JPS62276802A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS62276802A
JPS62276802A JP61119315A JP11931586A JPS62276802A JP S62276802 A JPS62276802 A JP S62276802A JP 61119315 A JP61119315 A JP 61119315A JP 11931586 A JP11931586 A JP 11931586A JP S62276802 A JPS62276802 A JP S62276802A
Authority
JP
Japan
Prior art keywords
roll
quenching
thin body
rare earth
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119315A
Other languages
Japanese (ja)
Inventor
Tomohisa Arai
智久 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61119315A priority Critical patent/JPS62276802A/en
Publication of JPS62276802A publication Critical patent/JPS62276802A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an anisotropic rare earth magnet at low cost with excellent efficiency by giving a thin body anisotropy by deforming the thin body acquired by quenching and solidifying a molten metal. CONSTITUTION:A raw material consisting of elements, such as 16% Nd, 76%Fe and 8% B at an atomic percentage is dissolved, a molten metal 1 is sprayed continuously against a roll 3 for quenching turned at peripheral velocity of approximately 20m/sec from an exhaust nozzle 2, and a thin band 5 obtained through quenching is roll ed by a roll 4 for rolling, thus acquiring a flake 6 having anisotropy. The thin band 5 is heated by a heater 7 between the roll 3 for quenching and the roll 4 for rolling at that time. The flake 6 obtained is smashed into fine pieces as it is or as required, and molded in a magnetic field and solidified by a resin, thus acquiring an anisotropic magnet. Accordingly, a thin body need not be smashed into fine pieces so much as compared to a conventional method in which the thin body is pulverized after dissolution and casting and molded in the magnetic field and the anisotropic magnet is obtained, thus simplifying a manufacturing process.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は希土類1a5の製造方法に関する。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to a method for producing rare earth element 1a5.

(従来の技術) Nd−Fe−8系合金のような希土類永久磁石の製造方
法として、原料成分を溶解、鋳造した後粉砕し、これを
焼結磁石おるいはボンド磁石とする方法がおる(第1の
方法)。また近年になって開発された方法として原料成
分を溶解後、高速回転する冷却用ロールの内壁または外
壁に溶融金属を噴出ノズルから連続的に吹きつけること
により冷却凝固させて薄帯状または薄片状の非晶質合金
もしくは微細結晶質合金とし、これを積層して磁石とす
るかおるいは必要に応じて粉砕した後焼結磁石またはボ
ンド磁石とする方法がおり、この方法は製造工程が簡略
で製造コストが安く、しかも均一な物質を得ることがで
きるため有利な方法とされている(第2の方法)。また
近年になり、特開昭60−100402号(特願昭59
−163486号)明細書中に記載されているような磁
石の製造方法がおる。この方法は上記後者の方法により
得られた等方性の薄体な粉砕後、高温に加熱し、高圧で
短時間高圧処理するものである(第3の方法)。この方
法により異方膣を有する磁石を得ることができる。
(Prior art) As a method for manufacturing rare earth permanent magnets such as Nd-Fe-8 alloy, there is a method in which raw materials are melted, cast, and then pulverized to form sintered magnets or bonded magnets. 1st method). In addition, a method developed in recent years is that after melting the raw material components, the molten metal is continuously sprayed from a jet nozzle onto the inner or outer wall of a cooling roll rotating at high speed to cool and solidify it into a thin strip or flake. There is a method of making an amorphous alloy or a microcrystalline alloy and stacking them to make a magnet, or if necessary, crushing them and then making them into a sintered magnet or a bonded magnet.This method has a simple manufacturing process and is easy to manufacture. This method is considered to be advantageous because it is inexpensive and can produce a uniform substance (second method). In addition, in recent years, Japanese Patent Application Laid-Open No. 60-100402 (Patent Application No. 59)
-163486) There is a method for manufacturing a magnet as described in the specification. In this method, after the isotropic thin body obtained by the latter method is pulverized, it is heated to a high temperature and subjected to high pressure treatment for a short period of time (third method). A magnet with an anisotropic vagina can be obtained by this method.

(発明が解決しようとする問題点) しかしながら上記第1の方法では、生成する結晶粒の大
きさは通常数μm以上であるので、粉砕して単磁区結晶
としたものを磁場中圧粉することにより異方性磁石を(
停ることかできるが、製造工程が複雑で鋳造に伴なう成
分のミクロ的偏析が生じ易いという欠点を有していた。
(Problems to be Solved by the Invention) However, in the first method, the size of the crystal grains produced is usually several μm or more, so it is necessary to grind the single-domain crystals into powder in a magnetic field. Anisotropic magnet (
However, it has the disadvantage that the manufacturing process is complicated and microscopic segregation of components is likely to occur due to casting.

また第2の方法では、結晶の方位の配向した異方性磁石
を得ることは、結晶粒の大きざが数百人と微細で機械的
粉砕によっては単磁区結晶が得られないという理由から
非常に困難であった。
In addition, in the second method, it is extremely difficult to obtain an anisotropic magnet with oriented crystals because the crystal grains are so fine that the size of the crystal grains is several hundreds, and single-domain crystals cannot be obtained by mechanical crushing. It was difficult.

さらに第3の方法では、異方性磁石を得ることは可能で
あるが、薄体を粉砕後、高温、高圧で短時間処理し磁石
を高密度化していたため、製造工程が複雑となり、効率
が悪く、そのため製造コストが高いものでめった。
Furthermore, in the third method, although it is possible to obtain an anisotropic magnet, the thin body is pulverized and then treated at high temperature and high pressure for a short time to increase the density of the magnet, which complicates the manufacturing process and reduces efficiency. Unfortunately, the manufacturing cost was high and it was rare.

したがって、本発明は上記問題を解決し、直接異方性を
有する薄体を得ることにより、製造工程が簡略で効率の
高い異方性の希土類磁石の製造方法を提供することを目
的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing an anisotropic rare earth magnet with a simple manufacturing process and high efficiency by directly obtaining a thin body having anisotropy.

[発明の構成] (問題点を解決するための手段) 本発明の希土類磁石の製造方法は、溶融金属を急冷凝固
することにより得られた薄体に変形を加えることで薄体
に異方性を付与するものである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a rare earth magnet of the present invention deforms a thin body obtained by rapidly solidifying a molten metal, thereby making the thin body anisotropic. It is intended to give.

本発明方法を通用して効果が大きい希土類磁石としては
、例えばNd−Fe−B系のような希土類元素−鉄系合
金が挙げられる。本発明方法によれば、まず溶融金属を
例えばノズルより噴出し、冷却ロール上で急冷凝固して
薄帯状の薄体を得る。この冷却方法は、単ロール法、双
ロール法どちらでも可能である。この薄体に続けて機械
的な変形を加えるが、この機械的な変形は熱間、好まし
くは700℃以上で行うのが好ましい。これは、上記薄
体を塑性変形することにより薄体は異方性を得ることが
できるが、必まり低い温度で変形を行うと薄体がもろい
ため充分な塑性変形を与える前に破砕して、所望の異方
性を得ることが難しいためである。
Examples of rare earth magnets that are highly effective when applied to the method of the present invention include rare earth element-iron alloys such as Nd-Fe-B. According to the method of the present invention, first, molten metal is ejected from, for example, a nozzle, and rapidly solidified on a cooling roll to obtain a thin ribbon-like body. This cooling method can be either a single roll method or a twin roll method. This thin body is subsequently subjected to mechanical deformation, and this mechanical deformation is preferably carried out hot, preferably at 700° C. or higher. This is because the thin body can obtain anisotropy by plastically deforming the thin body, but if the thin body is deformed at a low temperature, the thin body becomes brittle, so it must be crushed before sufficient plastic deformation is applied. This is because it is difficult to obtain the desired anisotropy.

この機械的な変形は熱間圧延のように、ロールを、例え
ばヒーターのような加熱手段により加熱しつつ薄体を圧
延することにより容易に行える。この場合圧延ロールは
薄体と反応せずぬれ性の少ないものが好ましい。
This mechanical deformation can be easily carried out by rolling the thin body while heating the roll using a heating means such as a heater, as in hot rolling. In this case, the rolling roll is preferably one that does not react with the thin body and has low wettability.

(作用) 本発明の製造方法によれば、溶融金属を急冷し薄体を得
て、次いでこの薄体に機械的な変形を行うことにより、
薄体に異方性を付与できる。
(Function) According to the manufacturing method of the present invention, by rapidly cooling the molten metal to obtain a thin body, and then mechanically deforming the thin body,
Anisotropy can be imparted to thin bodies.

そのため、後にこの薄体を成形し異方性磁石を得る際に
、磁場中成形を行うのみで良く製造工程の簡略化を図る
ことができる。
Therefore, when molding this thin body later to obtain an anisotropic magnet, it is only necessary to perform molding in a magnetic field, and the manufacturing process can be simplified.

(実施例) 本発明の製造方法の実施例を図面を用いて説明する。(Example) Embodiments of the manufacturing method of the present invention will be described with reference to the drawings.

実施例1 第1図は、溶融金属の急冷方法に県ロール法を用いた本
発明の一実施例を示す概要図である。
Embodiment 1 FIG. 1 is a schematic diagram showing an embodiment of the present invention in which the prefecture roll method is used as a method for rapidly cooling molten metal.

原子パーセントで例えばN d 16%、F e 76
%、88%よりなる原料を溶解した後、第1図に示すよ
うに、この溶融金属1を噴出ノズル2から周速度約20
m/SeCで回転している急冷用ロール3(直径500
m>の外壁に連続的に噴きつけている。この急冷により
得られた薄帯5を連続して圧延用ロール4(直径800
m)により圧延し、異方性を有する薄片(フレーク)6
を得た。この際薄帯5は急冷用ロール3と圧延用ロール
4との間でヒーター7により加熱されている。この薄帯
5の加熱は急冷用ロール3と圧延用ロール4の間隔が小
さい場合は行わなくてもよい。
In atomic percent, for example, N d 16%, Fe 76
After melting the raw material consisting of 88%, as shown in FIG.
Rapid cooling roll 3 (diameter 500 mm) rotating at m/SeC
The water is continuously sprayed onto the outer wall of the building. The ribbon 5 obtained by this rapid cooling is continuously rolled into a rolling roll 4 (diameter 800 mm).
Thin pieces (flakes) rolled by m) and having anisotropy 6
I got it. At this time, the ribbon 5 is heated by a heater 7 between the quenching roll 3 and the rolling roll 4. This heating of the ribbon 5 may not be performed if the distance between the quenching roll 3 and the rolling roll 4 is small.

また、圧延用ロール4はヒーター8により、約700 
’Cに加熱されている。
Further, the rolling roll 4 is heated to about 700 m by the heater 8.
It is heated to 'C.

得られた薄片6をそのまま、おるいは必要により細かく
砕いて磁場中成形し樹脂で固めることにより異方性磁石
(ポンド磁石)を得た。
An anisotropic magnet (pound magnet) was obtained by using the obtained thin piece 6 as it was, pulverizing it finely if necessary, molding it in a magnetic field, and solidifying it with resin.

この結果、従来の溶解・鋳造後粉砕し、la湯揚中形し
て異方性磁石を得るものに対しては、ざほど薄体を細か
くする必要もなく、’AM工程が簡略となる。また急冷
後粉砕し、加熱後加圧するものに比較しても安価に異方
性磁石を製造できた。
As a result, unlike the conventional method of obtaining an anisotropic magnet by melting, casting, pulverizing, la-boiling and shaping, there is no need to make the thin body as fine as possible, and the AM process is simplified. In addition, anisotropic magnets could be manufactured at a lower cost than those in which the magnets are pulverized after quenching, heated, and then pressurized.

実施例2 第2図は、溶融金属の急冷方法に双ロール法を用いた本
発明の他の実施例を示す概要図である。
Embodiment 2 FIG. 2 is a schematic diagram showing another embodiment of the present invention in which a twin roll method is used as a method for rapidly cooling molten metal.

原子パーセントでN d 16%、F e 76%、8
8%よりなる原料を溶解した後、第2図に示すように、
この溶融金属1を噴出ノズル2から周速度的20m/s
ecで回転している急冷用ロール3(直径100m>の
ロール間に噴きつけている。
In atomic percent N d 16%, Fe 76%, 8
After dissolving the raw material consisting of 8%, as shown in Figure 2,
This molten metal 1 is ejected from the jet nozzle 2 at a circumferential speed of 20 m/s.
It is sprayed between the quenching rolls 3 (diameter 100 m>) rotating by EC.

この急冷により得られた薄帯5を連続して圧延用ロール
4(直径300#)により圧延し異方性を有する薄片(
フレーク)6を)qだ。この際圧延用ロール4はヒータ
ー8により約700 ’Cに加熱されている。得られた
薄片6をそのまま、おるいは、必要により細かく砕いて
磁場中成形し、樹脂で固めることにより異方性磁石(ボ
ンド磁石)を得た。その結果、実施例1と同様に安価に
異方性磁石を得ることができた。
The thin strip 5 obtained by this rapid cooling is continuously rolled with a rolling roll 4 (diameter 300#) to obtain an anisotropic thin strip (
Flake) 6) is q. At this time, the rolling roll 4 is heated to about 700'C by the heater 8. The obtained thin piece 6 was used as it was, or if necessary, was crushed finely, molded in a magnetic field, and solidified with resin to obtain an anisotropic magnet (bond magnet). As a result, similarly to Example 1, an anisotropic magnet could be obtained at low cost.

実施例3 第3図は溶融金属の急冷方法に単ロール法を用いた本発
明の他の実施例を示す概要図である。
Embodiment 3 FIG. 3 is a schematic diagram showing another embodiment of the present invention in which a single roll method is used as a method for rapidly cooling molten metal.

実施例1と同様に急冷用ロール3による急冷により得ら
れた薄帯5を続けて圧延用ロール4により圧延を行って
いる。この際急冷用ロール3は、圧延ロール4とともに
、薄帯の圧延用ロールとして利用できる。以上の方法に
より異方性を有する薄片6を得た。
As in Example 1, the ribbon 5 obtained by quenching using the quenching roll 3 was subsequently rolled using the rolling roll 4. At this time, the quenching roll 3 can be used together with the rolling roll 4 as a roll for rolling the ribbon. A thin piece 6 having anisotropy was obtained by the above method.

この結果、実施例1および実施例2と同様の方法により
安価に異方性磁石を得ることができた。また冷却用ロー
ルを圧延用ロールとしても利用できるため装置の簡略化
を図ることができる。
As a result, an anisotropic magnet could be obtained at low cost by the same method as in Examples 1 and 2. Moreover, since the cooling roll can also be used as a rolling roll, the apparatus can be simplified.

[発明の効果] 本発明の製造方法により、容易に異方性を有する薄体を
得ることができ、そのため効率良く、安価に異方性の希
土類磁石を1昇ることができる。
[Effects of the Invention] According to the manufacturing method of the present invention, a thin body having anisotropy can be easily obtained, and therefore an anisotropic rare earth magnet can be manufactured efficiently and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した概要図である。第2
図は本発明の他の実施例を示した概要図である。第3図
は、本発明のさらに他の実施例を示した概要図である。 1・・・・・・溶融金属    2・・・・・・噴射ノ
ズル3・・・・・・冷却用ロール  4・・・・・・圧
延用ロール5・・・・・・薄帯      6・・・・
・・薄片7.8・・・・・・ヒーター 代理人弁理士  則 近 憲 佑 同  湯山幸夫 躬 1 図
FIG. 1 is a schematic diagram showing an embodiment of the present invention. Second
The figure is a schematic diagram showing another embodiment of the present invention. FIG. 3 is a schematic diagram showing still another embodiment of the present invention. 1... Molten metal 2... Injection nozzle 3... Cooling roll 4... Rolling roll 5... Thin strip 6...・・・
...Thin section 7.8...Heater's representative patent attorney Nori Chika Ken Yudo Yukio Yuyama 1 Figure

Claims (4)

【特許請求の範囲】[Claims] (1)溶融金属を急冷凝固することにより得られた薄体
に変形を加えて薄体に異方性を付与することを特徴とす
る希土類磁石の製造方法。
(1) A method for producing a rare earth magnet, which comprises adding anisotropy to a thin body obtained by rapidly solidifying a molten metal by deforming the thin body.
(2)希土類磁石は、希土類元素−鉄系合金である特許
請求の範囲第1項に記載の希土類磁石の製造方法。
(2) The method for manufacturing a rare earth magnet according to claim 1, wherein the rare earth magnet is a rare earth element-iron alloy.
(3)変形は、熱間で加えられる特許請求の範囲第1項
に記載の希土類磁石の製造方法。
(3) The method for manufacturing a rare earth magnet according to claim 1, wherein the deformation is performed hot.
(4)変形は、熱間圧延により加えられる特許請求の範
囲第1項に記載の希土類磁石の製造方法。
(4) The method for manufacturing a rare earth magnet according to claim 1, wherein the deformation is applied by hot rolling.
JP61119315A 1986-05-26 1986-05-26 Manufacture of rare earth magnet Pending JPS62276802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119315A JPS62276802A (en) 1986-05-26 1986-05-26 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119315A JPS62276802A (en) 1986-05-26 1986-05-26 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS62276802A true JPS62276802A (en) 1987-12-01

Family

ID=14758403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119315A Pending JPS62276802A (en) 1986-05-26 1986-05-26 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS62276802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395611A (en) * 1986-10-13 1988-04-26 Tokin Corp Manufacture of rare-earth magnet
EP0455718A1 (en) * 1989-01-25 1991-11-13 Massachusetts Institute Of Technology Method and apparatus for making polycrystaline flakes of magnetic materials having strong grain orientation
JP2003031407A (en) * 2001-07-16 2003-01-31 Sumitomo Special Metals Co Ltd Iron base anisotropic permanent magnet and its manufacturing method
CN104249137A (en) * 2014-09-12 2014-12-31 沈阳中北通磁科技股份有限公司 Manufacturing method for rare earth permanent magnet alloy, neodymium iron boron rare earth permanent magnet and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395611A (en) * 1986-10-13 1988-04-26 Tokin Corp Manufacture of rare-earth magnet
EP0455718A1 (en) * 1989-01-25 1991-11-13 Massachusetts Institute Of Technology Method and apparatus for making polycrystaline flakes of magnetic materials having strong grain orientation
EP0455718A4 (en) * 1989-01-25 1992-05-20 Massachusetts Institute Of Technology Method and apparatus for making polycrystaline flakes of magnetic materials having strong grain orientation
JP2003031407A (en) * 2001-07-16 2003-01-31 Sumitomo Special Metals Co Ltd Iron base anisotropic permanent magnet and its manufacturing method
CN104249137A (en) * 2014-09-12 2014-12-31 沈阳中北通磁科技股份有限公司 Manufacturing method for rare earth permanent magnet alloy, neodymium iron boron rare earth permanent magnet and manufacturing method
CN104249137B (en) * 2014-09-12 2016-05-25 沈阳中北通磁科技股份有限公司 The manufacture method of RE permanent magnetic alloy and Fe-B rare-earth permanent magnet and manufacture method

Similar Documents

Publication Publication Date Title
JPH0420242B2 (en)
JPH0553853B2 (en)
US4881985A (en) Method for producing anisotropic RE-FE-B type magnetically aligned material
JP2003226944A (en) Sintered magnet using rare earth-iron-boron alloy powder for magnet
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPS62276802A (en) Manufacture of rare earth magnet
JPH0416923B2 (en)
JPH01276705A (en) Rare earth resin permanent magnet and manufacture thereof
JP2002356717A (en) Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition
CN110349743A (en) The manufacturing method of Nd-Fe-B series magnet
KR100229411B1 (en) Method of making high energy permanent magnet in rare earth system
JP3399056B2 (en) Manufacturing method of anisotropic magnet
JPS62124702A (en) Manufacture of rare earth magnet
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
KR100229410B1 (en) Method of manufacturing over-quenched ribbons in rare earth system
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet
JPH0677023A (en) Manufacture of anisotropic magnetic powder
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
JPS63100107A (en) Production of amorphous alloy powder
JPH01297805A (en) Magnetic anisotropic powder and anisotropic plastic magnet
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPS63115306A (en) Manufacture of isotropic sintered magnet having large energy product