JPS62273443A - Moisture sensor element - Google Patents

Moisture sensor element

Info

Publication number
JPS62273443A
JPS62273443A JP61116244A JP11624486A JPS62273443A JP S62273443 A JPS62273443 A JP S62273443A JP 61116244 A JP61116244 A JP 61116244A JP 11624486 A JP11624486 A JP 11624486A JP S62273443 A JPS62273443 A JP S62273443A
Authority
JP
Japan
Prior art keywords
moisture
anode electrode
output current
hydrogen
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61116244A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61116244A priority Critical patent/JPS62273443A/en
Publication of JPS62273443A publication Critical patent/JPS62273443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect moisture accurately, by electrolyzing moisture in an atmosphere on an anode electrode to produce an output current carrying hydrogen ions H<+> generated. CONSTITUTION:Porous electrodes as anode electrode 2 and cathode electrode 3 are provided on both sides of a crystal-structured hydrogen ion conducting solid electrolyte 1 comprising a perovskite-based oxide such as SrCeO3 based solid electrolyte. A cap 5 with a tiny hole 4 covering the anode electrode 2 is joined on the electrolyte 1. Type-wise, this employs an hydrogen ion conductor instead of an oxygen ion conductor of a threshold current type oxygen sensor and moisture H2O flows in the direction of the arrow through the tiny hole 4 to be electrolyzed on the anode electrode 2. An output current flows as having hydrogen ions H<+> generated as carrier. As the output current is proportional to the concentration of moisture, the moisture can be measured from the output current. Besides, there is little drift and hysteresis in the sensor output thereby enabling accurate measurement of the moisture.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は気体中に含有されている水分の量を検出するた
めの?Wr度センサに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention is for detecting the amount of moisture contained in a gas. Regarding Wr degree sensor.

従来の技術 従来の湿度センサは主として相対湿度を利用するもので
あり、水蒸気濃度を直接測定できるセンサとしては水の
赤外線吸収スペクトルを利用する形式のものしか知られ
ていない。
2. Description of the Related Art Conventional humidity sensors mainly utilize relative humidity, and the only known sensor capable of directly measuring water vapor concentration is one that utilizes the infrared absorption spectrum of water.

発明が解決すべき問題点 しかしこの形式の測定方法による場合には比較的低濃度
(ppm領域)の水蒸気の測定は精度よく行ない得るが
、パーセントオーダーの水蒸気の濃度測定は殆んど行な
い得ないのが実情である。
Problems to be Solved by the Invention However, with this type of measurement method, it is possible to measure water vapor at relatively low concentrations (ppm range) with high accuracy, but it is almost impossible to measure the concentration of water vapor on the order of percent. That is the reality.

問題点を解決するための手段 本発明はこのような状況の下に種々検討の結果なされた
もので、水分がアノード電極上で電気分解され水素イオ
ン(H゛)を生じることと、この水素イオン(H゛)を
キャリアする出力電流から湿度を検出するようにした点
に特徴がある。
Means for Solving the Problems The present invention was developed as a result of various studies under these circumstances. The feature is that the humidity is detected from the output current carrying (H).

ここに用いられる固体電解質としてはSrCeO3系固
体電解質の如きペロブスカイト系酸化物からなる結晶構
造を有し、酸素イオンの輸率が殆んどOで水素イオンの
輸率がは\1のものを対象とするものである。
The solid electrolyte used here has a crystal structure made of perovskite oxide such as SrCeO3-based solid electrolyte, and the transport number of oxygen ions is mostly O and the transport number of hydrogen ions is \1. That is.

実施例 第1図に示すように水素イオシ導伝性固体電解質1の両
面に多孔性電極を設けてあり、その一方はアノード2他
方はカソード3としである。そしてアノード2を蔽う小
孔4付キヤツプ5が前記水素イオン導伝性固体電解質1
に接合されている。
Embodiment As shown in FIG. 1, porous electrodes are provided on both sides of a hydrogen iodine conductive solid electrolyte 1, one of which serves as an anode and the other as a cathode 3. A cap 5 with a small hole 4 that covers the anode 2 is connected to the hydrogen ion conductive solid electrolyte 1.
is joined to.

即ち型としては限界電流式酸素センサの酸素イオン導伝
体(ジルコニア固体電解質)の代りに、水素イオン導伝
体を用いているもので水分(1120)は矢印方向に小
孔より流れ、水素イオン導伝体1の中に入る。ここでア
ノード電極及びカソード電極上では次の反応が起る。(
注、図示の如く、アノードとカソードの位置は酸素セン
サの場合とは逆になる。) アノード電極HzO−2H” + −0□+2e−(t
l〉水素の存在しない雰囲気中〈 本発明で雰囲気中に水素の存在しない場合、専ら水分が
アノード電極上で電気分解され、これによって生じた水
素イオン(Ho)をキャリアとする出力電流を利用する
こととなる。
In other words, the model uses a hydrogen ion conductor instead of the oxygen ion conductor (zirconia solid electrolyte) of the limiting current type oxygen sensor, and water (1120) flows from the small hole in the direction of the arrow, and hydrogen ions are generated. Enter conductor 1. Here, the following reaction occurs on the anode and cathode electrodes. (
Note: As shown, the anode and cathode positions are reversed for the oxygen sensor. ) Anode electrode HzO-2H" + -0□+2e-(t
l〉In an atmosphere where hydrogen does not exist〈 In the case where hydrogen does not exist in the atmosphere in the present invention, water is exclusively electrolyzed on the anode electrode, and the output current using the resulting hydrogen ions (Ho) as carriers is used. That will happen.

その印加電圧と出力電流の関係は第2図に示すとおりで
あり、水蒸気分圧と限界電流の関係は第3図に示すとお
りとなる。
The relationship between the applied voltage and output current is as shown in FIG. 2, and the relationship between water vapor partial pressure and limiting current is as shown in FIG. 3.

通常の雰囲気(水素の存在しない)中では、センサ印加
電圧が■、以下では水が電気分解しないので出力電流は
観察されない。
In a normal atmosphere (no hydrogen present), no output current is observed when the sensor applied voltage is below ■ because water does not electrolyze.

■。以上の電圧をセンサに印加した場合にはア〉水素を
含む雰囲気中〈 アノード電極 H,−+ 2H” +2e−(4)本雰
囲気中ではアノード電極で水素が水素イオン化される反
応(4)が反応(1)に加わるために、第4図に示すよ
うに二段の限界電流特性になり、水蒸気分圧とΔIL(
H”の存在により増加した電流値)との関係は第5図に
示すとおりである。
■. When the above voltage is applied to the sensor, the reaction (4) in which hydrogen is ionized at the anode electrode occurs in an atmosphere containing hydrogen. In order to participate in reaction (1), a two-stage limiting current characteristic occurs as shown in Figure 4, and water vapor partial pressure and ΔIL(
The relationship with the current value (increased due to the presence of H'') is as shown in FIG.

本発明の更に別の応用例は第6図に示すとおりである。Yet another example of application of the present invention is shown in FIG.

即ち図に於いて実線は含湿空気、点線は乾燥空気で印加
電圧と出力電流の関係グラフであり、IL、、IL2は
含湿空気の各段の出力電流値、ΔIL、、  ΔIL2
は含湿空気と乾燥空気のIL、、IL2に対応する出力
電流の差である。
That is, in the figure, the solid line is a graph of the relationship between applied voltage and output current for humid air and the dotted line is for dry air, where IL, , IL2 are the output current values of each stage for humid air, ΔIL,, ΔIL2
is the difference in output current corresponding to IL, IL2 of humid air and dry air.

具体的には同図を元にして次のように湿度を求めること
ができる。
Specifically, the humidity can be determined as follows based on the figure.

■ Δ■、より求める方法 I20が分解しない領域の限界電流値TL+ と、I2
0が100%分解するときに生ずる電流値IL。
■ Δ■, the method to find from I20 is the limit current value TL+ in the region where it does not decompose,
Current value IL that occurs when 0 decomposes 100%.

との差ΔILの大きさからそれに比例するとこちの湿度
を求める。
From the size of the difference ΔIL between the two and proportional to it, the humidity can be found.

■ Δ■5.より求める方法 被測電気体を乾燥剤等を通過させて、殆んど湿度骨を有
しなくなったドライな気体を測定した結果が点線で示す
特性である。これを基準として除湿しない気体の第1の
平坦部との電流値の差ΔIL、を求めれば、その値が被
測定体の湿度を示す。
■Δ■5. The characteristics shown by the dotted line are the results of passing a desiccant or the like through the electrical object to be measured and measuring dry gas that has almost no moisture content. If the difference ΔIL in current value between the current value and the first flat part of the gas that is not dehumidified is calculated using this as a reference, that value indicates the humidity of the object to be measured.

■ ΔIL2より求める方法 原理的には前記■と同様であるが、たソ′■の場合は気
体中の湿度(水分)の存在により、水素の気体中に占め
る割合(%)が低下し、その結果水素分圧が低くなるこ
とにより、ΔTL、が観測されるのに対し、ΔIL2は
気体中のlI20が実際に分解し、Hoが発生すること
による限界電流値の増分を観測することになる。
■ Method for determining from ΔIL2 The principle is the same as in ■ above, but in the case of Taso'■, the proportion (%) of hydrogen in the gas decreases due to the presence of humidity (moisture) in the gas. As a result, as the hydrogen partial pressure becomes lower, ΔTL is observed, whereas ΔIL2 is an increase in the limiting current value due to the actual decomposition of lI20 in the gas and generation of Ho.

第6図は本発明の他の実施例で、水素イオン導伝性固体
電解質1の両面に多孔性電極を設けてあり、その一方は
アノード2、他方はカソード3である。そしてアノード
2を蔽う小孔(ピンホール)4b付ドーム状の金属薄膜
5bが設けられている。
FIG. 6 shows another embodiment of the present invention, in which porous electrodes are provided on both sides of a hydrogen ion-conducting solid electrolyte 1, one of which is an anode 2 and the other is a cathode 3. A dome-shaped metal thin film 5b with a small hole (pinhole) 4b covering the anode 2 is provided.

なお本発明で用いられる水素イオン導伝体としては5r
CeOt系固体電解質の如きペロブスカイト系酸化物か
らなる結晶構造を有し、酸素イオンの輸率が殆んど0で
水素イオンの輸率がはv’ lのものを対象とするもの
であるし、限界電流センサもこの実施例に限定されるも
のではない。
The hydrogen ion conductor used in the present invention is 5r.
It has a crystal structure made of a perovskite oxide such as a CeOt-based solid electrolyte, and the transport number of oxygen ions is almost 0 and the transport number of hydrogen ions is v'l. The limiting current sensor is also not limited to this embodiment.

発明の効果 本発明は固体電解質として水素イオン(H+)導伝体を
用いた限界電流式湿度センサであり以下の効果を存する
Effects of the Invention The present invention is a limiting current type humidity sensor using a hydrogen ion (H+) conductor as a solid electrolyte, and has the following effects.

■ 湿度濃度(水蒸気分圧)に比例した出力電流(限界
電流)が得られる。
■ Output current (limit current) proportional to humidity concentration (water vapor partial pressure) can be obtained.

即ち水素がない雰囲気中ではI LC)CP I(zO
水素がある雰囲気中ではΔI 、c=< P H,0■
 気体拡散孔の面積や長さを変えることによって、低濃
度から高濃度領域の水蒸気分圧を測定することができる
That is, in an atmosphere without hydrogen, ILC)CPI(zO
In an atmosphere with hydrogen, ΔI, c=< PH, 0■
By changing the area and length of the gas diffusion holes, it is possible to measure the water vapor partial pressure in the low to high concentration range.

■ センサ出力のドリフト(経時変化)やヒステリシス
が殆んどないので正確に測定することができる。
■ Accurate measurement is possible because there is almost no drift (change over time) or hysteresis in the sensor output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による湿度センサ素子の一例を示す断面
図、第2図、第4図、第6図は本発明の湿度センサ素子
の出力電流−印加電流のグラフ、第3図は限界電流−水
蒸気分圧のグラフ、第5図はΔIL−水蒸気分圧のグラ
フ、第7図は本発明による湿度センサ素子の他の一例を
示す断面図である。 1・・・水素イオン導伝性固体電解質、2・・・アノー
ド、3・・・カソード、4,4b・・・小孔、5・・・
キャップ、5b・・・ドーム状の金属薄膜    ・代
理人 弁理士  竹  内   9 第1図 第2図       第3図 第4図       第5図 Epilolを圧 菊6図 卯、加電圧
FIG. 1 is a cross-sectional view showing an example of a humidity sensor element according to the present invention, FIGS. 2, 4, and 6 are graphs of output current vs. applied current of the humidity sensor element according to the present invention, and FIG. 3 is a limit current - a graph of water vapor partial pressure; FIG. 5 is a graph of ΔIL - water vapor partial pressure; FIG. 7 is a cross-sectional view showing another example of the humidity sensor element according to the present invention. DESCRIPTION OF SYMBOLS 1... Hydrogen ion conductive solid electrolyte, 2... Anode, 3... Cathode, 4, 4b... Small hole, 5...
Cap, 5b...Dome-shaped metal thin film Agent: Patent attorney Takeuchi 9 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Pressure on Epilol 6 Figure 2 Apply voltage

Claims (2)

【特許請求の範囲】[Claims] (1)水素イオン導伝性固体電解質の両面に多孔性電極
を設け、その一方をアノード電極、他方をカソード電極
とし、アノード電極を蔽う水素拡散制御体を設け、雰囲
気中に含まれる水分がアノード電極上で電気分解するこ
とにより生じた水素イオン(H^+)をキャリアする出
力電流により湿度を検出するようにしたことを特徴とす
る湿度センサ素子
(1) Porous electrodes are provided on both sides of the hydrogen ion conductive solid electrolyte, one of which is used as an anode electrode and the other as a cathode electrode, and a hydrogen diffusion control body is provided that covers the anode electrode, so that moisture contained in the atmosphere is removed from the anode electrode. A humidity sensor element that detects humidity using an output current that carries hydrogen ions (H^+) generated by electrolysis on an electrode.
(2)水素イオン導伝性固体電解質がSrCeO_3の
如きペロブスカイト系酸化物である特許請求の範囲第1
項記載の湿度センサ素子
(2) Claim 1, wherein the hydrogen ion conductive solid electrolyte is a perovskite oxide such as SrCeO_3.
Humidity sensor element described in section
JP61116244A 1986-05-22 1986-05-22 Moisture sensor element Pending JPS62273443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116244A JPS62273443A (en) 1986-05-22 1986-05-22 Moisture sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116244A JPS62273443A (en) 1986-05-22 1986-05-22 Moisture sensor element

Publications (1)

Publication Number Publication Date
JPS62273443A true JPS62273443A (en) 1987-11-27

Family

ID=14682353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116244A Pending JPS62273443A (en) 1986-05-22 1986-05-22 Moisture sensor element

Country Status (1)

Country Link
JP (1) JPS62273443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098478A (en) * 2020-09-17 2020-12-18 昆明理工大学 All-inorganic lead-free double perovskite humidity sensor and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098478A (en) * 2020-09-17 2020-12-18 昆明理工大学 All-inorganic lead-free double perovskite humidity sensor and preparation method thereof
CN112098478B (en) * 2020-09-17 2021-07-20 昆明理工大学 All-inorganic lead-free double perovskite humidity sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
US6551497B1 (en) Measuring NOx concentration
USRE45100E1 (en) Gas sensor based on protonic conductive membranes
EP0974834A3 (en) Gas sensor with solid and liquid electrolytes connected in series between first and second electrodes
CA2872236C (en) Methods and apparatus for measuring the total organic content of aqueous streams
US4125374A (en) Method and apparatus for determining combustion mixture air/fuel ratio
KR20000068984A (en) Gas sensor
US20070227908A1 (en) Electrochemical cell sensor
US4235689A (en) Apparatus for detecting traces of a gas
JPS62273443A (en) Moisture sensor element
JP2001289816A (en) Controlled potential electrolysis type gas sensor
Ono et al. Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry
JP2003075394A (en) Detector for oxidizing-gas
JPH03131749A (en) Gaseous hydrogen sensor
JPS6383661A (en) Method for measuring humidity by using solid electrolyte
CN106198679B (en) Lambda sensor with electrochemical protection mode
JPH09243594A (en) Constant-potential electrolysis type ammonia gas detector
JP2918990B2 (en) Gas sensor
JPS6394147A (en) Method for measuring humidity by using solid electrolyte
Yasuda et al. The constant potential amperometrical response of the planar electrochemical carbon monoxide sensor
JP2678045B2 (en) Carbon dioxide sensor
JPS62269054A (en) Hydrogen sensor element
JPS6394148A (en) Method for measuring concentration of oxygen by using solid electrolyte
JPS63172953A (en) Method for measuring alcohol concentration by using solid electrolyte
WO2018110520A1 (en) Gas concentration measurement device
KR970071003A (en) Gas / moisture sensor for inert gas detection