) * 1980-12-16 1981-11-21
JPS59225310A (en) * 1983-06-07 1984-12-18 Tokyo Daigaku Surface roughness measuring apparatus by scanning type electronic microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156264U (en) * 1980-12-16 1981-11-21
JPS59225310A (en) * 1983-06-07 1984-12-18 Tokyo Daigaku Surface roughness measuring apparatus by scanning type electronic microscope

Also Published As

Publication number Publication date
JP2611200B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
KR100233312B1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
US4016419A (en) Non-dispersive X-ray fluorescence analyzer
JPS6341185B2 (en)
JPS62285353A (en) Corpuscular ray mapping device
JP2000283933A (en) Fluorescent x-ray analyzer
JP3950642B2 (en) X-ray analyzer with electronic excitation
JPH01214748A (en) Method and apparatus for fluorescent x-ray analysis for minute amount of sample liquid
JP2006118941A (en) Electronic probe x-ray analyzer for displaying surface analyzing data
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
JPS62285048A (en) Element density distribution measurement
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP2001176439A (en) Analytical measurement method with surface analysis equipment
JP2001304843A (en) Method and device for film thickness measurement
JPH04343055A (en) Method for analyzing x-ray photoelectron
JP2645227B2 (en) X-ray fluorescence analysis method
JP4339997B2 (en) Method for acquiring data of standard sample for analysis, and X-ray analysis method and apparatus using this standard sample
JPH07146260A (en) Pollutant element concentration analyzer
JPS62132156A (en) Quantitative analysis halogen element in electronic component
JPH0552777A (en) Correcting method of incident angle of total reflection fluorescent x-ray analyzing apparatus
JPS6126846A (en) Method for analyzing sample by x-ray microanalyzer
JPS6383647A (en) Surface-analysis of sample
JP2002090319A (en) Fluorescent x-ray analysis device
JPH03285153A (en) Quantitative analyser with x-rays
JP2002181747A (en) Photoelectric spectroscopic analysis device and method
JPH081424B2 (en) Analysis equipment