JPS62277622A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62277622A
JPS62277622A JP12088086A JP12088086A JPS62277622A JP S62277622 A JPS62277622 A JP S62277622A JP 12088086 A JP12088086 A JP 12088086A JP 12088086 A JP12088086 A JP 12088086A JP S62277622 A JPS62277622 A JP S62277622A
Authority
JP
Japan
Prior art keywords
film
layer
recording medium
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12088086A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Kiyoshi Takimoto
瀧本 清
Kenji Saito
謙治 斉藤
Nobuyuki Saito
信之 斉藤
Toshihiko Miyazaki
俊彦 宮崎
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12088086A priority Critical patent/JPS62277622A/en
Publication of JPS62277622A publication Critical patent/JPS62277622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve corrosion resistance and durability by using a protective layer which contains mixed monomolecular film obtd. by mixing >=2 kinds of org. compds. or the cumulative film thereof. CONSTITUTION:A magnetic material layer and the protective layer are provided on a substrate and the mixed monomolecular film obtd. by mixing >=2 kinds of the org. compds. or the cumulative film thereof is provided as the protective layer. Fe, alloy essentially consisting of Co-Ni, or the oxide, nitride thereof, etc., are usable for the material of the magnetic material layer 2; the Co-Cr alloy which has a high-density recording characteristic and excellent corrosion resistance or the ferromagnetic film essentially consisting of the Co-Cr alloy is more preferable. The high formation temp. of the Co-Cr alloy film is preferable to improve the coercive force of the Co-Cr alloy film which is the magnetic layer. A polyamide, polyimide resin and more particularly arom. polyimide having heat resistance are preferred for the high-polymer substrate. The recording medium having the excellent runnability, durability and environmental resistance is thus obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は耐久性、耐環境性に優れた高密度記録用薄膜堆
積型磁気記録媒体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thin film deposition type magnetic recording medium for high-density recording that has excellent durability and environmental resistance.

〔従来の技術〕[Conventional technology]

従来より、通常はポリエステル等のプラスチックフィル
ムη)らなる非磁性支持体の上に、強磁性微粒子を高分
子結合剤中に均一に分散せしめた磁性層を有する塗布型
磁気記録媒体が広く用いられ、また近年は金属等の薄膜
を蒸着Φスパッタリング等の方法で非磁性支持体上に形
成せしめた、強磁性薄膜型磁気記録媒体の開発が進めら
れており、一部実用化しているものもある。
Conventionally, coated magnetic recording media have been widely used, which have a magnetic layer in which fine ferromagnetic particles are uniformly dispersed in a polymeric binder on a nonmagnetic support, usually made of a plastic film such as polyester (η). In addition, in recent years, the development of ferromagnetic thin-film magnetic recording media in which a thin film of metal or the like is formed on a non-magnetic support by methods such as vapor deposition Φ sputtering has been progressing, and some of them have been put into practical use. .

磁気記録媒体において、その性能を左右する独 要素として、磁性層の磁気特性、#食性、j耐摩耗性、
摩擦係数、形状(カール、変形)が重要である。前記性
能要素は磁性層の材料や製法、ベースフィルム、保護潤
滑剤(あるいは層)に依存するものである。
In magnetic recording media, the independent factors that affect its performance are the magnetic properties of the magnetic layer, corrosion resistance, abrasion resistance,
The friction coefficient and shape (curl, deformation) are important. The above performance factors depend on the material and manufacturing method of the magnetic layer, the base film, and the protective lubricant (or layer).

磁性層材料については、磁束密度が大きく、薄型化可能
な強磁性薄膜型磁気記録媒体が従来の塗布型磁気記録媒
体に比して憬れている。
Regarding magnetic layer materials, ferromagnetic thin film magnetic recording media, which have a high magnetic flux density and can be made thinner, are inferior to conventional coated magnetic recording media.

性が実用上の問題である。すなわち、Co−Ni合金自
体が耐蝕合金でなく、かつ特性向上の目的で斜め蒸着で
形成するために密度の小さいことがあり、酸化しやすい
状態となっている。Co−Ni合金膜では膜表面を酸化
処理する(特開昭53−85403号公報他号公報化物
、窒下物の保護層を設ける(特開昭57−167134
号公報他)号公報側を塗布する(特開昭57−1525
18号公報他)号公報化方法が検討されているが、Go
−Ni膜の膜厚そのものが薄くかつ密度が低いため、十
分な耐蝕性が保証されない。
nature is a practical issue. That is, the Co--Ni alloy itself is not a corrosion-resistant alloy, and because it is formed by oblique vapor deposition for the purpose of improving properties, it may have a low density and is easily oxidized. In the case of a Co-Ni alloy film, the surface of the film is oxidized (Japanese Unexamined Patent Publication No. 53-85403 and other publications. A protective layer of compounds and nitrides is provided (Japanese Unexamined Patent Publication No. 57-167134).
No. Publication etc.) Coating the No. Publication side (Japanese Unexamined Patent Publication No. 57-1525
18 Publication etc.) is being considered, but Go
-Since the thickness of the Ni film itself is thin and the density is low, sufficient corrosion resistance cannot be guaranteed.

又、脂肪酸金属塩の単分子膜から成る保護層をラングミ
ュア・プロジェット法で形成する提改善が得られる。然
し乍ら、高度の電磁変換特性を保とうとすれば、その耐
久性、走行性は十分であるとはいい難く、特に短波長を
用いた高密度磁気記録媒体の実用化に際して更なる改善
が望まれる。
Further, an improvement can be obtained in which a protective layer consisting of a monomolecular film of a fatty acid metal salt is formed by the Langmuir-Prodgett method. However, in order to maintain high electromagnetic conversion characteristics, it cannot be said that the durability and runnability are sufficient, and further improvements are desired, especially when putting high-density magnetic recording media using short wavelengths into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明は、従来技術の欠点を解消し、優れた記
録再生特性を有するとともに、耐蝕性、耐久性において
も実用的に十分な性能を有する磁気記録媒体を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a magnetic recording medium which eliminates the drawbacks of the prior art and has excellent recording and reproducing characteristics as well as practically sufficient performance in terms of corrosion resistance and durability.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、以下の本発明によって達成される。すな
わち本発明の第1の構成は、基体上に磁性体層と保護層
とを有する磁気記録媒体に於いて、該保護層が2種以上
の有機化合物を混合して得られる混合単分子膜又はその
累積膜を含むことを特徴とする磁気記録媒体である。
The above object is achieved by the present invention as follows. That is, the first configuration of the present invention is a magnetic recording medium having a magnetic layer and a protective layer on a substrate, in which the protective layer is a mixed monomolecular film or a mixed monomolecular film obtained by mixing two or more types of organic compounds. This is a magnetic recording medium characterized by including the cumulative film.

〔作用〕[Effect]

第1図は本発明の磁気記録媒体の好適な実施態様を示す
図で、1は基体、2は磁性体層、3は中間層、4は有機
保護層である。
FIG. 1 is a diagram showing a preferred embodiment of the magnetic recording medium of the present invention, in which 1 is a substrate, 2 is a magnetic layer, 3 is an intermediate layer, and 4 is an organic protective layer.

本発明の磁気記録媒体の基体1としては。The substrate 1 of the magnetic recording medium of the present invention is as follows.

ガラス、アルミニウム、表面酸化処理アルミニウム等の
外に、高分子支持基材としてポリエステル、セルロース
、アクリル、ポリアミド、ポリイミド、ポリアミドイミ
ド、ポリオレフィン、ポリポリフロロオレフィン、ポリ
塩化ビニル、ポリ酢酸ビニル、塩化ビニル、/酢酸ビニ
ルコポリマー、ポリ塩化ビニリデン、ポリカーボネート
、フェノール樹脂、ポリエーテルサルフオン、ポリエー
テルエーテルケトン、ポリアセタール、ポリフェニレン
オキサイド、ポリフェニレンサルファイド等が挙げられ
る。
In addition to glass, aluminum, surface oxidized aluminum, etc., polymer support materials such as polyester, cellulose, acrylic, polyamide, polyimide, polyamideimide, polyolefin, polypolyfluoroolefin, polyvinyl chloride, polyvinyl acetate, vinyl chloride, etc. Examples include vinyl acetate copolymer, polyvinylidene chloride, polycarbonate, phenolic resin, polyether sulfone, polyether ether ketone, polyacetal, polyphenylene oxide, polyphenylene sulfide, and the like.

磁性体層2の材料としては、Fe、Co−Niを主体と
する合金、あるいはその酸化物、窒化物等が使用可俺で
あるが、高密度記録特性耐 に優れまた体蝕性にも優れるCo−Cr合金島るいはG
o−Cr合金を主成分とする強磁性膜が好ましい。
As the material for the magnetic layer 2, alloys mainly composed of Fe or Co-Ni, or their oxides, nitrides, etc. can be used, but they have excellent high-density recording characteristics and excellent corrosion resistance. Co-Cr alloy island or G
A ferromagnetic film containing an o-Cr alloy as a main component is preferred.

電磁変換特性の優れた磁気記録媒体を得るためには、保
持力の大きいことが望ましい、磁性層であるCo−Cr
合金膜の保持力向上のためにはCo−Cr合金膜の形成
温度が高いことが好ましく(100’0〜300℃)、
高分子基体としては耐熱性を有するポリアミド、ポリイ
ミド樹脂、特に芳香族ポリイミド樹脂が良い。
In order to obtain a magnetic recording medium with excellent electromagnetic conversion characteristics, the Co-Cr magnetic layer desirably has a large coercive force.
In order to improve the holding power of the alloy film, it is preferable that the formation temperature of the Co-Cr alloy film is high (100'0 to 300°C),
As the polymer base, heat-resistant polyamides and polyimide resins, especially aromatic polyimide resins are preferable.

これらの高分子基体を用いたフロッピーディスク、磁気
テープでは媒体のカールのないことが走行性、ヘッドタ
ッチの点から重要である。
For floppy disks and magnetic tapes using these polymeric substrates, it is important from the viewpoint of runnability and head touch that the medium be free from curl.

カールのない記録媒体を作成するためには、Co−Cr
合金膜との熱応力、成膜時に発生する応力を打ち消す様
に高分子基体の熱膨張の値を最適に選ぶ必要がある。
In order to create a curl-free recording medium, Co-Cr
It is necessary to optimally select the thermal expansion value of the polymer substrate so as to cancel out the thermal stress with the alloy film and the stress generated during film formation.

芳香族ポリイミド+!5! (フィルム)としてはジア
ミン成分としてパラフェニレンジアミン(PPD)単独
で使用するか、或いはPPDとジアミノジフェニルエー
テル(DADE)とを共に使用し、また、テトラカルボ
ン酸成分をして、ビフェニルテトラカルボン酸二無水物
(BPDA)とピロメリット酸二無水物(PMDA)と
を共に使用して、共重合で得られた芳香族ポリアミック
酸の溶液から、製膜およびイミド化によって得られた芳
香族ポリイミド膜(フィルム)が好ましくその厚みは4
ル〜100ルが記録媒体用として有用である。
Aromatic polyimide+! 5! For the (film), paraphenylenediamine (PPD) is used alone as a diamine component, or PPD and diaminodiphenyl ether (DADE) are used together, and biphenyltetracarboxylic dianhydride is used as a tetracarboxylic acid component. An aromatic polyimide membrane (film) obtained by film forming and imidization from a solution of an aromatic polyamic acid obtained by copolymerization using both BPDA and pyromellitic dianhydride (PMDA). ) is preferable and its thickness is 4
100 L is useful for recording media.

このベースフィルムは、前述のようにPPD 。This base film is PPD as mentioned above.

BPDAおよびPMDAの3成分あるいはPPD、DA
DE、BPDAおよびPMDAの4成分から共重合で形
成されたものであるので、耐熱性、引張弾性に優れてい
るばかりでなく、両成分を構成する各成分の使用量比率
を色々と調整することによって、得られた芳香族ポリイ
ミド膜の熱膨張係数を強磁性材料の熱膨張係数に大略一
致するような値にすることができ、また、芳香族ポリイ
ミド膜の引張弾性定数を用途に応じて腰の強さ等の性能
を好適にするように変えることができる。
Three components of BPDA and PMDA or PPD, DA
Since it is formed by copolymerization of the four components DE, BPDA, and PMDA, it not only has excellent heat resistance and tensile elasticity, but also allows the usage ratio of each component to be adjusted in various ways. By this method, the coefficient of thermal expansion of the aromatic polyimide film obtained can be set to a value that roughly matches the coefficient of thermal expansion of the ferromagnetic material, and the tensile elastic constant of the aromatic polyimide film can be adjusted depending on the application. Performance such as strength can be changed to make it suitable.

ベースフィルムを形成しているポリイミド膜は、その熱
膨張係数が約1.0X10−5〜3.0×10 ’ c
 m / c m / ”0の範囲であり、引張弾性定
数が約300〜1200Kg/mm’、特に325〜7
00Kg/mrn’の範囲であって、更に二次転移温度
が約300℃以上、特に310℃以上であることが好ま
しく、さらに上述の性能に加えて、熱分解開始温度が約
400°C以上、特に450℃以上であって、約250
℃の温度付近での連続使用に酎えうるものであり、また
、引張試験における引張強度が約20Kg/mrn’以
上、特に約25Kg/1m″以上であり、しかも破断点
の伸び率が約30%以上、特に40%以上であるものが
、磁気記録媒体の製造の際に優れた耐熱性を示し、高温
での磁性層の形成が可能であると共に、カールの発生を
防止でき、さらに巻きムラ、走行性、およびヘッドタッ
チの優れた磁気記録媒体となるので最適である。
The polyimide film forming the base film has a coefficient of thermal expansion of approximately 1.0 x 10-5 to 3.0 x 10' c
m / cm m / "0, and the tensile elastic constant is about 300 to 1200 Kg/mm', especially 325 to 7
00 Kg/mrn', and further preferably has a secondary transition temperature of about 300°C or higher, particularly 310°C or higher, and in addition to the above-mentioned performance, has a thermal decomposition initiation temperature of about 400°C or higher, In particular, the temperature is 450℃ or higher, and about 250℃
It can be used continuously at temperatures around 30°C, has a tensile strength in a tensile test of about 20 Kg/mrn' or more, especially about 25 Kg/1 m' or more, and has an elongation rate at break of about 30 Kg/mrn' or more. % or more, especially 40% or more, exhibits excellent heat resistance during the production of magnetic recording media, making it possible to form a magnetic layer at high temperatures, preventing curling, and reducing uneven winding. It is optimal because it provides a magnetic recording medium with excellent runnability and head touch.

機械的及び熱的性質などを上述の様に磁気記録媒体にと
って好適にするためには、芳香族ポリアミック酸を生成
するために使用されているジアミン成分は、全ジアミン
成分に対して約40〜95モル%、特に45〜90モル
%範囲の使用量割合のPPDと、全ジアミン成分に対し
て約5〜60モル%、特に10〜55モル%の使用量割
合のDADEとの2成分からなることが好ましい、また
、芳香族ポリアミック酸を生成するためのテトラカルボ
ン酸成分は、全テトラカルボン酸成分に対して約10〜
90モル%、特に15〜85モル%の使用量割合のBP
DA、全テトラカルボン酸成分に対して約10〜90モ
ル%、特に15〜85モル%の使用量割合のPMDAと
からなることが好ましいのである。
In order to make the mechanical and thermal properties suitable for the magnetic recording medium as described above, the diamine component used to produce the aromatic polyamic acid should be about 40 to 95% of the total diamine component. Consisting of two components: PPD in a usage proportion of mol%, especially in the range of 45 to 90 mol%, and DADE in a usage proportion of about 5 to 60 mol%, especially 10 to 55 mol%, based on the total diamine components. is preferable, and the tetracarboxylic acid component for producing the aromatic polyamic acid is preferably about 10 to 10% of the total tetracarboxylic acid component.
BP at a usage rate of 90 mol%, especially 15-85 mol%
It is preferable to consist of DA and PMDA in an amount of about 10 to 90 mol %, particularly 15 to 85 mol %, based on the total tetracarboxylic acid component.

さらにこの様な構成成分より成るポリイミドフィルムは
、フィルム表面の凹凸を制御するために、必要に応じて
カーボンブラック、グラファイト、シリカ微粉末、マグ
ネシア微粉末、酸化チタン、炭酸カルシウム、その他の
充填剤を混練せしめることも可能で、この様なボ゛リイ
ミドフイルムを本発明の基体に用いても良い、しかし本
発明磁気記録媒体の優れた高密度記録特性を生かすため
には、基体のJISB(+1601による表面粗さが最
大0.05pm以下(RmaXが0.05gm)である
ことが望ましい。
Furthermore, polyimide films made of these components may contain carbon black, graphite, fine silica powder, fine magnesia powder, titanium oxide, calcium carbonate, and other fillers as necessary to control unevenness on the film surface. It is also possible to knead and such a polyimide film may be used as the substrate of the present invention.However, in order to take advantage of the excellent high-density recording characteristics of the magnetic recording medium of the present invention, it is necessary to use the JISB (+1601 It is desirable that the surface roughness is at most 0.05 pm or less (RmaX is 0.05 gm).

前述の芳香族ポリイミド膜の上にCo−Cr谷金からな
る磁性層を形成するには、例えばスパッタリング法、電
子ビーム連続蒸着法などの公知の方法を挙げることがで
きるが、それらの方法で前記芳香族ポリイミド膜の表面
に磁性層を形成する際、膜の温度(成膜温度)を約25
0℃にまですることができるので、優れた性能の磁性層
が容易に形成されうるのである。
In order to form a magnetic layer made of Co-Cr valley metal on the above-mentioned aromatic polyimide film, known methods such as a sputtering method and an electron beam continuous evaporation method can be used. When forming a magnetic layer on the surface of an aromatic polyimide film, the temperature of the film (film formation temperature) is approximately 25°C.
Since the temperature can be lowered to 0° C., a magnetic layer with excellent performance can be easily formed.

Co−Cr合金が磁気記録層として優れる点はまず膜面
に垂直に磁気異方性を有することにより垂直磁化膜とな
り、短波長記録で反磁界の影響を受けないことである。
The advantage of the Co--Cr alloy as a magnetic recording layer is that it has magnetic anisotropy perpendicular to the film surface, resulting in a perpendicularly magnetized film, and is not affected by demagnetizing fields during short wavelength recording.

すなわち磁性層を極端に薄くする必要がないため、高出
力を得るために十分な膜厚を持たすことができる。また
斜め蒸着法で形成しないために膜密度が高く、薄膜化に
よる磁束密度の減少が小さい、さらにCo−Cr合金膜
が磁気記録層として債れる点は極めて耐蝕性が良いこと
である。
In other words, since it is not necessary to make the magnetic layer extremely thin, it is possible to have a sufficient film thickness to obtain high output. Further, since it is not formed by oblique vapor deposition, the film density is high, and the reduction in magnetic flux density due to thinning the film is small.Furthermore, the Co--Cr alloy film is excellent as a magnetic recording layer because it has extremely good corrosion resistance.

このCo−Cr合金からなる磁性体層2の厚みは0.1
Bm〜2.0gmの範囲が好ましく、基体lに直接形成
させる以外にも、磁性体層を形成するに先立ち、接着性
向上、磁気特性向上、その他の目的で必要に応じてコロ
ナ放電処理その他の前処理を施したり、AM、Ti。
The thickness of the magnetic layer 2 made of this Co-Cr alloy is 0.1
Bm is preferably in the range of 2.0 gm, and in addition to forming the magnetic layer directly on the substrate 1, prior to forming the magnetic layer, corona discharge treatment or other treatment may be applied as necessary to improve adhesion, improve magnetic properties, or for other purposes. Pre-treatment, AM, Ti.

Cr、Ge、5i02.A1203等の非磁性膜、ある
いはFe−Ni合金膜、またはCo−Zr、Fe−P−
C,Fe−Co−5i−B等の非晶質膜で代表される高
透磁率膜を介して設けてもかまわない。
Cr, Ge, 5i02. Non-magnetic film such as A1203, Fe-Ni alloy film, Co-Zr, Fe-P-
It may be provided through a high magnetic permeability film typified by an amorphous film such as C, Fe-Co-5i-B or the like.

これらCo−Cr合金強磁性薄膜は、必要に応じて基体
1の両面に形成することもできる。
These Co--Cr alloy ferromagnetic thin films can also be formed on both sides of the base 1, if necessary.

中間層である酸化コバルト層3は、所定圧の酸素を含む
不活性ガス中でのスパッタリング法、希薄酸素下での真
空蒸着法、もしくはイオンブレーティング法等の物理蒸
着法、あるいはプラズマ酸化処理によって、Co−Cr
合金強磁性体層2の表面に直接堆積形成あるいは酸化層
形成をしている。酸化コバルト層3は磁気記録層とヘッ
ドとの凝着を防ぎ、耐摩耗性の向上に極めて有効である
。酸化コバルト層3の厚みは耐摩耗性を保障するに十分
な厚みが必要であるが一方、Co−Cr系合金磁性層の
持つ高密度記録特性を有効に利用するためにはスペーシ
ングロス減少のため薄い事が望ましい、それ故酸化コバ
ルト層3の厚みは30〜300久が望ましく、50〜1
50人が特に好ましい。
The cobalt oxide layer 3, which is an intermediate layer, is formed by sputtering in an inert gas containing oxygen at a predetermined pressure, by vacuum evaporation under diluted oxygen, by physical vapor deposition such as ion blating, or by plasma oxidation treatment. , Co-Cr
A direct deposition or oxide layer is formed on the surface of the alloy ferromagnetic layer 2. The cobalt oxide layer 3 prevents adhesion between the magnetic recording layer and the head and is extremely effective in improving wear resistance. The thickness of the cobalt oxide layer 3 must be sufficient to ensure wear resistance, but on the other hand, in order to effectively utilize the high-density recording characteristics of the Co-Cr alloy magnetic layer, it is necessary to reduce spacing loss. Therefore, the thickness of the cobalt oxide layer 3 is desirably 30 to 300 mm, and 50 to 1 mm.
50 people is particularly preferred.

酸化コバルト層3は、磁気記録層2の保護に大きな役割
を果たすものであり、さらに、金属ヘッド、フェライト
ヘッド等とのなじみも良く、表面の摩擦係数も低下する
。殊に酸化コバルト層の最表部がCo3O4である時、
その効果が著しい。
The cobalt oxide layer 3 plays a major role in protecting the magnetic recording layer 2, and is also compatible with metal heads, ferrite heads, etc., and reduces the coefficient of friction of the surface. Especially when the outermost part of the cobalt oxide layer is Co3O4,
The effect is remarkable.

更に本発明磁気記録媒体の高密度記録特性を損なわずか
つ摩擦を低減し、走行安定性を向上させる為には、有機
化合物による保護層4を酸化コバルト層3の表面に積層
することが大変有効である。
Furthermore, in order to reduce friction and improve running stability without impairing the high-density recording characteristics of the magnetic recording medium of the present invention, it is very effective to laminate a protective layer 4 made of an organic compound on the surface of the cobalt oxide layer 3. It is.

本発明に於いては、有機保護層として、分子内に親木性
部位と、疎水性部位とを併有する有機化合物、とりわけ
脂肪酸誘導体(以下、両親媒性脂肪酸誘導体)の内、少
なく共2種或いはそれ以上の化合物の混合単分子膜、又
は。
In the present invention, as an organic protective layer, at least two types of organic compounds having both a lignophilic site and a hydrophobic site in the molecule, especially fatty acid derivatives (hereinafter referred to as amphipathic fatty acid derivatives) are used. Or a mixed monolayer of more than one compound.

混合単分子累積膜を含む保護層を形成し、薄膜堆積型磁
気記録媒体を得た。
A protective layer containing a mixed monomolecular cumulative film was formed to obtain a thin film deposition type magnetic recording medium.

係る両親媒性脂肪酸誘導体の一例としては以下に示す構
造を有する化合物を挙げることができる。
Examples of such amphipathic fatty acid derivatives include compounds having the structure shown below.

■CH3(CH2) K−R ■ H(CH2)m−c=c−c=c  (CH2)n
−R■CH2=CH(CH2)に−R 上記化合物の内■、■について、kは6〜28の整数で
あり、好ましくは16〜20である。
■CH3(CH2) K-R ■H(CH2)m-c=c-c=c (CH2)n
-R■CH2=CH(CH2)-R Regarding the above compounds, k is an integer of 6 to 28, preferably 16 to 20.

又、■についてm、nは各々0〜28の整数であり、か
つmとnとの和が12〜35の整数である。上記側れの
化合物に関してもR部は親木性部位であり、−COOH
,−CH20H,−3O3H。
Regarding (2), m and n are each integers of 0 to 28, and the sum of m and n is an integer of 12 to 35. Regarding the above-mentioned side compounds, the R part is also a woody group, and -COOH
, -CH20H, -3O3H.

Br−、I−、BF4−、  PF5−、 TCNQ−
、TCNQ2など)などの親木性置換基を用いることが
できる。
Br-, I-, BF4-, PF5-, TCNQ-
, TCNQ2, etc.) can be used.

■、■に示した重合性脂肪酸誘導体を用いて保護層と形
成した場合、係る化合物にX線、紫外光等のエネルギー
照射を行なって重合させる(式1)ことにより、特に耐
久性に優れる磁気記録媒体を得ることができる。
When a protective layer is formed using the polymerizable fatty acid derivatives shown in (1) and (2), the compound is polymerized by irradiation with energy such as X-rays or ultraviolet light (Formula 1), resulting in a particularly durable magnetic A recording medium can be obtained.

)EH2)+a n@H(CH2)IIcミC−C1iiiC7(C)l
 2)n−R−+(−c=c−on籠 (CH2)tl−R(1) n 1ICH2=CH(CH2) k−R−” (CH
2−CH)−n(CH2) k−R 本発明の磁気記録媒体の保護層は、上記挙げた化合物の
内、任意の二種又はそれ以上の化合物を組み合わせる事
により構成される。この際少なく共一つの化合物の末端
親水性部位(R部位)はカルボキシル基であることが望
ましい・又、これに組み合わされる化合物の炭素骨格は
なるべくお互いに類似のものが望ましい。
)EH2)+a n@H(CH2)IIcmiC-C1iiiC7(C)l
2) n-R-+ (-c=c-on cage (CH2) tl-R(1) n 1ICH2=CH(CH2) k-R-" (CH
2-CH)-n(CH2)k-R The protective layer of the magnetic recording medium of the present invention is formed by combining any two or more of the above-mentioned compounds. In this case, it is desirable that the terminal hydrophilic moiety (R moiety) of at least one of the compounds is a carboxyl group, and the carbon skeletons of the compounds combined with this are preferably similar to each other as much as possible.

係る組み合わせの一例を以下に示す。An example of such a combination is shown below.

上記水した両親媒性脂肪酸誘導体の混合単分子膜又は混
合単分子膜81膜を作成する方法としては、例えば、I
 、Langmu f rらの開発したラングミュア・
ブロジェット法(以下、LB法)を挙げることができる
As a method for creating the mixed monomolecular film or mixed monomolecular film 81 film of the watered amphipathic fatty acid derivative, for example, I
, Langmuir developed by Langmu f r et al.
The Blodgett method (hereinafter referred to as LB method) can be mentioned.

目的とする両親媒性脂肪酸誘導体(2種以上)をクロロ
ホルム等の溶剤に溶解させる。この際、混合比は任意の
割合がとられる。
The target amphipathic fatty acid derivative (two or more types) is dissolved in a solvent such as chloroform. At this time, an arbitrary mixing ratio can be used.

次に、第2図(a)(b)に示す装置を用いて、両親媒
性脂肪酸誘導体の混合物(以下1両親媒性混合物)の溶
液を水相上14に展開させて両親媒性混合物を膜状に形
成させる。この際水相14中に予め所望の金属イオン、
例えば、Ag”、  LE”、  Cu”、  Na”
、  K”、  Ba2”。
Next, using the apparatus shown in FIGS. 2(a) and 2(b), a solution of a mixture of amphipathic fatty acid derivatives (hereinafter referred to as 1 amphipathic mixture) is spread on the aqueous phase 14 to form an amphipathic mixture. Form into a film. At this time, desired metal ions are added to the aqueous phase 14 in advance,
For example, Ag”, LE”, Cu”, Na”
, K”, Ba2”.

Ca2”、Co2”、Cr2”、Cd2”、Mg2”。Ca2”, Co2”, Cr2”, Cd2”, Mg2”.

Mn2”、Pb2”、Cu2”、Fe2”、Ni2”。Mn2”, Pb2”, Cu2”, Fe2”, Ni2”.

Zn2”、  Co3”、’、  Cr3”、  Fe
3”、  A立3”。
Zn2", Co3", ', Cr3", Fe
3”, A standing 3”.

Ru3”、  La3+等やアンモニウムイオンを溶解
させておけば、カルボキシル基を有する両親媒性脂肪酸
はこれらの墳として膜状に形成させることができる。カ
ルボキシル基の水素原子がこれらの金属イオン若しくは
アンモニウムイオンと置換される割合は、水相14のp
H及びイオン濃度を調節する事に因って任意の割合のち
のを得ることができる。
By dissolving Ru3'', La3+, etc. and ammonium ions, amphipathic fatty acids having carboxyl groups can be formed into a film-like shape.The hydrogen atoms of the carboxyl groups can dissolve these metal ions or ammonium ions. The ratio of substitution with p in the aqueous phase 14 is
By adjusting the H and ion concentrations, arbitrary proportions can be obtained.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)7を設けて展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧を得る。
Next, to prevent this spread layer from spreading freely on the water phase and spreading too much, a partition plate (or float) 7 is provided to limit the spread area and control the state of aggregation of the membrane material, and to control the aggregation state of the membrane substance, it is Obtain a surface pressure of

この仕切板7を動かし展開面積を縮小して膜物質の集合
状態を制御し1表面圧を徐々に上昇させ、累積膜の製造
に適する表面圧を設定することが出来る。この表面圧を
維持しながら静かに清浄な担体15を垂直に上下させる
ことにより両親媒性混合物の単分子膜が担体15上に移
しとられる。ここでいう担体とは既述の磁性体薄膜を指
す、この様にして両親媒性混合物の混合単分子膜を強磁
性体薄膜の表面酸化層上に形成することができる0両親
媒性混合物の混合単分子膜は以上で製造されるが、前記
の操作を繰り返す事により所望の累積数の両親媒性混合
物の混合単分子膜ll膜を形成することができる。
By moving the partition plate 7 to reduce the developed area and controlling the state of aggregation of the film material, the surface pressure can be gradually increased to set a surface pressure suitable for producing a cumulative film. By gently moving the clean carrier 15 vertically up and down while maintaining this surface pressure, a monomolecular film of the amphipathic mixture is transferred onto the carrier 15. The carrier here refers to the magnetic thin film mentioned above.In this way, a mixed monomolecular film of the amphiphilic mixture can be formed on the surface oxidation layer of the ferromagnetic thin film. A mixed monomolecular film is produced as described above, and by repeating the above operations, a desired cumulative number of mixed monomolecular films of an amphipathic mixture can be formed.

両親媒性混合物の単分子膜を担体上に移すのには上述し
た垂直浸漬法の他、水平付着法、回転円筒法などの方法
による。水平付着法は担体を水面に水平に接触させて移
しとる方法で、回転円筒法は円筒形の担体を水面上を回
転させて担体表面に移しとる方法である。前述した垂直
浸漬法では1表面が親木性である担体を水面を横切る方
向に水中から引き上げると両親媒性混合物の親木基が担
体側に向いた混合単分子膜が担体上に形成される。前述
のように担体を上下させると、各工程ごとに一枚ずつ混
合単分子膜が積み重なっていく。製膜分子の向きが引上
工程と浸漬工程で逆になるので、この方法によると各層
間は1両親媒性混合物の親水基と疎水基が向かいあうY
型膜が形成される。
In addition to the above-mentioned vertical dipping method, methods such as a horizontal deposition method and a rotating cylinder method can be used to transfer a monomolecular film of an amphipathic mixture onto a carrier. The horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface and transferred onto the carrier surface. In the vertical immersion method described above, when a carrier whose surface is woody is lifted out of water in a direction across the water surface, a mixed monomolecular film with the woody groups of the amphipathic mixture facing the carrier is formed on the carrier. . When the carrier is moved up and down as described above, mixed monolayer films are stacked one by one in each step. Since the direction of the film-forming molecules is reversed in the pulling process and the dipping process, according to this method, between each layer, the hydrophilic and hydrophobic groups of the amphiphilic mixture face each other
A mold film is formed.

それに対し、水平付着法は、両親媒性混合物の疎水基が
担体側に向いた混合単分子膜が担体上に形成される。こ
の方法では累積しても、製膜分子の向きの交代はなく全
ての層において、疎水基が担体側に向いたX型膜が形成
される。
In contrast, in the horizontal deposition method, a mixed monomolecular film with the hydrophobic groups of the amphiphilic mixture facing the carrier is formed on the carrier. In this method, there is no change in the orientation of the film-forming molecules even if they are accumulated, and an X-shaped film is formed in which the hydrophobic groups face the carrier side in all layers.

反対に全ての層において親木基が担体側に向いた累積膜
はX型膜と呼ばれる。
On the other hand, a cumulative film in which the parent tree groups in all layers face the carrier side is called an X-type film.

混合単分子層を担体上に移す方法は、これらに限定され
るわけではなく、大面a担体を用いる時には担体ロール
から水相中に担体を押し出していく方法などもとり得る
。また、前述した親木基、疎水基の担体への向きは原則
であり、担体の表面処理等によって変えることもできる
The method of transferring the mixed monomolecular layer onto the carrier is not limited to these methods, and when a large-area A carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used. Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

なお上記手法(LB法)に於いて特に末端にカルボキシ
ル基を有する両親媒性脂肪酸誘導体を用いれば混合系に
することなく、単一化合物のみで、係る両親媒性脂肪酸
誘導体の単分子膜乃至単分子累積膜を得ることはできる
。然し、これらと親木基に水酸基等の非カルボキシル基
を有する両親媒性脂肪酸誘導体とを組み合わせることに
より、より高速かつ安定な製膜が可能となる(組み合わ
せ例二〇、■、■、o)又、比較的不安定な製膜分子を
安定な製膜分子と組み合わせることにより矢張り、より
高速かつ安定な製膜が可能となり、製膜後の安定性も増
加する(組み合わせ例:o)又■に示した組み合わせを
用い製膜後、重合せしめれば、混合単分子層内に重合面
が2つ存在するので、得られる保護層はより強固かつ安
定なものを得ることができる。
In addition, in the above method (LB method), if an amphipathic fatty acid derivative having a carboxyl group at the terminal is used, a monomolecular film or a single compound of the amphipathic fatty acid derivative can be formed without using a mixed system. It is possible to obtain molecular cumulative films. However, by combining these with an amphiphilic fatty acid derivative having a non-carboxyl group such as a hydroxyl group in the parent tree group, faster and more stable film formation becomes possible (Combination Example 20, ■, ■, o) Furthermore, by combining a relatively unstable film-forming molecule with a stable film-forming molecule, faster and more stable film formation becomes possible, and the stability after film formation increases (combination example: o) or If the combination shown in (2) is used to form a film and then polymerized, the resulting protective layer will be stronger and more stable since there will be two polymerization surfaces in the mixed monomolecular layer.

以上、述べた如く、混合膜とすることにより膜の安定性
に対して種々の寄与が得られる。
As mentioned above, by forming a mixed membrane, various contributions can be made to the stability of the membrane.

上述の方法に因って酸化コバルト層3上に形成される両
親媒性混合物の混合単分子膜、及び混合単分子累積膜は
高度の秩序性を有する超薄膜(単分子層当りの厚み15
〜35人)であり、これらの膜で保護層を形成した場合
には、電磁変換特性に与える影響を著しく小さなものに
することが可能となる。この際、係る有機保護層の下地
たる酸化コバルト層3はCo−Cr磁性層2に比べて親
水性が高く、従って有機保護層をCo−Cr磁性層上に
形成する場合と比較して、より強固な密着性を保つこと
ができる。
The mixed monomolecular film of the amphiphilic mixture and the mixed monomolecular cumulative film formed on the cobalt oxide layer 3 by the method described above are ultra-thin films with a high degree of order (thickness per monomolecular layer 15
35 people), and when a protective layer is formed using these films, the influence on electromagnetic conversion characteristics can be significantly reduced. At this time, the cobalt oxide layer 3, which is the base of the organic protective layer, has higher hydrophilicity than the Co-Cr magnetic layer 2, and therefore is more hydrophilic than the case where the organic protective layer is formed on the Co-Cr magnetic layer. Strong adhesion can be maintained.

更に係る保護層形成を行なった磁性薄膜を必要に応じて
、熱処理或いは真空処理することにより、酸化コバルト
層3と保護層4との密着性の更なる向上や、保護層の更
4・る安定化等を図る事もできる。何れにせよ、上述の
保護層形成に因り、電磁変換特性を木質的に低下させる
ことなく、特に耐久性、並びに走行性の優れた薄膜堆積
型磁気記録媒体が得られる。
Furthermore, by subjecting the magnetic thin film on which the protective layer has been formed to heat treatment or vacuum treatment as necessary, the adhesion between the cobalt oxide layer 3 and the protective layer 4 can be further improved, and the protective layer can be further stabilized. You can also try to make it more effective. In any case, by forming the above-mentioned protective layer, a thin film deposition type magnetic recording medium having particularly excellent durability and runnability can be obtained without degrading the electromagnetic conversion characteristics in a woody manner.

本発明に係る保護層の厚さは、15〜100人が好適で
ある。
The thickness of the protective layer according to the present invention is preferably 15 to 100 people.

本発明におけるCo−Cr合金強磁性体薄膜堆積型磁気
記録媒体において、当該磁気記録媒体の基体の少なくと
も片側表面には磁気記録層を形成し、これと反対側の一
方の面には、必要に応じて表面と対称型の薄膜を積層形
成しても良く、あるいは当該基体の保護、滑性、補強、
その他の有効な効果を補足する目的で各種のバックコー
ト層を形成しても良い、バックコート層としては、AI
L、  Ti、  V、  Zr。
In the Co-Cr alloy ferromagnetic thin film deposited magnetic recording medium of the present invention, a magnetic recording layer is formed on at least one surface of the substrate of the magnetic recording medium, and a magnetic recording layer is formed on the opposite surface as necessary. Depending on the situation, a thin film symmetrical to the surface may be laminated, or the substrate may be protected, lubricious, reinforced,
Various back coat layers may be formed for the purpose of supplementing other effective effects.As the back coat layer, AI
L, Ti, V, Zr.

Co、  Nb、  Ta、  W、  Cr、  S
t。
Co, Nb, Ta, W, Cr, S
t.

Ge等の金属、半金属あるいはその酸化物、窒化物、炭
化物の薄膜、あるいは酸化物微粒子炭酸カルシウム等の
易滑性微粒子と、カーボン、金属粉末等の導電性粒子と
、脂肪酸、脂肪酸エステル等の潤滑剤を少なくとも一種
類含む熱可塑性または熱硬化性樹脂等の高分子バインダ
ーに混練して塗布したものが挙げられる。
Thin films of metals such as Ge, semimetals, or their oxides, nitrides, and carbides, or oxide fine particles, easily slippery fine particles such as calcium carbonate, conductive particles such as carbon and metal powder, and fatty acids, fatty acid esters, etc. Examples include those obtained by kneading and applying a polymer binder such as a thermoplastic or thermosetting resin containing at least one type of lubricant.

以上述べた様に、表面平担性に優れかつ熱膨張率を調整
した高弾性率、高耐熱性共重合ポリイミドフィルム上に
高温でCo−Cr合金膜を形成し、さらにその上に酸化
コバルト層を形成し、さらに有機化合物保護層を形成し
た磁気記録媒体はカールが小さく、かつ高密度記録特性
が優れ耐摩耗性、耐久性、耐環境性がいずれも実用上十
分な性能を有しており、極めて優れた磁気記録媒体であ
る。
As mentioned above, a Co-Cr alloy film is formed at high temperature on a high elastic modulus, high heat resistant copolyimide film with excellent surface flatness and adjusted thermal expansion coefficient, and a cobalt oxide layer is further applied on top of the Co-Cr alloy film. A magnetic recording medium with a protective layer of an organic compound has small curl, excellent high-density recording characteristics, and has sufficient wear resistance, durability, and environmental resistance for practical use. , an extremely excellent magnetic recording medium.

[実施例] 以下実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

くテープの評価方法〉 出力の周波数特性: 0.75MHz 、 4.5MHz 、 7.5MHz
の単一信号を記録し、再生出力を測定。
Evaluation method of tape> Output frequency characteristics: 0.75MHz, 4.5MHz, 7.5MHz
Record a single signal and measure the playback output.

スチル耐久性テスト: 20℃、65%および0℃の環境下でスチル再生出力の
時間変化を測定、20分経過後出力低下が3dB以内を
Oとする。
Still durability test: Measure the change in still playback output over time in environments of 20°C, 65% and 0°C, and define O if the output decreases within 3dB after 20 minutes.

耐蝕テスト: 50℃、80%で1000時間放置後飽和磁束密度の低
下が10%以内をOとする。
Corrosion resistance test: If the saturation magnetic flux density decreases by 10% or less after being left at 50°C and 80% for 1000 hours, it is considered O.

実施例1 内容積300fLの重合釜に3.3’、4.4’−ビフ
ェニルテトラカルボン酸二無水物;20モル、ピロメリ
ット酸二無水物;80モル、パラフェニレンジアミン;
70モル及ヒ4 、4’−ジアミノジフェニルエーテル
、30モルを原料として厚さ1107zの芳香族ポリイ
ミド膜のベースフィルムを製造した。
Example 1 3.3',4.4'-biphenyltetracarboxylic dianhydride; 20 mol; pyromellitic dianhydride; 80 mol; paraphenylenediamine;
A base film of an aromatic polyimide membrane having a thickness of 1107z was manufactured using 70 mol of H4,4'-diaminodiphenyl ether and 30 mol as raw materials.

この芳香族ポリイミドフィルムについて種々の物性を測
定したが、その結果、引張弾性定数が490 K g 
/ m m 2、熱膨張係数α1oo〜300℃が1.
6Xl O,−5cm/cm/’C1Rzは80人であ
った。
Various physical properties of this aromatic polyimide film were measured, and as a result, the tensile elastic constant was 490 Kg.
/ mm2, thermal expansion coefficient α1oo~300℃ is 1.
6Xl O, -5cm/cm/'C1Rz was 80 people.

この芳香族ポリイミドフィルムをベースフィルムとして
使用し、電子ビーム加熱装置を有した磁気テープの連続
成膜装置により、当該ベースフィルムの表面にCo 7
8wt%−Cr22wt%の垂直磁化蒸着膜をベースフ
ィルムの温度を200℃として、0.IJLm/see
の成膜速度で約0.4 JLm厚形酸形成後、その上部
に酸素10%を含むアルゴンガス中でCoをスパッタし
This aromatic polyimide film is used as a base film, and Co 7 is deposited on the surface of the base film using a continuous magnetic tape film forming device equipped with an electron beam heating device.
A perpendicularly magnetized vapor-deposited film of 8wt%-Cr22wt% was deposited at a base film temperature of 200°C and a temperature of 0. IJLm/see
After forming a thick film of approximately 0.4 JLm at a film formation rate of 200 ml, Co was sputtered on top of the film in argon gas containing 10% oxygen.

酸化コバルト薄膜を80久厚形成した。次に、(2)式
に示したアラキシン酸と(3)式に示した1−アイコサ
ノールとを1=1の CH3(CH2) tscOOH(2)CH3(CH2
) tscH20H(3)混合比(mol比)で混合し
、クロロホルムに溶解させた(濃度1mg/mfL)、
この後、塩化マンガン4X10−4Mを含むPH7、水
温20℃水相14(図2)上に係る混合溶液を展開し膜
状に析出させた。溶媒を蒸発除去後、表面圧を30 m
 N / mに迄高めた0表面圧を一定に保ち乍も上述
磁性体薄膜を担体とし、50mm/minの速度で係る
担体を水面を横切る方向に水中より引き上げ、アラキシ
ン酸と1−アイコサノールの1:1混合単分子膜を係る
担体上に形成した。
A cobalt oxide thin film was formed to a thickness of 80 cm. Next, araxic acid shown in formula (2) and 1-eicosanol shown in formula (3) were combined into CH3(CH2) tscOOH(2)CH3(CH2
) tscH20H (3) mixed at a mixing ratio (molar ratio) and dissolved in chloroform (concentration 1 mg/mfL),
Thereafter, the mixed solution containing 4×10 −4 M of manganese chloride at a pH of 7 and a water temperature of 20° C. was spread on the aqueous phase 14 (FIG. 2) to precipitate it into a film. After evaporating the solvent, the surface pressure was reduced to 30 m
While keeping the zero surface pressure raised to N/m constant, the above-mentioned magnetic thin film was used as a carrier, and the carrier was pulled out of the water in a direction across the water surface at a speed of 50 mm/min. :1 mixed monolayer was formed on the carrier.

こうして得た磁気シートを70℃の恒温炉にて15分間
熱処理を行なった後、8. Om m幅にスリットした
。このテープのカールは、工< 0.1mm−1と小さ
く、実用上の問題のない量であった。このテープを8ミ
リVTRテープ用カセツトに装着し、8ミリビデオデツ
キにて出力の周波数特性、スチル耐久性、50℃80%
RHでの耐蝕性テスト等を行なった。
After heat-treating the magnetic sheet thus obtained in a constant temperature oven at 70°C for 15 minutes, 8. It was slit to a width of 0 mm. The curl of this tape was as small as <0.1 mm<-1>, an amount that caused no practical problems. This tape was installed in an 8mm VTR tape cassette, and the output frequency characteristics, still durability, and 50°C 80% were measured using an 8mm video deck.
Corrosion resistance tests under RH were conducted.

結果は第1表に示す如く大変良好であった。The results were very good as shown in Table 1.

実施例2 実施例1に於けるアラキシン酸と1−アイコサノールと
のに11層単分子膜を3層に累積した他は、実施例1と
全く同様にして、テープを作成し、性能評価を行なった
結果を第−表に示す、その結果、単分子膜のものと同等
に良好であった・ 実施例3 (5)式に示した10.12−ペンタコサシイツイン酸
と(6)式に示した10.12−ペンタコサジイン−1
−オールとを1=1の混合比(mo文比)で混合し、 CH3(CH2)11CミCC=C−(CH2)acO
OH(5)CH3(CH2) t1c=cc=c −(
CH2) 90H(6)n−へキサンに溶解させた(濃
度1mg/mu)。
Example 2 A tape was prepared in the same manner as in Example 1, except that 11 monolayers of araxic acid and 1-icosanol were stacked into 3 layers, and performance evaluation was performed. The results are shown in Table 1.The results were as good as those of the monomolecular film. 10.12-pentacosadiine-1 shown
- All at a mixing ratio of 1=1 (mo ratio), CH3(CH2)11CmiCC=C-(CH2)acO
OH(5)CH3(CH2) t1c=cc=c −(
CH2) 90H(6) was dissolved in n-hexane (concentration 1 mg/mu).

この後、塩化マンガン5X10−4Mを含むpH7、水
温20℃の水相14(図2)上に係る混合溶液を展開し
、膜状に析出させた。溶媒蒸発除去後、表面圧を20 
m N / m迄高めた。
Thereafter, the mixed solution containing 5×10 −4 M of manganese chloride at a pH of 7 and a water temperature of 20° C. was spread on the aqueous phase 14 (FIG. 2) to precipitate into a film. After solvent evaporation, the surface pressure was reduced to 20
mN/m.

表面圧を一定に保ち乍実施例1と同様にして作成した膜
厚80人の酸化コバルト膜を含むCo−Cr磁性体薄膜
を担体とし、20mm/minの速度で係る担体を、水
面を横切る方向に水中より引き上げ10.12−ペンタ
コサシイツイン酸と、10.12−ペンタコサジイン−
1−オールとのl:1混合単分子膜を係る担体上に形成
した。
A Co--Cr magnetic thin film containing a cobalt oxide film with a thickness of 80 mm was prepared in the same manner as in Example 1 while keeping the surface pressure constant as a carrier, and the carrier was moved at a speed of 20 mm/min in a direction across the water surface. 10.12-Pentacosasiuiic acid and 10.12-Pentacosadiin-
A l:1 mixed monolayer with 1-ol was formed on such a support.

次に係る担体表面に200w高圧水銀灯を照射し、製膜
分子を重合せしめた。この様にして得られた磁気シート
を8. Om m幅にスリットした。このテープを実施
例1と同様にして性能評価を行なった。
Next, the surface of the carrier was irradiated with a 200W high-pressure mercury lamp to polymerize the film-forming molecules. 8. The magnetic sheet obtained in this way. It was slit to a width of 0 mm. The performance of this tape was evaluated in the same manner as in Example 1.

くディスクの評価方法〉 スチルビデオデツキ(試作a)を用いて、再生出力、#
久性、円周方向の出力変動(出力ムラ)を測定した。
Evaluation method for discs> Using a still video deck (prototype a), playback output, #
The durability and output fluctuation in the circumferential direction (output unevenness) were measured.

出力の周波数特性: 1.3MHz 、 7.0MHzノ単−信号を記録し、
再生出力を測定。
Output frequency characteristics: 1.3MHz, 7.0MHz single signal recorded,
Measure playback output.

耐久性: 20℃、65%の環境下で連続50時間再生し、出力の
低下が6dB以下のものをOとした。
Durability: The product was rated O if the output decreased by 6 dB or less after continuous playback for 50 hours in an environment of 20° C. and 65%.

出力ムラ: lトラック中での出力の最大値と最小値との差を示す。Output unevenness: Indicates the difference between the maximum and minimum output values in one track.

実施例4 3 、3’ 、 4゜4′−ビフェニルテトラカルボン
酸二無水物;40モル、ピロメリット酸二無水物;60
モル、パラフェニレンジアミン;50モル及び4,4′
−ジアミノジフェニルエーテル;50モルより成るモノ
マー成分及び成分比で実施例1と同一方法にて芳香族ポ
リアミック酸の溶液組成物を製造した。そのようにして
得られた溶液組成物を使用し実施例1と同一方法にて厚
さ40JLmの芳香族ポリイミドフィルムを製造した。
Example 4 3,3',4゜4'-biphenyltetracarboxylic dianhydride; 40 mol, pyromellitic dianhydride; 60
moles, paraphenylenediamine; 50 moles and 4,4'
- Diaminodiphenyl ether: A solution composition of an aromatic polyamic acid was produced in the same manner as in Example 1 using a monomer component consisting of 50 moles and a component ratio. Using the solution composition thus obtained, an aromatic polyimide film having a thickness of 40 JLm was produced in the same manner as in Example 1.

この芳香族ポリイミドフィルムは引張弾性定数が400
 K g / m m 2 、熱膨張係数α100〜3
00℃が2.6X10−5cm/am/’05Rzは3
0人であった。
This aromatic polyimide film has a tensile elastic constant of 400.
K g/mm2, thermal expansion coefficient α100~3
00℃ is 2.6X10-5cm/am/'05Rz is 3
There were 0 people.

この芳香族ポリイミドフィルムをベースフィルムとして
使用し、スパッタリング装置にて当該ベースフィルム上
にCo80wt%−Cr20wt%の垂直磁化膜をベー
スフィルムの温度を150℃として、約0.5 g m
形成、した後、その上部に酸素12%を含むアルゴンガ
ス中でCoをスパッタし、酸化コバルト薄膜をlOO久
厚形厚形成0次いで実施例1と同一の有機保護層を同一
方法で形成し、70℃の恒温炉で15分間熱処理を施し
た後、直径47mmφのディスクに打ち抜き加工し、ビ
デオディスク再生機を用いて評価した。その結果は第2
表に示す様に大変良好であった。
This aromatic polyimide film was used as a base film, and a perpendicularly magnetized film of 80 wt% Co-20 wt% Cr was formed on the base film using a sputtering device at a base film temperature of 150°C, at a thickness of approximately 0.5 g m.
After forming, Co is sputtered on top of it in an argon gas containing 12% oxygen to form a cobalt oxide thin film with a thickness of 100 mm.Next, the same organic protective layer as in Example 1 is formed by the same method, After heat treatment in a constant temperature oven at 70° C. for 15 minutes, a disk with a diameter of 47 mm was punched out and evaluated using a video disk player. The result is the second
As shown in the table, the results were very good.

比較例1 メタル塗布型の磁気シートを直径47mmφのディスク
に打ち抜き加工し、ビデオディスク再生機を用いて評価
した。その結果を第2表に示す。
Comparative Example 1 A metal-coated magnetic sheet was punched out into a disk with a diameter of 47 mm, and evaluated using a video disk player. The results are shown in Table 2.

第  1  表 第  2  表 [発明の効果] 膜堆積法にてCo−Cr合金強磁性体薄膜を形成し、そ
の表面に酸化コバルト層を形成した膜面上に更に二種以
上の両親媒性脂肪酸誘導体を含む保護層を積層形成する
ことにより、走行性、耐久性、耐環境性の優れた高密度
磁気記録媒体の実現をならしめるものである。
Table 1 Table 2 [Effects of the invention] A Co-Cr alloy ferromagnetic thin film is formed by a film deposition method, and two or more amphipathic fatty acids are further applied on the surface of the film with a cobalt oxide layer formed thereon. By laminating protective layers containing dielectrics, it is possible to realize a high-density magnetic recording medium with excellent running properties, durability, and environmental resistance.

【図面の簡単な説明】 第1図は本発明の磁気記録媒体の構成図。 1・・・基体、2・・・磁性体層、3・・・中間層、4
・・・有機保護層、5・・・水槽、6・・・枠、7・・
・仕切板、8・・・おもり、9・・・滑車、10・・・
磁石、11・・・対磁石、12・・・吸引パイプ、13
・・・吸引ノズル、14・・・水相、15・・・担体(
基板)、16・・・担体上下腕 特許出願人  キャノン株式会社 ■20(b)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a magnetic recording medium of the present invention. DESCRIPTION OF SYMBOLS 1... Base body, 2... Magnetic material layer, 3... Intermediate layer, 4
...Organic protective layer, 5...Aquarium, 6...Frame, 7...
・Partition plate, 8... Weight, 9... Pulley, 10...
Magnet, 11... Pair magnet, 12... Suction pipe, 13
...Suction nozzle, 14...Aqueous phase, 15...Carrier (
Substrate), 16...Carrier upper and lower arms Patent applicant Canon Co., Ltd. ■20(b)

Claims (7)

【特許請求の範囲】[Claims] (1)基体上に磁性体層と保護層とを有する磁気記録媒
体に於いて、該保護層が、2種以上の有機化合物を混合
して得られる混合単分子膜又はその累積膜を含むことを
特徴とする磁気記録媒体。
(1) In a magnetic recording medium having a magnetic layer and a protective layer on a substrate, the protective layer includes a mixed monomolecular film obtained by mixing two or more organic compounds or a cumulative film thereof. A magnetic recording medium characterized by:
(2)該保護層の厚さが、15〜100Åの範囲にある
特許請求の範囲第1項記載の磁気記録媒体。
(2) The magnetic recording medium according to claim 1, wherein the thickness of the protective layer is in the range of 15 to 100 Å.
(3)該基体が、芳香族ポリイミドフィルムである特許
請求の範囲第1項記載の磁気記録媒体。
(3) The magnetic recording medium according to claim 1, wherein the substrate is an aromatic polyimide film.
(4)該有機化合物が脂肪酸又はその誘導体である特許
請求の範囲第1項記載の磁気記録媒体。
(4) The magnetic recording medium according to claim 1, wherein the organic compound is a fatty acid or a derivative thereof.
(5)磁性体層と保護層との間に中間層を有する特許請
求の範囲第1項記載の磁気記録媒体。
(5) The magnetic recording medium according to claim 1, which has an intermediate layer between the magnetic layer and the protective layer.
(6)該中間層が酸化コバルトを含む特許請求の範囲第
5項記載の磁気記録媒体。
(6) The magnetic recording medium according to claim 5, wherein the intermediate layer contains cobalt oxide.
(7)該磁性体層が、Co−Cr合金強磁性体を含む特
許請求の範囲第1項記載の磁気記録媒体。
(7) The magnetic recording medium according to claim 1, wherein the magnetic layer includes a Co-Cr alloy ferromagnetic material.
JP12088086A 1986-05-26 1986-05-26 Magnetic recording medium Pending JPS62277622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12088086A JPS62277622A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12088086A JPS62277622A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62277622A true JPS62277622A (en) 1987-12-02

Family

ID=14797252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12088086A Pending JPS62277622A (en) 1986-05-26 1986-05-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62277622A (en)

Similar Documents

Publication Publication Date Title
US5139849A (en) Magnetic recording medium
JPH05342553A (en) Magnetic recording medium and its production
US5059468A (en) Magnetic recording medium
JPS62277622A (en) Magnetic recording medium
JPH0546013B2 (en)
JPS62271220A (en) Production of magnetic recording medium
JPS62271221A (en) Production of magnetic recording medium
JPS62277621A (en) Magnetic recording medium
JPS62271219A (en) Production of magnetic recording medium
JPS62271222A (en) Production of magnetic recording medium
JPH113513A (en) Magnetic recording medium
JPS63206912A (en) Production of magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPS63188823A (en) Magnetic recording medium
JPH0766524B2 (en) Magnetic recording medium
JPS62277623A (en) Magnetic recording medium
JPS62277625A (en) Magnetic recording medium
JPH01125715A (en) Magnetic recording medium
JPS62232721A (en) Magnetic recording medium
JPS62229517A (en) Magnetic recording medium
JP2003160676A (en) Aromatic polyamide film and magnetic recording medium
JPS6267720A (en) Magnetic recording medium
JPS63144406A (en) Magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS63113926A (en) Magnetic recording medium