JPS62273447A - Method and apparatus for measuring deterioration degree of material - Google Patents

Method and apparatus for measuring deterioration degree of material

Info

Publication number
JPS62273447A
JPS62273447A JP11612686A JP11612686A JPS62273447A JP S62273447 A JPS62273447 A JP S62273447A JP 11612686 A JP11612686 A JP 11612686A JP 11612686 A JP11612686 A JP 11612686A JP S62273447 A JPS62273447 A JP S62273447A
Authority
JP
Japan
Prior art keywords
coil
metal specimen
eddy current
degree
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11612686A
Other languages
Japanese (ja)
Other versions
JPH0545184B2 (en
Inventor
Yasuhiko Suesada
末定 泰彦
Noriaki Nishioka
西岡 憲章
Takeo Kamimura
神村 武男
Toru Goto
徹 後藤
Hitomi Ito
眸 伊東
Yoshikuni Kadoya
好邦 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP11612686A priority Critical patent/JPS62273447A/en
Publication of JPS62273447A publication Critical patent/JPS62273447A/en
Publication of JPH0545184B2 publication Critical patent/JPH0545184B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable highly accurate measurement of the degree of deterioration in material, by detecting only information indicating changes in the electric conductivity of a sample based on the detection output as obtained when a current is supplied to a coil for generating eddy current and a coil for magnetization. CONSTITUTION:Coils 2, 3 and 5 respectively for generating eddy current, for detection and magnetization are arranged on a metal sample 1, an alternating current is supplied to the coil 2 from an exciting power source 41 to induce a fine voltage in the coil 3 and the voltage is synchronously detected as reference signal for a signal of a power source 41 with a lock in amplifier 42. When compared with an output as obtained when the sample 1 is separated from the coils 2, 3 and 5, an output of the amplifier 42 shows a change according to the degree of deterioration in material of the sample 1. The changes in the output are mixed with those in magnetic permeability and in electric conductivity of the sample 1. Under such a condition, when a current is supplied to the coil 5, the sample 1 is magnetized to change in the magnetic permeability and the amplifier 42 converts this changing output in the coordinates to output only the portion of the electric conductivity containing no effect of the magnetic permeability. Thus, the degree of deterioration is evaluated based on changes in the electric conductivity alone thereby enabling highly accurate measurement of the degree of deterioration.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は例えばタービンプラントにおけるロータ、ブレ
ード、ケーシング等の金属材料の材料劣化度を渦電流探
傷法を利用して測定する材料劣化度測定方法及びその装
置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention utilizes eddy current flaw detection to measure the degree of material deterioration of metal materials such as rotors, blades, and casings in turbine plants. The present invention relates to a method and device for measuring the degree of material deterioration.

〔従来の技術〕[Conventional technology]

第3図を参照して従来の技術について説明する。 The conventional technique will be explained with reference to FIG.

第3図において、lは金属供試体、2は渦電流発生用コ
イル、3は検出用コイル、4は探傷子として同軸に配置
された渦電流発生用コイル2及び検出用コイル3に電源
を供給すると共に出力の信号解析をする信号処理装置で
ある。この信号処理装置4は渦電流発生用コイル2に数
10に〜200 kHzの高周波電流を供給する高周波
励磁電源41と、検出用コイル3に誘起される微小電圧
を増幅し、高周波励磁電源4ノの信号を参照信号として
同期検波し、直交する2成分の直流電圧信号を得るロッ
クインアンプ42と、このロックインアンプ42の出力
電圧を指示する電圧計44とから構成されている。
In Fig. 3, l is a metal specimen, 2 is an eddy current generation coil, 3 is a detection coil, and 4 is a flaw detector that supplies power to the eddy current generation coil 2 and detection coil 3, which are coaxially arranged. This is a signal processing device that simultaneously analyzes the output signal. This signal processing device 4 includes a high frequency excitation power supply 41 that supplies a high frequency current of several tens to 200 kHz to the eddy current generation coil 2, and a high frequency excitation power supply 41 that amplifies the minute voltage induced in the detection coil 3. The lock-in amplifier 42 performs synchronous detection using the signal as a reference signal to obtain orthogonal two-component DC voltage signals, and a voltmeter 44 indicates the output voltage of the lock-in amplifier 42.

上記構成にあって、金属供試体1に近接した渦電流発生
用コイル2に、高周波励磁電源4ノから数10に〜20
0 kHzの高周波電流を供給すると、検出用コイル3
に誘起する検出電圧は金属供試体1の透磁率及び電気伝
導度の変化に伴って変化する。
In the above configuration, the eddy current generating coil 2 close to the metal specimen 1 is supplied with a high frequency excitation power source ranging from 4 to several tens to 20
When a high frequency current of 0 kHz is supplied, the detection coil 3
The detected voltage induced in the metal specimen 1 changes as the magnetic permeability and electrical conductivity of the metal specimen 1 change.

この場合、金属供試体1の透磁率及び電気伝導度は、同
一の材料(供試体)を対象にした材料が長期間に亘シ高
温、高応力負荷状態で用いられている時に変化を生じ、
この変化をロックインアンf42及び電圧計44により
測定すれば、その材料の劣化度、又は余寿命が推定され
るとしている。
In this case, the magnetic permeability and electrical conductivity of the metal specimen 1 change when the same material (specimen) is used under high temperature and high stress conditions for a long period of time.
By measuring this change using the lock-in amplifier f42 and the voltmeter 44, the degree of deterioration or remaining life of the material can be estimated.

この手法は、三菱重工技報21(3)ppl (’ 8
4 )に渦電流を応用した材料の劣化度測定方法として
紹介されている。
This method is described in Mitsubishi Heavy Industries Technical Report 21(3) ppl ('8
4) is introduced as a method for measuring the degree of deterioration of materials using eddy currents.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の方法及び装置による測定値は、金属供試
体1の透磁率及び電気伝導度の変化の混合したものとし
て検出される。これに関しては、既に土門他「非破壊検
査J23−9 (’ 74 )pp 137で理論的に
説明されている。
The measured values obtained by the conventional method and apparatus described above are detected as a mixture of changes in magnetic permeability and electrical conductivity of the metal specimen 1. This has already been theoretically explained in Domon et al., "Nondestructive Testing J23-9 ('74), pp. 137.

一方、金属材料の使用中の劣化度の測定のためには、電
気伝導度を測定することにより高精度の測定結果が得ら
れるといり、結果報告がなされている。これに関しては
、例えば、胴厚「原子力発電J35−9(”84)pp
75で理論的に説明されている。
On the other hand, it has been reported that highly accurate measurement results can be obtained by measuring electrical conductivity in order to measure the degree of deterioration of metal materials during use. Regarding this, for example, the body thickness "Nuclear power generation J35-9 ("84)pp
It is explained theoretically in 75.

しかるに、従来の方法及び装置にあっては、金属供試体
1の透磁率及び電気伝導度の混合した情報を得ているた
めに、電気伝導度の変化のみを抽出することによる材料
劣化度のff1lr定か不可能であシ、との種渦電流を
用いた非破壊検査装置として満足のゆくものではなかっ
た。
However, in the conventional method and apparatus, since mixed information on the magnetic permeability and electrical conductivity of the metal specimen 1 is obtained, it is difficult to estimate the degree of material deterioration by extracting only the change in electrical conductivity. However, it was not satisfactory as a non-destructive testing device using eddy currents.

そこで、本発明は、電気伝導度の変化を抽出できるよう
にして材料の劣化度を測定可能とした材料劣化度測定方
法及びその装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method and apparatus for measuring the degree of deterioration of a material, which makes it possible to measure the degree of deterioration of a material by extracting changes in electrical conductivity.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は上記問題点を解決し目的を達成するために次ぎ
のような手段を講じたことを特徴としている。すなわち
、材料劣化度測定方法としては、金属供試材に近接した
探傷子に交番電流を通電することにより渦電流を生じせ
しめ、この渦電流により変化する上記探傷子のインピー
ダンスを測定することにより上記金属供試体の電気伝導
度の変化及び透磁率の変化が混在した情報を検知すると
共に上記金属供試体を低い周波数で磁化することにより
上記金属供試体に透磁率変化を生じさせ、上記交番電流
を参照することにより上記金属供試体の電気伝導度の変
化を示す情報のみを検知して、上記金属供試体の材料劣
化度を測定することを特徴としている。
The present invention is characterized by taking the following measures in order to solve the above problems and achieve the objects. In other words, the method for measuring the degree of material deterioration is to generate an eddy current by passing an alternating current through a flaw detector close to the metal specimen, and measure the impedance of the flaw detector that changes due to this eddy current. Detecting information containing a mixture of changes in electrical conductivity and changes in magnetic permeability of the metal specimen, and magnetizing the metal specimen at a low frequency to cause a change in magnetic permeability in the metal specimen, causing the alternating current to flow. The present invention is characterized in that the degree of material deterioration of the metal specimen is measured by referencing only information indicating changes in electrical conductivity of the metal specimen.

一方、材料劣化度測定装置としては、互いに近接し且つ
金属供試体に夫々近接して配置される探傷子として渦電
流発生用コイル及び検出用コイル。
On the other hand, as a material deterioration degree measuring device, an eddy current generation coil and a detection coil are used as flaw detectors that are placed close to each other and close to the metal specimen, respectively.

磁化用コイルと、上記渦電流発生用コイルに交番電流を
供給する渦電流発生用電源と、上記磁化用コイルに低い
周波数の電流を供給する励磁用電源と、上記渦電流発生
用コイル及び磁化用コイルに所定の電流を供給したとき
に上記検出用コイルにより検出した出力に基づき上記渦
電流発生用電源の出力電流を参照することにより上記金
属供試体の電気伝導度の変化を示す情報のみを検知して
上記金属供試体の材料劣化度を検出する信号処理手段と
を具備したことを特徴としている。
a magnetizing coil, an eddy current generating power source that supplies an alternating current to the eddy current generating coil, an excitation power source that supplies a low frequency current to the magnetizing coil, and the eddy current generating coil and magnetizing coil. Only information indicating changes in electrical conductivity of the metal specimen is detected by referring to the output current of the eddy current generation power source based on the output detected by the detection coil when a predetermined current is supplied to the coil. and signal processing means for detecting the degree of material deterioration of the metal specimen.

〔作用〕[Effect]

このような手段を講じた本発明方法及びその装置によれ
ば、金属供試体の電気伝導度の変化及び透磁率の変化が
混在した情報から電気伝導度の変化を示す情報のみが抽
出され、この電気伝導度の変化を示す情報により金属供
試体の材料劣化度が測定可能となる。
According to the method and its device of the present invention that take such measures, only information indicating changes in electrical conductivity is extracted from information containing a mixture of changes in electrical conductivity and changes in magnetic permeability of a metal specimen. Information indicating changes in electrical conductivity makes it possible to measure the degree of material deterioration of the metal specimen.

〔実施例〕〔Example〕

第1図は本発明方法及びその装置を適用した一実施例を
示す構成図であシ、第3図と同一部分には同一符号を付
してその説明は省略する。
FIG. 1 is a block diagram showing an embodiment to which the method and apparatus of the present invention are applied, and the same parts as in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted.

第1図において、探触子として渦電流発生用コイル2及
び検出用コイル3と、磁化用コイル5とは互いに近接し
て同心配置され且つ金属供試体lに夫々近接して配置さ
れている。信号処理装置4は、渦電流発生用コイル2に
0.05〜5 kHzの交番電流を供給する渦電流発生
用として高周波励磁電源41と、検出用コイル3に誘起
される微小電圧を増幅し、高周波励磁電源4ノの信号を
参照信号として同期検波し、直交する2成分の直流電圧
信号を得るロックインアン7″42と、このロックイン
アンプ42の出力電圧をX−Y表示するオシロスコープ
43と、オシロスコープ43のY入力の電圧を指示する
電圧計44と、磁化用コイル5に低周波の例えば数Hz
の電流を供給する励磁用として低周波電源45とから構
成されている。
In FIG. 1, as a probe, an eddy current generating coil 2, a detecting coil 3, and a magnetizing coil 5 are arranged concentrically close to each other and close to a metal specimen 1, respectively. The signal processing device 4 amplifies the minute voltage induced in the detection coil 3 and a high frequency excitation power source 41 for eddy current generation that supplies an alternating current of 0.05 to 5 kHz to the eddy current generation coil 2. A lock-in amplifier 7''42 that synchronously detects the signal of the high-frequency excitation power supply 4 as a reference signal to obtain orthogonal two-component DC voltage signals, and an oscilloscope 43 that displays the output voltage of the lock-in amplifier 42 in X-Y. A voltmeter 44 that indicates the Y input voltage of the oscilloscope 43 and a low frequency, for example, several Hz, are connected to the magnetizing coil 5.
A low frequency power source 45 is used for excitation to supply current.

上記構成にあって、コイル2,3.5が金属供試体1か
ら離れた位置にあシ、磁化用コイル5への入力が零であ
ると、検出用コイル3は渦電流発生用フィル2と空間中
で結合して誘起電圧を得、オシロスコ−7’4Jに出力
を得る。この状態を第2図(−)に示す。
In the above configuration, if the coils 2, 3.5 are located away from the metal specimen 1, and the input to the magnetizing coil 5 is zero, the detection coil 3 is connected to the eddy current generating filter 2. They are coupled in space to obtain an induced voltage and an output to the oscilloscope 7'4J. This state is shown in FIG. 2 (-).

次ぎにコイル2,3.5を金属供試体1上に配置すると
、検出用コイル3と渦電流発生用コイル2は金属供試体
1を経て結合され、オシロスコープ43に表示された出
力が変化する。この状態を第2図(b)に示す。
Next, when the coils 2, 3.5 are placed on the metal specimen 1, the detection coil 3 and the eddy current generating coil 2 are coupled through the metal specimen 1, and the output displayed on the oscilloscope 43 changes. This state is shown in FIG. 2(b).

ここで、金属供試体1は材質劣化を伴うものであシ、従
りて、実際には第2図(C)に示す如く変化する。どの
場合、上記出力変化は金属供試体1の透磁率、電気伝導
度の変化の混在したものであシ、第2図(C)からは透
磁率の変化と電気伝導度の変化とは分離識別することが
できない。この状態で磁化用コイル5へ電流を供給する
と、金属供試体1は磁化されて透磁率の変化を生じ、第
2図(d)に示す如くの変化を生じる。この変動する出
力は透磁率変化に起因するものである。しかるに、ロッ
クインアンプ42はこの出力を座標変換し、第2図(、
)に示す如きの出力を得ることができる。ここで、第2
図(、)の木で示した出力は透磁率の影響を含まない、
言替えると電気伝導度の成分をのみを示すことになシ、
この大きさは電圧計44に示される。
Here, the metal specimen 1 is subject to material deterioration, and therefore actually changes as shown in FIG. 2(C). In any case, the above output change is a mixture of changes in magnetic permeability and electrical conductivity of the metal specimen 1, and from Fig. 2 (C), changes in magnetic permeability and changes in electrical conductivity can be distinguished separately. Can not do it. When a current is supplied to the magnetizing coil 5 in this state, the metal specimen 1 is magnetized to cause a change in magnetic permeability, resulting in a change as shown in FIG. 2(d). This fluctuating output is due to changes in magnetic permeability. However, the lock-in amplifier 42 transforms the coordinates of this output, and as shown in FIG.
) You can obtain the output shown in (). Here, the second
The output shown in the tree in figure (,) does not include the influence of magnetic permeability,
In other words, it is not necessary to show only the components of electrical conductivity.
This magnitude is indicated on voltmeter 44.

また、ここで、磁化用コイル5への入力を零とすれば、
出力は第2図(f)に示す如くとなり、透磁率変化も知
ることが可能となる。
Also, here, if the input to the magnetizing coil 5 is set to zero,
The output becomes as shown in FIG. 2(f), and it becomes possible to know changes in magnetic permeability.

以上の如く本実施例によれば、次ぎのような作用効果を
奏する。すなわち、金属供試体1の透磁率の変化は、材
料の組織、残留応力等の冶金的な材料劣化以外の要因で
も大きく変化する。このため、従来のように透磁率の変
化の要因をも同時に検出してしまう手法では、劣化度の
評価精度が低いものになっていたが、本実施例のように
金属供試体1の電気伝導度の変化を透磁率変化と分離し
て測定し、電気伝導度の変化のみに基づいて劣化度を評
価する手法にしているので、高精度の劣化度評価が行な
え、また、通常の渦電流探傷も行なえることから、実用
性の高い非破壊検査が実施できることになる。
As described above, according to this embodiment, the following effects are achieved. That is, the magnetic permeability of the metal specimen 1 changes significantly due to factors other than metallurgical material deterioration, such as the structure of the material and residual stress. For this reason, conventional methods that simultaneously detect the factors that cause changes in magnetic permeability have low accuracy in evaluating the degree of deterioration. This method measures changes in conductivity separately from changes in magnetic permeability, and evaluates the degree of deterioration based only on changes in electrical conductivity, making it possible to evaluate the degree of deterioration with high precision. Since it is also possible to perform non-destructive testing with high practicality.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明は、材料劣化度測定方法とし
ては、金属供試材に近接した探傷子に交番電流を通電す
ることにより渦電流を生じせしめ、この渦電流により変
化する上記探傷子のインピーダンスを測定することによ
り上記金属供試体の電気伝導度の変化及び透磁率の変化
が混在した情報を検知する′と共に上記金属供試体を低
い周波数で磁化することにより上記金属供試体に透磁率
変化を生じさせ、上記交番電流を参照することにより上
記金属供試体の電気伝導度の変化を示す情報のみを検知
して、上記金属供試体の材料劣化度を測定することを特
徴としている。
As detailed above, the present invention is a method for measuring the degree of material deterioration, in which an eddy current is generated by passing an alternating current through a flaw detector close to a metal specimen, and the flaw detector changes due to the eddy current. By measuring the impedance of the metal specimen, information including changes in the electrical conductivity and magnetic permeability of the metal specimen is detected. At the same time, by magnetizing the metal specimen at a low frequency, the magnetic permeability of the metal specimen can be detected. The method is characterized in that the degree of material deterioration of the metal specimen is measured by generating a change in the electrical conductivity of the metal specimen and detecting only information indicating a change in the electrical conductivity of the metal specimen by referring to the alternating current.

また、材料劣化度測定装置としては、互いに近接し且つ
金属供試体に夫々近接して配置される探傷子として渦電
流発生用コイル及び検出用コイル。
In addition, the material deterioration degree measuring device includes an eddy current generation coil and a detection coil as flaw detectors that are placed close to each other and close to the metal specimen, respectively.

磁化用コイルと、上記渦電流発生用コイルに交番電流を
供給する渦電流発生用電源と、上記磁化用コイルに低い
周波数の電流を供給する励磁用電源と、上記渦電流発生
用コイル及び磁化用コイルに所定の電流を供給したとき
に上記検出用コイルにより検出した出力に基づき上記渦
電流発生用電源の出力電流を参照することにより上記金
属供試体の電気伝導度の変化を示す情報のみを検知して
上記金属供試体の材料劣化度を検出する信号処理手段と
を具備したことを特徴としている。
a magnetizing coil, an eddy current generating power source that supplies an alternating current to the eddy current generating coil, an excitation power source that supplies a low frequency current to the magnetizing coil, and the eddy current generating coil and magnetizing coil. Only information indicating changes in electrical conductivity of the metal specimen is detected by referring to the output current of the eddy current generation power source based on the output detected by the detection coil when a predetermined current is supplied to the coil. and signal processing means for detecting the degree of material deterioration of the metal specimen.

上記によれば、金属供試体の電気伝導度の変化及び透磁
率の変化が混在した情報から電気伝導度の変化を示す情
報のみが抽出され、この電気伝導度の変化を示す情報に
より金属供試体の材料劣化度が測定可能とした材料劣化
度測定方法及びその装置が提供できることになる。
According to the above, only the information indicating the change in electrical conductivity is extracted from the mixed information of the change in electrical conductivity and the change in magnetic permeability of the metal specimen, and the information indicating the change in electrical conductivity is used to This means that it is possible to provide a method and device for measuring the degree of material deterioration that allows the degree of material deterioration to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は同実
施例の作用を示す出力特性図、第3図は従来例を示す構
成図である。 1・・・金属供試体、2・・・渦電流発生用コイル、3
・・・検出用コイル、4・・・信号処理装置、高周波励
磁電源、42・・・ロックインアンプ、43・・・オシ
ロスコープ、44・・・電圧計、45・・・低周波電源
、5・・・磁化用コイル。 出願人復代理人  弁理士 鈴 江 武 産業1図 (d)   (e)   (f) 第2図 z 第3図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an output characteristic diagram showing the operation of the same embodiment, and FIG. 3 is a block diagram showing a conventional example. 1... Metal specimen, 2... Eddy current generation coil, 3
...Detection coil, 4...Signal processing device, high frequency excitation power supply, 42...Lock-in amplifier, 43...Oscilloscope, 44...Voltmeter, 45...Low frequency power supply, 5. ... Magnetizing coil. Applicant Sub-Agent Patent Attorney Takeshi Suzue Industry Figure 1 (d) (e) (f) Figure 2z Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)金属供試材に近接した探傷子に交番電流を通電す
ることにより渦電流を生じせしめ、この渦電流により変
化する上記探傷子のインピーダンスを測定することによ
り上記金属供試体の電気伝導度の変化及び透磁率の変化
が混在した情報を検知すると共に上記金属供試体を低い
周波数で磁化することにより上記金属供試体に透磁率変
化を生じさせ、上記交番電流を参照することにより上記
金属供試体の電気伝導度の変化を示す情報のみを検知し
て、上記金属供試体の材料劣化度を測定する材料劣化度
測定方法。
(1) An eddy current is generated by passing an alternating current through a flaw detector close to the metal specimen, and the impedance of the flaw detector, which changes due to this eddy current, is measured to determine the electrical conductivity of the metal specimen. At the same time, by magnetizing the metal specimen at a low frequency, a magnetic permeability change is caused in the metal specimen, and by referring to the alternating current, the metal specimen is detected. A method for measuring the degree of material deterioration of a metal specimen by detecting only information indicating a change in electrical conductivity of the specimen.
(2)互いに近接し且つ金属供試体に夫々近接して配置
される探傷子として渦電流発生用コイル及び検出用コイ
ル、磁化用コイルと、上記渦電流発生用コイルに交番電
流を供給する渦電流発生用電源と、上記磁化用コイルに
低い周波数の電流を供給する励磁用電源と、上記渦電流
発生用コイル及び磁化用コイルに所定の電流を供給した
ときに上記検出用コイルにより検出した出力に基づき上
記渦電流発生用電源の出力電流を参照することにより上
記金属供試体の電気伝導度の変化を示す情報のみを検知
して上記金属供試体の材料劣化度を検出する信号処理手
段とを具備してなる材料劣化度測定装置。
(2) An eddy current generation coil, a detection coil, a magnetization coil, and an eddy current that supplies an alternating current to the eddy current generation coil as flaw detectors arranged close to each other and close to the metal specimen, respectively. a generation power supply, an excitation power supply that supplies a low frequency current to the magnetization coil, and an output detected by the detection coil when a predetermined current is supplied to the eddy current generation coil and the magnetization coil. signal processing means for detecting the degree of material deterioration of the metal specimen by detecting only information indicating a change in electrical conductivity of the metal specimen by referring to the output current of the eddy current generation power supply based on the Material deterioration degree measuring device.
JP11612686A 1986-05-22 1986-05-22 Method and apparatus for measuring deterioration degree of material Granted JPS62273447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11612686A JPS62273447A (en) 1986-05-22 1986-05-22 Method and apparatus for measuring deterioration degree of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11612686A JPS62273447A (en) 1986-05-22 1986-05-22 Method and apparatus for measuring deterioration degree of material

Publications (2)

Publication Number Publication Date
JPS62273447A true JPS62273447A (en) 1987-11-27
JPH0545184B2 JPH0545184B2 (en) 1993-07-08

Family

ID=14679349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11612686A Granted JPS62273447A (en) 1986-05-22 1986-05-22 Method and apparatus for measuring deterioration degree of material

Country Status (1)

Country Link
JP (1) JPS62273447A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115155A (en) * 1990-09-05 1992-04-16 Tokyo Kogyo Kk Noncontact current density measuring probe
JP2002257788A (en) * 2001-02-27 2002-09-11 Takenaka Komuten Co Ltd Diagnostic method of deterioration of steel product
JP2003057201A (en) * 2001-08-08 2003-02-26 Central Res Inst Of Electric Power Ind Nondestructive inspection method of deterioration caused by organization change in coating of structure, and nondestruction inspection method of damage in base material
JP2009020058A (en) * 2007-07-13 2009-01-29 Kobelco Kaken:Kk Method for predicting embrittlement state of reinforcement in reinforced concrete
CN108051648A (en) * 2017-12-01 2018-05-18 西安交通大学 A kind of material electromagnetic attributes measuring method based on DC potential and detection method of eddy
JP2018096852A (en) * 2016-12-14 2018-06-21 株式会社東芝 Device and method for evaluating physical property value
JP2020073928A (en) * 2020-02-05 2020-05-14 株式会社東芝 Physical property value evaluation device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006059497A1 (en) * 2004-12-01 2008-08-07 国立大学法人九州工業大学 Method and device for measuring critical current density of superconductor
JP2008032575A (en) * 2006-07-29 2008-02-14 Nippon Hihakai Kensa Kk Eddy current measuring probe and flaw detection device using it
JP5445054B2 (en) * 2009-11-16 2014-03-19 株式会社ジェイテクト Processed alteration layer detection apparatus and processing alteration layer detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115155A (en) * 1990-09-05 1992-04-16 Tokyo Kogyo Kk Noncontact current density measuring probe
JP2002257788A (en) * 2001-02-27 2002-09-11 Takenaka Komuten Co Ltd Diagnostic method of deterioration of steel product
JP4634628B2 (en) * 2001-02-27 2011-02-16 株式会社竹中工務店 Degradation diagnosis method for steel
JP2003057201A (en) * 2001-08-08 2003-02-26 Central Res Inst Of Electric Power Ind Nondestructive inspection method of deterioration caused by organization change in coating of structure, and nondestruction inspection method of damage in base material
JP2009020058A (en) * 2007-07-13 2009-01-29 Kobelco Kaken:Kk Method for predicting embrittlement state of reinforcement in reinforced concrete
JP2018096852A (en) * 2016-12-14 2018-06-21 株式会社東芝 Device and method for evaluating physical property value
CN108051648A (en) * 2017-12-01 2018-05-18 西安交通大学 A kind of material electromagnetic attributes measuring method based on DC potential and detection method of eddy
JP2020073928A (en) * 2020-02-05 2020-05-14 株式会社東芝 Physical property value evaluation device and method

Also Published As

Publication number Publication date
JPH0545184B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
Dogaru et al. Giant magnetoresistance-based eddy-current sensor
Nair et al. A GMR-based eddy current system for NDE of aircraft structures
KR100218653B1 (en) Electronic induced type test apparatus
CA2299373A1 (en) Eddy-current testing probe
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JP2766929B2 (en) Non-destructive inspection equipment
Postolache et al. A novel uniform eddy current probe with GMR for non destructive testing applications
Ramos et al. Velocity induced eddy currents technique to inspect cracks in moving conducting media
Wincheski et al. Deep flaw detection with giant magnetoresistive (GMR) based self-nulling probe
Bernieri et al. Characterization of an eddy-current-based system for nondestructive testing
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
Nath et al. Study of the new eddy current non-destructive testing sensor on ferromagnetic materials
Butin et al. New NDE perspectives with magnetoresistance array technologies–from research to industrial applications
Porto et al. Design and analysis of a GMR eddy current probe for NDT
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Bernieri et al. ECT probe improvement for in-service non-destructive testing on conductive materials
JP2003194780A (en) Iron oxide layer inspecting apparatus and method
GB2187558A (en) Determining the magnetic flux density within a specimen during magnetic particle inspection techniques
JPH01269049A (en) Method of inspecting deterioration of metallic material
Majima et al. Thickness measurements using extremely low frequency eddy current testing via TMR Sensors operated with AC modulation
Mesquita et al. Development of an Electronic Instrument for Eddy Current Testing
Dogaru et al. Detection of cracks near sharp edges by using giant magneto-resistance-based eddy current probe
Sipahi et al. An investigation of various procedures for analysis of micromagnetic Barkhausen signals for nondestructive evaluation of steels