JPS62188215A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPS62188215A
JPS62188215A JP61030014A JP3001486A JPS62188215A JP S62188215 A JPS62188215 A JP S62188215A JP 61030014 A JP61030014 A JP 61030014A JP 3001486 A JP3001486 A JP 3001486A JP S62188215 A JPS62188215 A JP S62188215A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
minutes
aluminum
leakage current
anodization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030014A
Other languages
Japanese (ja)
Inventor
荒井 吉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61030014A priority Critical patent/JPS62188215A/en
Publication of JPS62188215A publication Critical patent/JPS62188215A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解コンデンサの製造方法に関し、特にアル
ミニウムとチタンの合金からなる多孔質焼結体の陽極酸
化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrolytic capacitor, and particularly to anodizing a porous sintered body made of an alloy of aluminum and titanium.

〔従来の技術〕[Conventional technology]

従来、電解コンデンサ用陽極体材料としては、タンタル
、アルミニウム、ニオブ、チタン、ジルコニウム、バナ
ジウム、ハフニウム、等のいわゆる弁作用金属が知られ
ている。これらの金属は、表面に形成される酸化皮膜を
特電体として、コンデンサを形成している。しかし実用
し得るコンデンサとしては、漏れ電流値、耐圧、誘電損
失等の諸物件が一定水準以上に達していなければならず
、従って、現在実用化されている陽極体は、タンタルと
アルミニウムだけである。タンタルを陽極材料とするコ
ンデンサは、漏れ電流、誘電損失などの゛電気的特性が
優れておシ、安定で極めて信頼性が高く、かつ小型で大
容量のものが得られるという点に特徴があるが、原材料
価格が高いため、特に大容量のものは製品価格が高価に
なるという欠点がある。一方アルミニウムを陽極体とす
るコンデンサは高い動作電圧が得られ、かつ安価で資源
的にも豊富であるという点に特徴があるが、小型化がよ
シ困難なことのほか、電気的特性および安定性の点でタ
ンタルを陽極体とするコンデンサに劣っている。
Conventionally, so-called valve metals such as tantalum, aluminum, niobium, titanium, zirconium, vanadium, and hafnium are known as anode body materials for electrolytic capacitors. These metals form a capacitor using the oxide film formed on the surface as a special electric material. However, for a capacitor to be put into practical use, properties such as leakage current value, withstand voltage, and dielectric loss must reach certain levels or higher, and therefore, the only anode bodies currently in practical use are tantalum and aluminum. . Capacitors using tantalum as anode material have excellent electrical properties such as leakage current and dielectric loss, are stable and extremely reliable, and are characterized by being compact and having large capacity. However, due to the high cost of raw materials, the product has the disadvantage of being expensive, especially for large-capacity products. On the other hand, capacitors with aluminum as the anode body are characterized by the fact that they can obtain high operating voltage, are inexpensive, and have abundant resources, but they are difficult to miniaturize and have poor electrical characteristics and stability. In terms of performance, it is inferior to capacitors that use tantalum as an anode.

これらの電解コンデンサの欠点を補うため、漏れ電流、
誘電損失などの電気的特性および安定性が優れていると
共に、小型大容量化が可能であシ、かつ安価で安定供給
可能な材料を陽極体とする電解コンデンサとして、アル
ミニウムとチタンの合金を陽極体とする電解コンデンサ
(%開昭55−50448.4!開昭56−14062
0.特開昭56−140621、)が開発された。
To compensate for the shortcomings of these electrolytic capacitors, leakage current,
An alloy of aluminum and titanium is used as an anode for electrolytic capacitors, which have excellent electrical properties such as dielectric loss and stability, can be made smaller and have a larger capacity, and can be inexpensively and stably supplied. Electrolytic capacitor (% 1984-50448.4! 14062-1983
0. JP 56-140621) was developed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に多孔質体を陽極体とする電解コンデンサは、陽極
酸化工程で次のような現象が発生する。
Generally, in electrolytic capacitors using a porous material as an anode body, the following phenomenon occurs during the anodization process.

すなわち、多孔質焼結体を電解液中に含浸し陽極酸化を
行なうと多孔置体細孔内部で電解液液抵抗によるジーー
ル熱が発生する。また電解液が酸成分を含む場合にはイ
オン移動に伴う多孔質体内部での酸濃度(電解液濃度)
の増大という現象が発生する。これらの現象は、いずれ
もμmオーダー以下の細孔内部で起こるため、多孔質体
外の電解液を攪拌しても内部での熱発生、r1!濃度増
大を緩和する効果は殆ど得られない。アルミニウムーチ
タン合金の陽極酸化皮膜は、熱と強い酸性環視に比較的
弱いため、これらの現象によって陽極酸化時および固体
化時に漏れ電流値が増大し易く。
That is, when a porous sintered body is impregnated in an electrolyte and subjected to anodic oxidation, Zeel heat is generated within the pores of the porous body due to the resistance of the electrolyte. In addition, if the electrolyte contains an acid component, the acid concentration inside the porous body (electrolyte concentration) due to ion movement.
The phenomenon of an increase in All of these phenomena occur inside pores on the order of μm or less, so even if the electrolyte outside the porous body is stirred, heat is generated inside, r1! Almost no effect can be obtained to alleviate the concentration increase. The anodic oxide film of the aluminum-titanium alloy is relatively susceptible to heat and strong acid oxidation, so these phenomena tend to increase the leakage current value during anodic oxidation and solidification.

バラツキが発生し易いという問題があった。There was a problem in that variations were likely to occur.

本発明の目的は、上述した陽極酸化時に発生する問題の
ある現象を緩オロし、アルミニウムとチタンの合金から
成る多孔質焼結体を陽極体とする電解コンデンサの漏れ
電流特性を向上させることが可能な電解コンデンサの製
造方法を提供することにある。
The purpose of the present invention is to alleviate the problematic phenomenon that occurs during anodization as described above, and to improve the leakage current characteristics of an electrolytic capacitor whose anode body is a porous sintered body made of an alloy of aluminum and titanium. The object of the present invention is to provide a method of manufacturing an electrolytic capacitor that is possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の′a!解コンデンサの製造方法は、アルミニウ
ムとチタンの合金からなる多孔質焼結体を陽極は化して
陽極金属とする電解コンデンサの製造方法において、前
記陽極酸化工程を超音波印加状態で行うことを特徴とし
て構成される。
'a! of the present invention! A method for manufacturing an electrolytic capacitor is characterized in that the method for manufacturing an electrolytic capacitor uses a porous sintered body made of an alloy of aluminum and titanium as an anode metal, and that the anodizing step is performed under the application of ultrasonic waves. configured.

なお、超音び印加の条件を、陽極酸化開始から陽極酸化
最終電圧到達後0分〜30分までの範囲とすることによ
シ効果的な結果が得られる0〔実施例〕 次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例及び従来例の陽極酸化後の
漏れ電流値の比較図であ夛、また第2図は本発明の一実
施例と従来例の固体化後に於ける漏れ電流値の比較図で
ある。
It should be noted that effective results can be obtained by setting the conditions for applying ultrasonic waves from the start of anodization to 0 minutes to 30 minutes after reaching the final voltage of anodization. Embodiments of the invention will be described with reference to the drawings. Figure 1 is a comparison diagram of leakage current values after anodization between an embodiment of the present invention and a conventional example, and Figure 2 is a comparison diagram of leakage current values after solidification between an embodiment of the present invention and a conventional example. It is a comparison diagram of values.

本実施例は以下にのぺる工程によシ作製した。This example was produced by the following process.

まず、平均粒径3μmのアルミニウム粉末および平均粒
径3μmのチタン粉末をアルミニウムとチタンの重量%
が40:60となるように混合した後、圧力1 ton
/fi”で加圧成形した後、I X 10’wrxHg
の減圧下、温度1150℃で焼結を行なうことによって
、アルミニウムーチタン合金多孔質陽極体を作製し、陽
極体とした。
First, aluminum powder with an average particle size of 3 μm and titanium powder with an average particle size of 3 μm were mixed in a proportion of aluminum and titanium by weight.
After mixing so that the ratio is 40:60, the pressure is 1 ton.
/fi" after pressure molding, I x 10'wrxHg
By performing sintering at a temperature of 1150° C. under reduced pressure, an aluminum-titanium alloy porous anode body was produced and used as an anode body.

次に、第1表に示す条件の超音波印加時間で、周波数2
0KH2,昇圧は100V/Hr、0.05体積チのリ
ン酸水溶中で陽極酸化を行なった。(100■到達後の
保持時間は3Hrとした) 第1表 第1表に示した超音波印加時間は、最終電圧到達後の時
間であプ、試料番号A、B、C,D、とも昇圧開始より
超音波印加した。試料番号Aは最終電圧到達後直ぐ超音
波無印加状態とした。試料番号H,C,D、はそれぞれ
最終電圧到達後、15分。
Next, with the ultrasonic application time under the conditions shown in Table 1, frequency 2
Anodic oxidation was carried out at 0 KH2, pressure increased to 100 V/Hr, and in a 0.05 volume phosphoric acid aqueous solution. (The holding time after reaching 100■ was 3 hours) Table 1 The ultrasonic application time shown in Table 1 is the time after reaching the final voltage. Ultrasonic waves were applied from the beginning. For sample number A, immediately after reaching the final voltage, no ultrasonic waves were applied. Sample numbers H, C, and D were taken 15 minutes after reaching the final voltage.

30分、45分まで超音波印加状態で陽極酸化を行なっ
た。また、比較のため従来方法として超音波無印加状態
での陽極ば化も合わせて行なった。
Anodic oxidation was performed under ultrasonic application for 30 and 45 minutes. In addition, for comparison, anodic anodicization without the application of ultrasonic waves was also carried out as a conventional method.

また、第1表に示したすべての陽極酸化処理済試料に硝
酸マンガンの熱分解によって二酸化マンガン層を形成し
グラファイト、銀ペーストおよび半田によシ外部陰極を
取り出して固体化し、コンデンサA’ B’ C’ D
’ E’を作製した。
In addition, a manganese dioxide layer was formed on all the anodized samples shown in Table 1 by thermal decomposition of manganese nitrate, and the external cathode was taken out and solidified with graphite, silver paste, and solder, and capacitors A'B'C'D
'E' was produced.

第1図に陽極酸化後の漏れ電流値を、第2図に固体化後
の漏れ電流値を示した。漏れ電流値は20V印加した1
分後の値であシ、各水準30個の試料に対して測定した
結果を示した。(但し、第1図陽極酸化後についてはo
、oos体積−のリン酸水溶液中で測定した。)第1図
および第2図中、aは最大値、Cは最小値、bは中心値
を示している。
Fig. 1 shows the leakage current value after anodization, and Fig. 2 shows the leakage current value after solidification. The leakage current value is 1 when 20V is applied.
The values after 30 minutes are shown, and the results were measured on 30 samples for each level. (However, after anodization in Figure 1, o
, oos volume - of an aqueous phosphoric acid solution. ) In FIGS. 1 and 2, a indicates the maximum value, C the minimum value, and b the center value.

静電容量は、超音波印加試料および無印加試料とも顕著
な変化は認められずほぼ6.0μFであった。
The capacitance was approximately 6.0 μF with no significant change observed in both the sample to which ultrasonic waves were applied and the sample to which no ultrasonic wave was applied.

第1図および第2図に見られるように、昇圧開始から最
終電圧到達後、0分、15分、30分、(A。
As seen in FIGS. 1 and 2, from the start of boosting to the final voltage, 0 minutes, 15 minutes, 30 minutes (A.

B、C,およびA/、B/、 C/、)超音波印加状態
で陽極酸化を行なった本実施例の試料は従来の方法によ
る超音波無印加の試料(E、E/)と比較して、陽極酸
化後および固体化後共に漏れ電流値が小さい。特に固体
化後においてその差が大きくなっておシ、本発明の効果
の大きいことがわかる。しかし、超音波印加試料が最終
電圧到達後30分よシ長くなると、試料(D、D’)の
場合に見られるように再び漏れ電流値およびそのバラツ
キが大きくなってしまう。従って、超音波印加条件は陽
極酸化開始から隣極酸化最終電圧到達後O分〜30分と
することが好ましい。
B, C, and A/, B/, C/,) The samples of this example, which were anodized with ultrasonic waves applied, were compared with the samples (E, E/) in which no ultrasonic waves were applied using the conventional method. Therefore, the leakage current value is small both after anodization and after solidification. In particular, the difference becomes large after solidification, which shows that the effect of the present invention is large. However, when the ultrasonic-applied sample becomes longer than 30 minutes after reaching the final voltage, the leakage current value and its dispersion become large again, as seen in the case of samples (D, D'). Therefore, it is preferable that the ultrasonic application conditions be 0 minutes to 30 minutes after the start of anodic oxidation and after the final voltage of adjacent electrode oxidation is reached.

以上の結果は本実施例のように、陽極酸化時に超音波を
印加すると多孔質体内部での熱発生、酸濃度増大が緩和
され、熱と酸性環境に比較的弱いアルミニウムとチタン
の合金の陽極酸化膜の成長に良い結果がもたらされ、本
発明の効果の発現につながると考えられる。
The above results demonstrate that, as in this example, applying ultrasonic waves during anodic oxidation alleviates the heat generation and increase in acid concentration inside the porous body, and the anode of an aluminum and titanium alloy that is relatively vulnerable to heat and acidic environments. It is thought that good results are brought about in the growth of the oxide film, leading to the manifestation of the effects of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、アルミニウムとチタンの
合金よシ成る多孔質陽極体を陽極酸化する工程と、超音
波印加状態で行なうことによシ、陽極酸化時に発生する
問題点が解決され陽極酸化後および固体化後において、
充分小さくかつバッフ中の少ない優れた漏れ電流特性が
得られるという効果がある。
As explained above, the present invention solves the problems that occur during anodic oxidation by anodizing a porous anode body made of an alloy of aluminum and titanium, and by applying ultrasonic waves. After oxidation and solidification,
The effect is that excellent leakage current characteristics can be obtained, which are sufficiently small and have a small amount in the buff.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例及び従来例の陽極酸化後の漏
れ電流値の比較図、第2図は本発明の一実施例と従来例
の固体化後に於ける漏れ電流値の比較図である。 A、B、C,D・・・・・・本発明例の超音波無加品、
E・・・・・・従来例の超音波印加試料 A、B、C,D、E、をそれぞれ固体化した試料、a・
・・・・・最大値、b・・・・・・中心値、C・・・・
・・最小値。 3瀬#e流G刀
Fig. 1 is a comparison diagram of leakage current values after anodization between an embodiment of the present invention and a conventional example, and Fig. 2 is a comparison diagram of leakage current values after solidification between an embodiment of the present invention and a conventional example. It is. A, B, C, D...Products without ultrasonic application of the present invention examples,
E...Samples obtained by solidifying conventional ultrasonic applied samples A, B, C, D, and E, respectively, a.
...Maximum value, b...Center value, C...
··minimum value. 3se #e style G sword

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウムとチタンの合金からなる多孔質焼結
体を陽極酸化して陽極金属とする電解コンデンサの製造
方法において、前記陽極酸化工程を超音波印加状態で行
うことを特徴とする電解コンデンサの製造方法。
(1) A method for producing an electrolytic capacitor in which a porous sintered body made of an alloy of aluminum and titanium is anodized to obtain an anode metal, characterized in that the anodizing step is performed under ultrasonic application. Production method.
(2)超音波印加の条件を、陽極酸化開始から陽極酸化
最終電圧到達後0分〜30分までの範囲とする特許請求
の範囲第(1)項記載の電解コンデンサの製造方法。
(2) The method for manufacturing an electrolytic capacitor according to claim (1), wherein the ultrasonic application conditions range from the start of anodization to 0 minutes to 30 minutes after reaching the final voltage of anodization.
JP61030014A 1986-02-13 1986-02-13 Manufacture of electrolytic capacitor Pending JPS62188215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61030014A JPS62188215A (en) 1986-02-13 1986-02-13 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030014A JPS62188215A (en) 1986-02-13 1986-02-13 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS62188215A true JPS62188215A (en) 1987-08-17

Family

ID=12292003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030014A Pending JPS62188215A (en) 1986-02-13 1986-02-13 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62188215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191685A (en) * 1988-05-27 1993-03-09 Citizen Watch Co., Ltd. Buckle for watch bands
JP2017125238A (en) * 2016-01-14 2017-07-20 日本軽金属株式会社 Method for producing electrode for aluminum electrolytic capacitor and chemical conversion device
JPWO2021079813A1 (en) * 2019-10-21 2021-04-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191685A (en) * 1988-05-27 1993-03-09 Citizen Watch Co., Ltd. Buckle for watch bands
JP2017125238A (en) * 2016-01-14 2017-07-20 日本軽金属株式会社 Method for producing electrode for aluminum electrolytic capacitor and chemical conversion device
JPWO2021079813A1 (en) * 2019-10-21 2021-04-29
WO2021079813A1 (en) * 2019-10-21 2021-04-29 日本軽金属株式会社 Aluminum member, test strip for immunochromotagraphy, and aluminum member production method

Similar Documents

Publication Publication Date Title
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
JP3254163B2 (en) Capacitor
GB2512486A (en) Wet electrolytic capacitor
JPS62188215A (en) Manufacture of electrolytic capacitor
KR20210066237A (en) Solid Electrolyte Capacitor and fabrication method thereof
US3544434A (en) Thick film capactors for miniaturized circuitry
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP3486113B2 (en) Method of manufacturing Ta solid electrolytic capacitor
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JP3218818B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS59191321A (en) Method of producing electrolytic condenser
JPS59191320A (en) Method of producing electrolytic condenser
JPS59115517A (en) Method of producing electrolytic condenser
JPS6253594B2 (en)
JPS6140019A (en) Solid electrolytic condenser
JPS59193017A (en) Method of producing electrolytic condenser
JPS59193018A (en) Method of producing electrolytic condenser
JPS59194419A (en) Method of producing electrolytic condenser
JPS60229325A (en) Method of producing electrolytic condenser
JPS60229324A (en) Method of producing electrolytic condenser
JPS59191322A (en) Method of producing electrolytic condenser