JPS62268125A - Manufacture of porous unit for electrolytic capacitor - Google Patents

Manufacture of porous unit for electrolytic capacitor

Info

Publication number
JPS62268125A
JPS62268125A JP11285886A JP11285886A JPS62268125A JP S62268125 A JPS62268125 A JP S62268125A JP 11285886 A JP11285886 A JP 11285886A JP 11285886 A JP11285886 A JP 11285886A JP S62268125 A JPS62268125 A JP S62268125A
Authority
JP
Japan
Prior art keywords
powder
particle size
tantalum
tantalum powder
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11285886A
Other languages
Japanese (ja)
Other versions
JPH0553052B2 (en
Inventor
清水 成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11285886A priority Critical patent/JPS62268125A/en
Publication of JPS62268125A publication Critical patent/JPS62268125A/en
Publication of JPH0553052B2 publication Critical patent/JPH0553052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、′電解コンデンサ用多孔質体の製造方法に関
し、特にタンタルを多孔質陽極体とする電解コンデンサ
の特性改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a porous body for an electrolytic capacitor, and particularly relates to improving the characteristics of an electrolytic capacitor using tantalum as a porous anode body.

〔従来の技術〕[Conventional technology]

一般にタンタル電解コンデンサは、その小型大容量性、
高性能という特徴から工業用、民生用電子鏡器用コンポ
ーネントとして広範に使用されている。しかし、最近の
各種部品の軽薄短小化、低価格化およびチップ部品を中
心とする自動実装技術の進歩の流れの中で今迄以上に小
型化、低価格化が望まれる情況になってきている。そし
て、この情況に対処する技術的な手段の一つとして、タ
ンタル電解コンデンサの基本部分である多孔質陽極体を
構成しているタンタル粉末の粒径を小さくすることによ
り、比表面積(単位体積当りの表面撰)を大きくし、同
−靜[容量に対し使用粉末量を低減するという、いわゆ
る粉末の高りv化技術の検討が進み、徐々に製品ベース
に適用されつつある。
In general, tantalum electrolytic capacitors are characterized by their small size and large capacity.
Due to its high performance, it is widely used as a component for industrial and consumer electronic mirrors. However, with the recent trends of miniaturization and reduction in prices of various components and advances in automatic mounting technology centered on chip components, the situation has become more desirable than ever for miniaturization and lower prices. . One of the technical means to deal with this situation is to reduce the particle size of the tantalum powder that makes up the porous anode body, which is the basic part of tantalum electrolytic capacitors. Research is progressing on so-called high-v powder technology, which increases the surface area of the powder and reduces the amount of powder used relative to the volume, and is gradually being applied to product bases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した粉末の高りv化技術は、従来と岡−の粉末処理
技術ペースで単純に粉末の粒径を小さくしていくという
方法をそのまま適用したのでは、ある一定粒径以下の粉
末で空孔構造が微細化し過ぎ、固体化方法として通常行
われている硝酸マンガンの熱分解による二酸化マンガン
の半導体陰極付けが困難となる。その結果、コンデンサ
としての等個直列抵抗(EAR)おるいはtanδが異
常に増大したり、漏れ電流(L C) 11が大きくな
る等充分な特性が確保できなくなるという問題が生じて
くる。
The above-mentioned technology for increasing the height of V of powder cannot be achieved by applying the method of simply reducing the particle size of the powder at the same pace as Oka's conventional powder processing technology. The pore structure becomes too fine, making it difficult to attach a semiconductor cathode to manganese dioxide by thermally decomposing manganese nitrate, which is a usual solidification method. As a result, problems such as an abnormal increase in the equal series resistance (EAR) or tan δ of the capacitor and an increase in the leakage current (LC) 11 occur, making it impossible to ensure sufficient characteristics.

本発明の目的は、このような問題点を解決し、小石な粒
径のタンタル粉末を使用して、単位体積当りの静電容量
を大きくしてもコンデンサとして充分な固体化特性が得
られる電解コンデンサ用多孔質体の製造方法を提供する
ことにある。
The purpose of the present invention is to solve these problems and to develop an electrolytic method that uses tantalum powder with a pebble particle size to obtain sufficient solidification characteristics as a capacitor even if the capacitance per unit volume is increased. An object of the present invention is to provide a method for manufacturing a porous body for a capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、 タンタル粉末を圧縮成形、熱処理して得られる多孔質焼
結体を陽極体とする電解コンデンサの製造方法において
、上記圧縮成形前のタンタル粉末に、タンタル粉末の平
均粒径よりも大きい平均粒径のアルミニウム粉末を一定
量添加、混合すること、および、タンタル粉末に添加す
る上記アルミニウムの量を5′かち;10体積%、同平
均粒径をタンタル粉末の2倍から6倍の範囲とすること
を特徴とする電解コンデンサの製造方法が得られる。
According to the present invention, in the method for manufacturing an electrolytic capacitor in which a porous sintered body obtained by compression molding and heat treating tantalum powder is used as an anode body, the tantalum powder before compression molding is added with Adding and mixing a certain amount of aluminum powder with a large average particle size, and increasing the amount of aluminum added to the tantalum powder to 10% by volume, with the same average particle size being 2 times to 6 times that of the tantalum powder. There is obtained a method for manufacturing an electrolytic capacitor, characterized in that the capacitance is within the range of .

タンタル粉末にアルミニウム粉末を添加、混合し、圧縮
成形したのち熱処理した場合の多孔質焼結体の形成過程
は次のようになる。タンタルに比べて融点の極端に低い
アルミニウム(融点約660”O)は、昇温過程の途中
、アルミニウムの融点近傍で周囲のタンタル粉末の粒子
に対して一方的に固相拡散あるいは融解して、タンタル
粒子と合金化する。そして最終熱処理温度に到達する過
程で、タンタルあるいはアルミニウムと合金化したタン
タルの粉末同志がシンター結合して、多孔質焼結体を形
成する。ここで注目すべきことは、もともとタンタル粒
子のあった部分が多孔質焼結体の基本構成枠として残9
、アルミニウム粒子の存在した部分が空孔になるという
多孔質体の生成過程を辿ることでわる。従って、存在し
たアルミニウム粒子の大小に応じた大きさの空孔が焼結
体内部に残るという特徴を有する。このことは、添加す
るアルミニウム粉末の飯と粒度を調整することにより、
多孔質体の内部空孔構造を容易にコントロールすること
が可能であることを示唆している。
The process of forming a porous sintered body when aluminum powder is added and mixed with tantalum powder, compression molded, and then heat treated is as follows. Aluminum, which has an extremely low melting point compared to tantalum (melting point approximately 660"O), unilaterally solid-phase diffuses or melts into the surrounding tantalum powder particles near the melting point of aluminum during the heating process. It is alloyed with tantalum particles.Then, in the process of reaching the final heat treatment temperature, the tantalum or tantalum powder alloyed with aluminum sinter-bonds with each other to form a porous sintered body.What should be noted here is , the part where tantalum particles were originally located remains as the basic structural frame of the porous sintered body.
This occurs by following the formation process of a porous body in which the areas where aluminum particles were present become pores. Therefore, the sintered body is characterized in that pores of a size corresponding to the size of the existing aluminum particles remain inside the sintered body. This can be achieved by adjusting the size and particle size of the aluminum powder added.
This suggests that it is possible to easily control the internal pore structure of porous materials.

本発明者は、高融点金属であるタンタル粉末に低融点金
属であるアルミニウム粉末を添加すると、このような独
特の多孔質体形成過程を辿るという特徴に看目し、添加
するアルミニウム粉末の童と粒度調整を行うことによっ
て、多孔質体の内部空孔構造に意識的に分布を持たせ、
これがタンタル電解コンデンサの固体化特性の向上に著
しい効果をもたらすことを確認した。空孔を形成する穴
の大きさに大小の分布を有する多孔質体が得られる結果
、硝酸マンガンの含浸性が向上し、二酸化マンガン半導
体af=にの等個直列抵抗が低減され、固体化特性が向
上することになる。
The inventor of the present invention noticed that when aluminum powder, which is a low melting point metal, is added to tantalum powder, which is a high melting point metal, a unique porous body formation process occurs. By adjusting the particle size, we intentionally create a distribution in the internal pore structure of the porous material,
It was confirmed that this has a significant effect on improving the solid state properties of tantalum electrolytic capacitors. As a result of obtaining a porous body having a size distribution of the pores forming the pores, the impregnating property of manganese nitrate is improved, the series resistance of the manganese dioxide semiconductor af is reduced, and the solidification properties are improved. will improve.

〔突流例〕[Example of rush current]

以下、本発明を実施例によし詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

平均粒径3μmのタンタル粉末に、アルミ粉末を第1表
中に示すような水準内容で添加し、各水準の添加済粉末
を充分に混合した後、圧縮成形し、I X 10 ”r
rrnHlの減圧下400’O/Hrの昇温速度で17
00″C−30分の熱処理を行い、計22水準の多孔質
焼結体を作製した。これら22水準の多孔室体試料すべ
てを0.05 VOf1% リフ酸水溶液中で80Vの
陽#、酸化を行い、120Hzでの靜蛋容fit (C
x20)、単位体積当りのcvf値(CVt/VD 1
.)および16V印加時の漏れ電流(Le)特性を測定
した。また化成後の試料に対し、硝酸マンガンの含浸、
熱分解プロセスを7回繰り返し二酸化マンガン陰極付を
行い、更にグラファイト、銀ペースト付、半田付を行っ
て固体化した状態で、鼾篭8Mma率、コンデンサ全体
としての120Hzでの損失(janδ12o)とta
naxzoイjKのうちの二酸化マンガン等の外部陰極
の等1.11貝列抵抗にもとづく損失成分(tanδo
)、および16V印加時の濁れ電流を測定した。ここで
、靜電容を被覆率は、固体化後の静電容量と化成後we
tでの静電容量(共に120Hzj直)との比で定義し
た。
Aluminum powder was added to tantalum powder with an average particle size of 3 μm at the levels shown in Table 1, and after thoroughly mixing the added powder at each level, compression molding was performed to form an I x 10” r
17 at a heating rate of 400'O/Hr under reduced pressure of rrnHl
A total of 22 levels of porous sintered bodies were prepared by heat treatment at 00"C for 30 minutes. All of these 22 levels of porous chamber body samples were oxidized at 80V in a 0.05 VOf1% refic acid aqueous solution. and a silent fit at 120Hz (C
x20), cvf value per unit volume (CVt/VD 1
.. ) and leakage current (Le) characteristics when 16V was applied were measured. In addition, the sample after chemical conversion was impregnated with manganese nitrate,
The thermal decomposition process was repeated 7 times and a manganese dioxide cathode was attached, followed by graphite, silver paste, and soldering to solidify the capacitor.
Loss component (tan δ o
), and the clouding current when 16V was applied were measured. Here, the coverage rate of the static capacitance is the capacitance after solidification and the we after formation.
It was defined as the ratio to the capacitance at t (both 120Hz direct).

以上の測定の結果刊もれたデータを第1表に示す。Table 1 shows the data that was left out as a result of the above measurements.

各試料水準について化成後、固体化後共50個測定し、
その平均1筐をデータとして示した。
For each sample level, 50 pieces were measured after chemical formation and after solidification.
The average of one box is shown as data.

第1表から次のことがわかる。The following can be seen from Table 1.

アルミニウム粉末を無添加の試料(mz 2 )は、固
体化後の静電容量被覆率が90%と低く、tanδ12
0が4チと大きくなっている。また、LCも化成後we
tに対し固体化時の劣化程度が太きい。これに対し、タ
ンタル粉末の平均粒径より大きいアルミニウム粉末を添
加した試料(N11〜に21)では、静電容量板&率が
同上し、固体化後のtanδ120およびLCが低減さ
れ、全体としてアルミニウム粉末を無添加の試料と比べ
特性が向上し、改良されていることがわかる。
The sample (mz 2 ) with no aluminum powder added had a low capacitance coverage of 90% after solidification, and tan δ12
0 is large at 4chi. In addition, LC is also used after chemical formation.
The degree of deterioration during solidification is greater than t. On the other hand, in the samples (N11 to 21) in which aluminum powder larger than the average particle size of tantalum powder was added, the capacitance plate & ratio were the same as above, the tan δ120 and LC after solidification were reduced, and the aluminum powder as a whole It can be seen that the powder has improved properties compared to the sample without additives.

但し、アルミニウム粉末の添加量が多過ぎると、15体
tJ[%の例(試料用19〜21)に見るように、小型
大容量性を表わすCVf/VO1値が極端に低下してし
まい、粉末扁C■化の意味が実質的に失われてしまうほ
か、tanδ、2III、LC特性改良効果がそれ程得
られなくなってしまう。
However, if the amount of aluminum powder added is too large, as shown in the example of 15 body tJ[% (19 to 21 for samples)], the CVf/VO1 value, which indicates small size and large capacity, will be extremely reduced, and the powder In addition to substantially losing the meaning of flattening the C2, the effects of improving tan δ, 2III, and LC characteristics are no longer obtained.

また、アルミニウム粉末の添加量が少な過き′ても、2
体積俤の例(試料順1〜Nα3)に見るように、アルミ
ニウム粉末を無添加の試料(N1122 )の特性と殆
ど変わらず、改良効果が失われてしまう。これは、アル
ミニウム粉末が少ないと実質的に多孔λ体の空孔構造に
分布を持たせることができなくなってしまうためである
In addition, even if the amount of aluminum powder added is too small, 2
As seen in the volumetric example (sample order 1 to Nα3), the properties are almost the same as those of the sample (N1122) to which no aluminum powder is added, and the improvement effect is lost. This is because if the amount of aluminum powder is small, it becomes virtually impossible to provide a distribution in the pore structure of the porous λ body.

更に、アルミニウム粉末の添加量が適当な範囲の5体積
チから10体槓うの範囲(試料順4〜ト亀18)でも、
アルミニウム粉末粒径がタンタル粉末粒径に比べである
範囲を逸脱すると特性改良効果がそれ程得られなくなっ
てしまう。すなわち、アルミニウム粉末粒径がタンタル
粉末粒径の4倍の24 ttmの場合(試料1@8,1
3.18)には、LC特性改善効効果それ程得られない
ことのほか、CVf/VOI値も低下する傾向がある。
Furthermore, even if the amount of aluminum powder added is in the appropriate range of 5 volumes to 10 volumes (sample order 4 to 18),
If the particle size of the aluminum powder exceeds a certain range compared to the particle size of the tantalum powder, the effect of improving the properties will not be obtained as much. That is, when the aluminum powder particle size is 24 ttm, which is four times the tantalum powder particle size (sample 1 @ 8, 1
3.18), in addition to not being able to obtain much of an LC characteristic improvement effect, there is also a tendency for the CVf/VOI value to decrease.

また、アルミニウム粉末粒径が小さく、タンタル粉末ト
同じ場合(試料N14,9.14)には、tanδ12
0およびLC特性改善効果が失われる。この場合の原因
はアルミニウム粉末粒径が小さいと、アルミニウムが融
解、拡散合金化して抜けたあとに残る空孔径が小さく、
結果として空孔構造に分布を持たせることができなくな
るためである。
In addition, when the aluminum powder particle size is small and the tantalum powder is the same (sample N14, 9.14), tan δ12
The effect of improving 0 and LC characteristics is lost. The reason for this is that when the aluminum powder particle size is small, the pore size remaining after the aluminum melts, diffuses and alloys and escapes is small.
This is because, as a result, the pore structure cannot be distributed.

以上説明して来たことかられかるように、本発明の製造
方法による特性改善効果が極立って発現するためには、
タンタル粉末に添刀口するアルミニウム粉末の景を5体
積チから10体槓%、同平均粒径をタンタル粉末の2倍
から6倍の範囲とするのが好ましい。
As can be seen from what has been explained above, in order for the production method of the present invention to exhibit the characteristic improvement effect to the utmost, it is necessary to
It is preferable that the size of the aluminum powder added to the tantalum powder is 5 to 10% by volume, and the average particle size is in the range of 2 to 6 times that of the tantalum powder.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、粒径の小さいタンタルの
高CV粉末にタンタル粉床より粒径の大きいアルミニウ
ム粉末を一定量添加、混合することによって多孔質陽極
体の空孔構造が改哲され、優れた固体化特性を確株する
ことできる効果がある。
As explained above, the present invention improves the pore structure of the porous anode by adding and mixing a certain amount of aluminum powder, which has a larger particle size than the tantalum powder bed, to a high CV tantalum powder with a small particle size. This has the effect of ensuring excellent solidification properties.

従って、本発明の有用性の高いことは明らかである。Therefore, it is clear that the present invention is highly useful.

代理人 弁理士  内 原   −−”′ゝ・「3Agent Patent Attorney Uchihara --"'"・"3

Claims (2)

【特許請求の範囲】[Claims] (1)タンタル粉末を圧縮成形、熱処理して得られる多
孔質焼結体を陽極体とする電解コンデンサの製造方法に
おいて、前記圧縮成形前のタンタル粉末に、タンタル粉
末の平均粒径よりも大きい平均粒径を有するアルミニウ
ム粉末の一定量を添加・混合することを特徴とする電解
コンデンサ用多孔質体の製造方法。
(1) In a method for manufacturing an electrolytic capacitor in which a porous sintered body obtained by compression molding and heat treating tantalum powder is used as an anode body, the tantalum powder before compression molding has an average particle size larger than the average particle size of the tantalum powder. A method for producing a porous body for an electrolytic capacitor, which comprises adding and mixing a certain amount of aluminum powder having a particle size.
(2)前記タンタル粉末に添加するアルミニウム粉末の
量を5体積%から10体積%、同平均粒径をタンタル粉
末の2倍から6倍の範囲とすることを特徴とする特許請
求範囲第1項記載の電解コンデンサ用多孔質体の製造方
法。
(2) The amount of aluminum powder added to the tantalum powder is from 5% by volume to 10% by volume, and the average particle size is from 2 times to 6 times that of the tantalum powder. The method for manufacturing the porous body for electrolytic capacitors described above.
JP11285886A 1986-05-16 1986-05-16 Manufacture of porous unit for electrolytic capacitor Granted JPS62268125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11285886A JPS62268125A (en) 1986-05-16 1986-05-16 Manufacture of porous unit for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11285886A JPS62268125A (en) 1986-05-16 1986-05-16 Manufacture of porous unit for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62268125A true JPS62268125A (en) 1987-11-20
JPH0553052B2 JPH0553052B2 (en) 1993-08-09

Family

ID=14597294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11285886A Granted JPS62268125A (en) 1986-05-16 1986-05-16 Manufacture of porous unit for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62268125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091953A1 (en) * 2000-06-01 2001-12-06 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091953A1 (en) * 2000-06-01 2001-12-06 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor
US7204866B2 (en) 2000-06-01 2007-04-17 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0553052B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
US5560761A (en) Tantalum powder and electrolytic capacitor using same
US6215652B1 (en) Solid electrolytic capacitor and manufacturing method thereof
DE69829945T2 (en) CAPACITOR WITH AN ELECTRODE CONSISTING OF A SINTERED CORE PARTIALLY NITRIDATED NOBUM POWDER
DE60112962T2 (en) MIXTURES OF TANTALIUM AND TANTALINITRIDE POWDER FOR SUBSTRATES FOR ELECTROLYTIC CAPACITORS
GB2130246A (en) Tantalum powder composition
JP2894326B2 (en) Tantalum powder and solid electrolytic capacitor using the same
EP1275125B1 (en) Niobium sintered body, production method therefor, and capacitor using the same
US4645533A (en) Tantalum powder and method of making
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
JPS62268125A (en) Manufacture of porous unit for electrolytic capacitor
JPS6044822B2 (en) Manufacturing method of porous body for solid electrolytic capacitor
AU2002243956B2 (en) Tantalum-silicon and niobium-silicon substrates for capacitor anodes
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JP4647744B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
AU2002243956A1 (en) Tantalum-silicon and niobium-silicon substrates for capacitor anodes
JPS62188215A (en) Manufacture of electrolytic capacitor
JPS62226617A (en) Manufacture of solid electrolytic capacitor
US6802884B2 (en) Tantalum-silicon and niobium-silicon substrates for capacitor anodes
JPS58223314A (en) Method of producing anode for electrolytic condenser
JPS60229327A (en) Method of producing porous anode for electrolytic condenser
JPS59193017A (en) Method of producing electrolytic condenser
JPH03232213A (en) Manufacture of tantalum solid electrolytic capacitor
JPS6257250B2 (en)
JPS622451B2 (en)
JPS6232606B2 (en)