JPS6227711A - Lens for optical disc - Google Patents

Lens for optical disc

Info

Publication number
JPS6227711A
JPS6227711A JP16709285A JP16709285A JPS6227711A JP S6227711 A JPS6227711 A JP S6227711A JP 16709285 A JP16709285 A JP 16709285A JP 16709285 A JP16709285 A JP 16709285A JP S6227711 A JPS6227711 A JP S6227711A
Authority
JP
Japan
Prior art keywords
lens
aspherical
lenses
aspheric
inequality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16709285A
Other languages
Japanese (ja)
Other versions
JPH073505B2 (en
Inventor
Koichi Maruyama
晃一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP60167092A priority Critical patent/JPH073505B2/en
Publication of JPS6227711A publication Critical patent/JPS6227711A/en
Publication of JPH073505B2 publication Critical patent/JPH073505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To facilitate measuring an aspherical shape very accurately and to improve the mass productivity by constituting a lens with the first and second positive lenses whose incidence faces are convex and forming the first face in the incidence side to a specific surface of revolution of second degree and satisfying specific conditions. CONSTITUTION:The lens consists of the first and second positive lenses whose incidence faces are convex, and the first face in the incidence side is formed to a surface of revolution of second degree expressed with an inequalities [I] and satisfies inequality (1)-(4). In case that the lens consists of two lenses, a good performance is obtained if only one among four lens faces is made aspherical. The inequality (1) indicates power distribution of two power lenses, and the inequality (2) indicates power components in the first lens. Inequalities (1) and (2) are satisfied to reduce the extent of spherical aberration on each face, and the aspherical quantity is reduced, and the variation of aberration for eccentricity is reduced also. The inequality (3) determines the air gap between the first and second lenses.

Description

【発明の詳細な説明】 a、技術分野 本発明は、小型で高性能の光ディスク用レンズに関する
もので、詳しくは回転二次曲面である非球面を用いた2
枚構成の光ディスク用レンズに関すうものである。
Detailed Description of the Invention: a. Technical Field The present invention relates to a compact and high-performance optical disc lens.
The present invention relates to a lens for optical discs having a lens structure.

b、従来技術及びその問題点 光ディスクに使用されるレンズは、開口数NAは0.4
以上と大口径比でなければならず、しかも残存収差も回
折限界内になるように補正がなされていなければならな
い、また、レンズの実際の使用状況では、画角±1°程
度まで良好な性能を持つ必要がある。
b. Prior art and its problems The lens used for the optical disc has a numerical aperture NA of 0.4.
In addition, residual aberrations must be corrected so that they are within the diffraction limit, and in actual use, the lens has good performance up to an angle of view of about ±1°. It is necessary to have

従来、この用途のレンズは3枚以上の球面系のガラスレ
ンズで構成されていたが、レンズの低価格化、小型軽量
化の要求から、この種のレンズとして、単レンズよりな
り、その両面を非球面で構成したものや、2枚のレンズ
で構成し、そのうち1つの面のみを高次の非球面とした
ものなどが提案されている。(特開昭57−76512
号、同58−219511号、同59−9619号) しかしながら、非球面単レンズによるものは、必ず2面
とも非球面化しなければ、実用上充分な収差量に収差補
正を行うことができない、そして2面とも非球面のレン
ズの場合1球面レンズと異イ なり、面の平行移動W倒れに対する公差が厳しくなり、
設計性能がすぐれていても、設計性能を保った製品を作
ることはむずかしいと言う問題があった。
Conventionally, lenses for this purpose were composed of three or more spherical glass lenses, but due to the demand for lower cost, smaller, and lighter lenses, this type of lens was made of a single lens, with both sides Proposed lenses include ones made of an aspherical surface, and ones made of two lenses, one of which is a high-order aspherical surface. (Unexamined Japanese Patent Publication No. 57-76512
(No. 58-219511, No. 59-9619) However, with a single aspheric lens, unless both surfaces are made aspheric, it is impossible to correct aberrations to a practically sufficient amount. In the case of a lens where both surfaces are aspheric, unlike a single spherical lens, the tolerance for parallel movement and inclination of the surfaces is stricter.
Even if the design performance was excellent, there was a problem in that it was difficult to create a product that maintained the design performance.

加えて、両面非球面の単レンズの場合は、少なくとも片
側の面は高次の非球面係数を持った非7球面としなけれ
ば、レンズ性能は満足できないものであった。そして、
そのような高次の非球面係数を持った面は一般に、干渉
法などの高精度な非接触測定によって面形状を測定する
ことが困難であった・ 上に比例する項を有するために0面形状測定のための有
利な形状は意識されていなかった。
In addition, in the case of a single lens with aspherical surfaces on both sides, the lens performance could not be satisfied unless at least one surface was an aspherical surface with a high-order aspherical coefficient. and,
It is generally difficult to measure the surface shape of surfaces with such high-order aspherical coefficients using highly accurate non-contact measurements such as interferometry. No advantageous shapes for shape measurements were considered.

C0目的 本発明は上記の点に鑑み、非球面の偏心による性能低下
が少なく、シかも非球面形状の超精密測定が容易に行え
る、量産性の良い、コンパクトな光ディスク用レンズを
提供することを目的としている。
Purpose of the Invention In view of the above points, it is an object of the present invention to provide a compact lens for optical discs that has little performance degradation due to eccentricity of an aspherical surface, allows easy ultra-precision measurement of aspherical surface shapes, and is easy to mass produce. The purpose is

d0問題点の解決手段 レンズ1枚の両面非球面レンズで構成している限り、前
記レンズの傾れの許容や面形状測定の容易性は根本的に
は解決されないため、本発明の光ディスク用レンズは、
共に、入射側の面が凸面である正レンズの第1レンズと
第2レンズの2枚よりなり、その入射側の第1面が次式
によってその表面形状が表わされる回転二次曲面であり
、且つ、X(h)〜(4)の条件を満足することを特徴
とする光ディスク用レンズで”J3゜( 3) 0.0< d 2 / f <0.22(4)−
1≦K<−0,3 ただし X(h):光軸から高さhの非球面上の1点から非球面
頂点の接平面におろした垂線の 長さ h:光軸からの高さ hの非球面上の1点から非球面頂点付近(近軸)の曲率
半径に:非球面係数 f:レンズ全系の焦点距離 fl:第1レンズの焦点距離 rl:第1面の近軸の曲率半径 n1=第1レンズの屈折率 d2:第1レンズと第2レンズの間の空気間隔80作用 光ディスク用レンズは、明る< (N A=0.5)、
しかも球面が非常に小さいことが要求されるため。
Means for Solving the d0 Problem As long as the lens is composed of one double-sided aspherical lens, the tolerance for tilting of the lens and the ease of measuring the surface shape will not be fundamentally solved. Therefore, the optical disc lens of the present invention teeth,
Both lenses are composed of two positive lenses, the first lens and the second lens, each of which has a convex surface on the incident side, and the first surface on the incident side is a rotating quadratic curved surface whose surface shape is expressed by the following equation, In addition, an optical disc lens is characterized in that it satisfies the conditions of
1 ≦K From one point on the aspheric surface to the radius of curvature near the apex of the aspheric surface (paraxial): Aspheric coefficient f: Focal length of the entire lens system fl: Focal length of the first lens rl: Paraxial curvature of the first surface Radius n1 = refractive index d2 of the first lens: air gap 80 between the first lens and the second lens;
Moreover, the spherical surface is required to be extremely small.

球面レンズのみで構成する場合には、3枚以上のレンズ
の組み合せが必要となっている。これを小型化するため
に非球面を導入するわけであるが、レンズ1枚では、非
球面を用いない場合、球面収差は必ずアンダーになって
しまう。従って、球面収差補正のためには大きな非球面
量が必要となる。
In the case of using only spherical lenses, a combination of three or more lenses is required. An aspherical surface is introduced to reduce the size of this lens, but with a single lens, if no aspherical surface is used, the spherical aberration will always be under. Therefore, a large amount of aspherical surface is required to correct spherical aberration.

そしてこの非球面量を1つの面に分担させた場合。And when this aspherical amount is shared by one surface.

コマ収差の発生は避けられないので、結局、1枚構成で
は両面非球面にならざるを得ない、また。
Since the occurrence of coma aberration is unavoidable, in the end, with a single-element structure, both surfaces have to be aspherical.

パワーの分散が2つの面だけで行れるため、おのずから
各面の曲率半径は小さくなり、面の偏心、倒れによる収
差悪化が大きくなりやすい。
Since the power can be dispersed by only two surfaces, the radius of curvature of each surface naturally becomes small, and aberrations tend to worsen due to eccentricity and tilting of the surfaces.

これに対し本発明のようにレンズを2枚構成にした場合
、パワーを2つのレンズに分散させ、レンズの球面成分
のみによって収差をかなり低減させることができるので
、付加的に用いる非球面量は小さいものですみ、レンズ
面が4面ある中で、どこか1つの面を非球面化するのみ
で良好な性能を得ることができる。
On the other hand, when the lens is configured with two lenses as in the present invention, the power is dispersed between the two lenses and the aberration can be considerably reduced only by the spherical component of the lens, so the amount of additional aspherical surface is It only needs to be small, and good performance can be obtained by simply making one of the four lens surfaces aspherical.

条件(1)は2枚のパワーレンズのパワー配分を示すも
のであり1条件式(2)は第1レンズ内のパワー成分を
示すものである。この条件(1)。
Condition (1) indicates the power distribution between the two power lenses, and conditional expression (2) indicates the power component within the first lens. This condition (1).

(2)を満足することによって各面毎に発生する球面収
差量を小さくすることが可能になり、非球面量を少なく
でき、同時に偏心に対する収差変化も小さくできる。
By satisfying (2), it is possible to reduce the amount of spherical aberration generated for each surface, and the amount of aspherical surfaces can be reduced, and at the same time, the change in aberration due to eccentricity can be reduced.

条件式(3)は第1レンズと第2レンズの空気間隔を定
める条件であり、この条件(3)を満足することにより
、2枚レンズの横ずれに対する収差変化の感度とレンズ
系のコンパクト性への要望が達成できる。
Conditional expression (3) is a condition that determines the air distance between the first lens and the second lens, and by satisfying this condition (3), the sensitivity of aberration changes to lateral displacement of the two lenses and the compactness of the lens system are improved. wishes can be achieved.

高精度な非球面形状測定技術について考えた場合、主と
して接触式測定、干渉法測定がある。非接触で測定する
ためには干渉法が望ましいが、現状では、非球面量の多
い一般の非球面においては表面の反射が干渉計に戻らな
いため、接触式測定が採られることが多い、しかし、非
球面成形の型あるいはプラスチックによる非球面レンズ
等では。
When considering high-precision aspherical surface shape measurement technology, there are mainly contact measurement and interferometric measurement. Interferometry is preferable for non-contact measurement, but at present, contact measurement is often used for general aspheric surfaces with a large amount of asphericity, as the reflection from the surface does not return to the interferometer. , with aspherical molds or aspherical lenses made of plastic.

接触式によるとキズが付くことがあり、接触式で測定で
きれば良いというものではない。従って。
The contact method may cause scratches, so it is not sufficient to be able to measure using the contact method. Therefore.

光ディスク用対物レンズでは、高精度に面形状を成形す
る必要があるため、非接触式の干渉法の使用可能な非球
面形状を採用し、高速な面精度測定。
Objective lenses for optical discs must form a surface shape with high precision, so we use an aspherical surface shape that can be used with non-contact interferometry, allowing for high-speed surface accuracy measurement.

ヘテロダイン干渉法等による超高精度測定を可能にする
事は作製上4有利である。
Enabling ultra-high precision measurement using heterodyne interferometry or the like has four advantages in terms of fabrication.

一般に1回転双曲面9回転放物面1回転楕円面。In general, 1 revolution hyperboloid, 9 revolution paraboloid, 1 revolution ellipsoid.

れらの面からたかだか数な(ラムダ:31!l定時に用
いる光線の波長)以内の非球面性を持った面については
、干渉法により非球面形状を測定することが可能である
For surfaces with asphericity within at most a number (lambda: 31!l wavelength of the light beam used at regular intervals) from these surfaces, it is possible to measure the aspheric shape by interferometry.

このため本発明にかかるレンズは、非球面を回転二次曲
面で構成したものである。
Therefore, in the lens according to the present invention, the aspherical surface is formed by a quadratic curved surface of rotation.

回転二次曲面と前記非球面係数にの関係は。What is the relationship between the rotational quadratic surface and the aspheric coefficient?

K<−1:回転双曲面 に=−1:回転放物面 1<K<O:回転楕円面(焦点が光軸上に並ぶ)K=0
:球面 0くに:回転楕円面(焦点が光軸に垂直な方向に並ぶ楕
円を光軸を中心に回転したもと)となっており、K〉0
の回転楕円面は干渉法による面精度測定について有利な
特性を持っていない。
K<-1: Hyperboloid of revolution =-1: Paraboloid of revolution 1<K<O: Ellipsoid of revolution (focus aligned on optical axis) K=0
: Spherical surface 0 Kuni : It is an ellipsoid of revolution (an ellipse whose focal point is aligned perpendicular to the optical axis and rotated around the optical axis), and K〉0
The spheroidal surface does not have advantageous properties for surface precision measurement by interferometry.

次にレンズの収差上から要求される非球面性について考
えた場合、2枚の正レンズのうち1つの面のみを非球面
とするときは、球面収差をオーバーにするような非球面
とする必要がある。これは、球面レンズと比較してレン
ズのコバが厚くなる方向の非球面性を持つことを意味し
ており、非球面を回転二次曲面とすると、レンズの入射
側面(第1面または第3面)に非球面を持つ場合はK<
O。
Next, when considering the asphericity required from the viewpoint of lens aberration, when only one surface of two positive lenses is made aspheric, it is necessary to make it an aspheric surface that exceeds the spherical aberration. There is. This means that the edge of the lens is aspherical in the direction of being thicker than that of a spherical lens.If the aspherical surface is a rotational quadratic surface, the entrance side of the lens (first or third surface) has an aspheric surface, K<
O.

レンズのディスク側面(第2面または第4面)に非球面
を持つ場合はK>Oとならなければならない。
If the lens has an aspherical surface on its disk side surface (second surface or fourth surface), K>O must be satisfied.

従って本発明の目的から非球面となる面は第1面または
第3面に限られる。さらに、非球面測定系の作り易さは
、非測定面へ入射あるいは反射する光束の拡がり角に依
存するため、レンズの有効径と比べて面の曲りのゆるい
第1面の方が有利である。
Therefore, for the purpose of the present invention, the aspheric surface is limited to the first surface or the third surface. Furthermore, since the ease of creating an aspherical surface measurement system depends on the divergence angle of the light beam incident on or reflected from the non-measurement surface, it is advantageous to have a first surface with a gentler curvature compared to the effective diameter of the lens. .

このように非球面を第1面の回転2次曲面とした場合、
レンズの偏心、特に非球面となる第1面。
In this way, when the aspherical surface is a rotational quadratic surface of the first surface,
Decentering of the lens, especially the first surface which is aspherical.

第2面間の偏心による収差発生を小さくするようにレン
ズを構成するとき、非球面係数にの範囲として −0,9< K <−0,3 程度が望ましく、これ以上でも以下でも偏心による性能
低下が大きくなる。
When configuring a lens to reduce aberrations caused by eccentricity between the second surfaces, it is desirable that the aspherical coefficient ranges from -0.9 < K <-0.3; The decline becomes larger.

しかし干渉法による測定を考えた場合。However, when considering measurement using interferometry.

に=−1 として非球面を回転放物面とすることは非常に有利であ
る。
It is very advantageous to set the aspheric surface to be a paraboloid of revolution with .

1$″ それは1例えI実施例1の非球面(K = −0,56
)と実施例3の非球面(K=−1,00)を測定する場
合の干渉計を組む場合、それぞれ第7図、第8図のよう
な型が考えられるが、放物面に対する第8図あ の干渉計は、入射光が平行光でするため、入射光と被測
定面の位置合せが面のかたむきのみで使用できる。中間
に入るミラーによる光のケラレが無い等の利点!ある。
1$'' That is the aspheric surface of Example 1 (K = -0,56
) and the aspherical surface (K=-1,00) of Example 3, the types shown in FIGS. 7 and 8 can be considered, respectively. Since the interferometer shown in the figure uses parallel light as the incident light, it can be used by aligning the incident light with the surface to be measured only when the surface is tilted. Advantages include no vignetting of light due to the mirror in the middle! be.

従って1本発明のレンズでは第1面の非球面係数を条件
(4)すなわち 一1≦K<−0,3 とすることが望ましい。
Therefore, in the lens of the present invention, it is desirable that the aspheric coefficient of the first surface satisfies condition (4), that is, -1≦K<-0,3.

f、実施例 以下、本発明の実施例(カバーガラスを含む)を記載す
るにこで、NA七は開口数、fは焦点距離、rは各面の
曲率半径、dは面の間隔、nは屈折率、WDはワーキン
グディスタンス、には第1面の非球面係数である。
f, Examples Hereinafter, examples of the present invention (including cover glasses) will be described, where NA7 is the numerical aperture, f is the focal length, r is the radius of curvature of each surface, d is the distance between the surfaces, n is the refractive index, WD is the working distance, and is the aspheric coefficient of the first surface.

〔実施例 1〕 N A =0.47    f =4.5   ・画角
:t: 1.0’r      d     n(波長
780nm)6.800   1.10    1.7
856523.205   0.10 3.177   1.10    1.785656.
367   2.48(WD) ”     1.20    1.50000非球面係
数 K ニー0.560 〔実施例 2〕 N A :0.47    f :4.5    画角
±1.0”r      d     n(波長780
nm)4.445   1.60    1.4847
9−174.866   0.10 2.798   1.10    1.484798.
154   2.25(WD) 00    1.20    1.50000非球面係
数 K = −0,70 〔実施例 3〕 N A =0.47    f =4.5    画角
±1.0”r      d     H(波長780
nm)6.442   1.80    1.4JI4
79−57.638   0.10 3.021   1.10    1.785655.
838   2.37(WD) ”     1.20    1.50000非球面係
数 K=−1,000 g、効果 以上説明したように1本発明による非球面形状を持った
光ディスク用レンズは、その非球面形状を第7図、第8
図に示すような光路を持った干渉計により、一般の非球
面レンズよりはるかに容易に測定することが可能な弓え
、非球面の偏心に対する収差変動が第9図に示すように
非常に小さいため、これまでにある非球面使用の光ディ
スク用レンズと比較し量産性の高いものとなっている。
[Example 1] N A = 0.47 f = 4.5 - Angle of view: t: 1.0'r d n (wavelength 780 nm) 6.800 1.10 1.7
856523.205 0.10 3.177 1.10 1.785656.
367 2.48 (WD) ” 1.20 1.50000 Aspheric coefficient K Knee 0.560 [Example 2] N A : 0.47 f : 4.5 Angle of view ±1.0” r d n (wavelength 780
nm) 4.445 1.60 1.4847
9-174.866 0.10 2.798 1.10 1.484798.
154 2.25 (WD) 00 1.20 1.50000 Aspherical coefficient K = -0,70 [Example 3] N A =0.47 f =4.5 Angle of view ±1.0"r d H ( wavelength 780
nm) 6.442 1.80 1.4JI4
79-57.638 0.10 3.021 1.10 1.785655.
838 2.37 (WD) ” 1.20 1.50000 Aspherical coefficient K=-1,000 g, Effect As explained above, the optical disc lens having an aspherical shape according to the present invention has a Figures 7 and 8
Using an interferometer with an optical path as shown in the figure, bowing can be measured much more easily than with general aspheric lenses, and aberration fluctuations due to eccentricity of the aspheric surface are extremely small, as shown in Figure 9. Therefore, compared to existing optical disc lenses that use aspherical surfaces, it is highly mass-producible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1のレンズ構成図、第2図は実
施例1の収差図、第3図は本発明の実施例2のレンズ構
成図、第4図は実施例2の収差図、第5図は本発明の実
施例3のレンズ構成図、第6図は実施例3の収差図、第
7図は実施例1のに=−0,560の非球面を測定する
ための干渉計概形図、第8図は実施例3のK =−1,
000の非球面を測定するための干渉計概形図、第9図
は実施例1の第1面の偏心に対する収差量変化を示すグ
ラフである。 Ml:ハーフミラ− M2:球面反射ミラー M3:薄膜ハーフミラ−またはミラー M4:球面反射ミラー 0、:被検非球面 K=−0,560 o2:被検非球面に=−1,000 R1:参照平面 R2:参照平面 Ll:レンズ 第1図 第2図 正弦条件 第3図 第4図 正弧条件 第5図 第6図 正弦条件 第7図 第8 図 皇9UiU 1市の1ト4ティ龜+wt’lvt    (A乍t)
手続補正書 /、事件の表示 特願昭60−167092号 、26発明の名称 光ディスク用レンズ 3、補正をする者 事件との関係  特許出願人 住所 東京都板橋区前野町2丁目36番9号名称 (0
52)  旭光学工業株式会社代表者 松本 撤 ダ0代理人 居所 東京都板橋区前野町2丁目36番9号乙、補正の
内容 (1)明細書の「特許請求の範囲」の欄を別紙のとおり
補正する。 (2)明細書の「発明の詳細な説明」の欄中、第5頁第
4行目の 「その入射側の第1面」を 「その第1レンズの入射側面(第1面)」と補正する。 (3)同第10頁第3行目〜第5行目の「レンズの・・
・・・・ならない。」を「第4面に非球面を持つ場合は
k>Oとならなければならない。また曲率半径の大きい
面となる第2面を非球面化する場合は、回転二次曲面の
非球面では非球面量を充分にとることができない。」と
補正する。 特許請求の範囲 共に入射側の面が凸面である正レンズの第1レンズと第
2レンズの2枚よりなり、(ゴ々l上」仁ンーズの入浄
・0財」L工?辷負り一が次式によってその表面形状が
表わされる回転二次曲面であり、且つ1X(h)〜(4
)の条件を満足することを特徴とする光ディスク用レン
ズ。 (3) 0.0< d 2 / f <0.22(4)
−1≦K<−0,3 ただし x(h):光軸から高さhの非球面上の1点から非球面
頂点の接平面におろした垂線の 長さ h:光軸からの高さ hの非球面上の1点から非球面頂点付近(近軸)の曲率
半径に:非球面係数 f:レンズ全系の焦点距離 f!:第1レンズの焦点距離 rl:第1面の近軸の曲率半径 nl:第1レンズの屈折率
Figure 1 is a lens configuration diagram of Example 1 of the present invention, Figure 2 is an aberration diagram of Example 1, Figure 3 is a lens configuration diagram of Example 2 of the invention, and Figure 4 is aberration diagram of Example 2. Figure 5 is a lens configuration diagram of Example 3 of the present invention, Figure 6 is an aberration diagram of Example 3, and Figure 7 is a lens configuration diagram of Example 1 for measuring an aspheric surface of -0,560. Schematic diagram of the interferometer, FIG. 8 shows K = -1 of Example 3,
FIG. 9 is a schematic diagram of an interferometer for measuring an aspherical surface of 000, and is a graph showing a change in aberration amount with respect to eccentricity of the first surface in Example 1. Ml: Half mirror M2: Spherical reflecting mirror M3: Thin film half mirror or mirror M4: Spherical reflecting mirror 0: Test aspheric surface K=-0,560 o2: Test aspheric surface = -1,000 R1: Reference plane R2: Reference plane Ll: Lens Figure 1 Figure 2 Sine condition Figure 3 Figure 4 Positive arc condition Figure 5 Figure 6 Sine condition Figure 7 Figure 8 lvt (A乍t)
Procedural amendment / Indication of the case Patent application No. 167092/1983, 26 Name of the invention Lens for optical disk 3, Person making the amendment Relationship to the case Patent applicant address 2-36-9 Maeno-cho, Itabashi-ku, Tokyo Name (0
52) Asahi Kogaku Kogyo Co., Ltd. Representative Matsumoto Withdrawal Agent Address 2-36-9 Maeno-cho, Itabashi-ku, Tokyo B Contents of amendment (1) The “Scope of Claims” column of the specification has been changed to a separate sheet. Correct accordingly. (2) In the "Detailed Description of the Invention" section of the specification, "the first surface on the entrance side" in the fourth line of page 5 is referred to as "the entrance side surface (first surface) of the first lens". to correct. (3) "Lens..." on page 10, lines 3 to 5.
...It won't happen. ” to “If the fourth surface has an aspherical surface, k>O must be satisfied.Also, when the second surface, which has a large radius of curvature, is made aspherical, if the aspherical surface is a rotational quadratic surface, then It is not possible to obtain a sufficient amount of spherical surface.'' is corrected. The claim consists of two positive lenses, the first lens and the second lens, both of which have convex surfaces on the incident side. 1 is a rotational quadratic surface whose surface shape is expressed by the following equation, and 1X(h) ~ (4
) A lens for optical discs characterized by satisfying the following conditions. (3) 0.0<d2/f<0.22(4)
-1≦K<-0,3 where x(h): Length of a perpendicular drawn from a point on the aspheric surface at a height h from the optical axis to the tangent plane of the apex of the aspheric surface h: Height from the optical axis From one point on the aspheric surface of h to the radius of curvature near the apex of the aspheric surface (paraxial): Aspheric coefficient f: Focal length of the entire lens system f! : Focal length of the first lens rl: Paraxial radius of curvature of the first surface nl: Refractive index of the first lens

Claims (1)

【特許請求の範囲】 共に入射側の面が凸面である正レンズの第1レンズと第
2レンズの2枚よりなり、その入射側の第1面が次式に
よってその表面形状が表わされる回転二次曲面であり、 X(h)=(h^2/r)/{1+√[1−(1+K)
(h^2/r^2)]}且つ、次の(1)〜(4)の条
件を満足することを特徴とする光ディスク用レンズ。 (1)0.33<f/f_1<0.55 (2)0.25<[(n_1−1)/r_1]・f<0
.66 (3)0.0<d_2/f<0.22 (4)−1≦K<−0.3 ただし X(h):光軸から高さhの非球面上の1点から非球面
頂点の接平面におろした垂線の長さ h:光軸からの高さ r:非球面頂点付近(近軸)の曲率半径 K:非球面係数 f:レンズ全系の焦点距離 f_1:第1レンズの焦点距離 r_1:第1面の近軸の曲率半径 n_1:第1レンズの屈折率 d_2:第1レンズと第2レンズの間の空気間隔
[Claims] Consisting of two lenses, a first lens and a second lens, both of which are positive lenses whose surfaces on the incident side are convex, the first surface on the incident side is a rotating lens whose surface shape is expressed by the following equation. The following surface is X(h)=(h^2/r)/{1+√[1-(1+K)
(h^2/r^2)] and an optical disc lens that satisfies the following conditions (1) to (4). (1) 0.33<f/f_1<0.55 (2) 0.25<[(n_1-1)/r_1]・f<0
.. 66 (3) 0.0<d_2/f<0.22 (4) -1≦K<-0.3 where X(h): From one point on the aspheric surface at height h from the optical axis to the aspheric apex Length of the perpendicular to the tangent plane h: Height from the optical axis r: Radius of curvature near the apex of the aspherical surface (paraxial) K: Aspherical coefficient f: Focal length of the entire lens system f_1: of the first lens Focal length r_1: Paraxial radius of curvature of the first surface n_1: Refractive index of the first lens d_2: Air distance between the first lens and the second lens
JP60167092A 1985-07-27 1985-07-27 Optical disc lens Expired - Lifetime JPH073505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167092A JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167092A JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Publications (2)

Publication Number Publication Date
JPS6227711A true JPS6227711A (en) 1987-02-05
JPH073505B2 JPH073505B2 (en) 1995-01-18

Family

ID=15843271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167092A Expired - Lifetime JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Country Status (1)

Country Link
JP (1) JPH073505B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219511A (en) * 1982-06-16 1983-12-21 Olympus Optical Co Ltd Lens for optical disc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219511A (en) * 1982-06-16 1983-12-21 Olympus Optical Co Ltd Lens for optical disc

Also Published As

Publication number Publication date
JPH073505B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
Kingslake Lens design fundamentals
US7054077B2 (en) Method for constructing a catadioptric lens system
US4103989A (en) Unit-power concentric optical systems
US6552852B2 (en) Catoptric and catadioptric imaging systems
JP2004526331A (en) Objective lens including fluoride crystal lens
JP4374868B2 (en) Oblique projection optical system
JPH04215610A (en) Element of single-hybrid reflecting and refracting optical system
Burge Fizeau interferometry for large convex surfaces
JPH0519162A (en) Objective lens and method for measuring the lens
Wynne Monocentric telescopes for microlithography
JPH0614135B2 (en) Single lens and optical information reading and / or writing device
JP3704833B2 (en) Objective lens and recording / reproducing apparatus
US2846923A (en) High speed objective lens with anastigmatically flattened field
Zuercher et al. Improved reflector for interferometric tracking in three dimensions
JPS5923313A (en) Large aperture condenser lens
JPS61215512A (en) Objective for optical information reader
US6791755B2 (en) Optical device for making light converge
JPS6227711A (en) Lens for optical disc
JP2000162503A (en) Reflection micro-optical system
KR20100111497A (en) Objective lens
JPS61277913A (en) Image forming lens
JPH0576606B2 (en)
Tanaka et al. Lens and optics for optical disk system
RU2065192C1 (en) Single-lens objective with gradient layer
JP2003167189A (en) Objective lens for optical disk