JPS62256954A - Production of intermediate stock for fiber-reinforced composite metallic material - Google Patents

Production of intermediate stock for fiber-reinforced composite metallic material

Info

Publication number
JPS62256954A
JPS62256954A JP61098290A JP9829086A JPS62256954A JP S62256954 A JPS62256954 A JP S62256954A JP 61098290 A JP61098290 A JP 61098290A JP 9829086 A JP9829086 A JP 9829086A JP S62256954 A JPS62256954 A JP S62256954A
Authority
JP
Japan
Prior art keywords
fiber
plasma
drum
spraying
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098290A
Other languages
Japanese (ja)
Inventor
Eiji Tanigawa
谷川 栄治
Toshio Sakakibara
榊原 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61098290A priority Critical patent/JPS62256954A/en
Publication of JPS62256954A publication Critical patent/JPS62256954A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain an excellent intermediate stock which has no unsprayed part by a metal by plasma spraying the metal to the surface of fibers under specific conditions in a reduced pressure vessel at the time of producing metal reinforcing fibers as the intermediate stock of a fiber-reinforced composite metallic material. CONSTITUTION:A drum 3 for thermal spraying wound with raw material fibers 7 is disposed to the reduced pressure vessel 1 and a plasma spraying gun 3 which can move back and forth in a direction A along a guide 4 is disposed alongside the drum at the time of producing the intermediate stock of the fiber-reinforced composite metallic material. The inside of the reduced pressure vessel is evacuated to a reduced pressure by a vacuum pump 12 and Ar as gaseous plasma is sealed under about 50-70Torr pressure therein. The distance L between the fiber base material 7 wound on the drum 3 and the plasma spraying gun 2 is specified to 68-78cm, and while the drum 3 is rotated by a motor 13, Al power having <=50mum grain size is plasma- sprayed from a metallic powder supplying device 9 at 600-800A thermal spraying current, 134n20cm length of the plasma jet and 1,200-2,000 pieces/cm fiber distribution density on the drum. The intermediate stock which has no unsprayed part and has the uniform and dense Al sprayed layer is obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は繊維強化金属系複合材料の前段階であ−る中間
素材をプラズマ溶射法を用いて効率よく、しかも高品位
・で製造し得る繊維強化金属系複合材りの中間素材の製
造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention provides an efficient and high-quality intermediate material, which is a preliminary step to fiber-reinforced metal composite materials, by using a plasma spraying method. -Relates to a method for producing an intermediate material for fiber-reinforced metal composite materials.

(従来の技術) 鷹維強化金属系複合材料の強度は、その前段階の工程に
おいて製造される中間素材(以下プリフォームという。
(Prior Art) The strength of the fiber-reinforced metal composite material is determined by the intermediate material (hereinafter referred to as preform) manufactured in the previous step.

)の性状に大きく依存しており、高強度の繊維強化金属
系複合材料を得るには、性状のよいプリフォームを作る
必要がある。
), and in order to obtain a high-strength fiber-reinforced metal composite material, it is necessary to make a preform with good properties.

この繊維強化金属系複合材料のシート状プリフォームの
成形法については従来から数多(の研究がなされており
、拡散接合法、スラリー法、アーク溶射法、プラズマ溶
射法あるいはイオンブレーティング法等が知られている
Numerous studies have been carried out on forming sheet preforms made of fiber-reinforced metal composite materials, including diffusion bonding, slurry, arc spraying, plasma spraying, and ion blating. Are known.

これらの内、拡散接合法とスラリー法は主とし’、、P
′す・細1繊維″n′際′−1°1専ら7−″溶射法、
プラズマ溶射法あるいはイオンブレーティング法が用い
られている。
Among these, diffusion bonding method and slurry method are mainly used.
``S-thin 1 fiber''n'side'-1°1 exclusively 7-'' thermal spraying method,
Plasma spraying or ion brating is used.

(発明が解決しようとする問題点) 上述のイオンブレーティング法によれば、細径繊維へ金
属被覆を均一に、しかも、緻密に形成することができる
が、この方法は製造速度が著しく遅<、フリフオームの
製造コストが高くなるという欠点がある。
(Problems to be Solved by the Invention) According to the above-mentioned ion blating method, it is possible to uniformly and densely form a metal coating on small-diameter fibers, but the production speed of this method is extremely slow. , there is a drawback that the manufacturing cost of the freeform is high.

また、アーク溶射法やプラズマ溶射法は当初は大径繊維
を強化偵維とするシート状プリフォームの製造に採用さ
れはじめ、最近になって細径繊維を強化繊維とするシー
ト状プリフォームの製造にも用いられるようになってぎ
たものであるが、細径繊維に適用する場合、溶射条件の
選定によっては、 ■ 単繊維上の未コーティング部分が多くなる。
In addition, arc spraying and plasma spraying methods were initially used to manufacture sheet preforms using large diameter fibers as reinforcing fibers, and more recently, they have been used to manufacture sheet preforms using small diameter fibers as reinforcing fibers. However, when applied to small-diameter fibers, depending on the selection of thermal spraying conditions, there may be a large amount of uncoated areas on the single fibers.

■ コーティング層がポーラスになりやすい。■ Coating layer tends to become porous.

■ 溶射時のプラズマジェットにより、繊維の破断を生
じる。
■ Plasma jet during thermal spraying causes fiber breakage.

■ 溶射時の高温による繊維と金属の反応により、繊維
が劣化する。
■ Fibers deteriorate due to the reaction between fibers and metal due to the high temperatures during thermal spraying.

等の問題点を生ずるという欠点があった。This method had the disadvantage of causing problems such as the following.

しかしながら、これらの問題点に対する製造条件面から
の改善案は従来、何等提案されていなかった。
However, no proposals for improving these problems from the viewpoint of manufacturing conditions have hitherto been proposed.

複合材料のシート状プリフォームを低価格で、しかも短
時間で製造する方法を提供することを目的とするもので
ある。
The object of the present invention is to provide a method for manufacturing a composite material sheet preform at low cost and in a short time.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の繊維強化金属系複合材料の中間素材の製造方法
は、減圧可能な容器内に、基材となる金属をプラズマ溶
射するプラズマ溶射ガンと、強化繊維を整列するための
溶射用ドラムとを配置し、この溶射用ドラムを回転させ
ながら、その表面に整列された強化繊維に向けて前記プ
ラズマ溶射ガンから基材金属をプラズマ溶射し、シート
状の中間去廿冬を体す入古亭f松L)で−油貢P宛呂内
の鱈圧度を50〜70Torr、  ガン−ワーク間距
離をt、g〜7gCIrL、溶射電流を6oo−50o
h、プラ、(−qジx、7トの長さを13〜20c!n
としてプラズマ溶射を行うことを特徴とする。
(Means for Solving the Problems) The method for producing an intermediate material for a fiber-reinforced metal-based composite material of the present invention includes a plasma spray gun for plasma-spraying a base metal into a container capable of reducing pressure, and a reinforcing fiber. While rotating this thermal spraying drum, a base metal is plasma-sprayed from the plasma spraying gun toward the reinforcing fibers aligned on the surface of the drum, and a sheet-like intermediate At the Irikutei F Matsu L) which experienced the last winter, the cod pressure in the oil pressure P was set at 50 to 70 Torr, the distance between the gun and the workpiece was set at t, g to 7 g CIrL, and the spraying current was set at 6oo to 50o.
h, pla, (-qji x, 7t length 13~20c!n
It is characterized by performing plasma spraying.

なお、本発明にお(・ては、プラズマガスの種類をアル
ゴン、アークガスの圧力を、!−0〜〕f:)psi、
溶射パウダーの粒径を50μm以下、繊維分布密度(溶
射用ドラム上の単位幅当たりの本数)を/20θ〜20
00本/arLとすることが好ましい。
In the present invention, the type of plasma gas is argon, the pressure of the arc gas is !-0~]f:)psi,
The particle size of the thermal spray powder is 50 μm or less, and the fiber distribution density (number of fibers per unit width on the thermal spray drum) is /20θ~20
It is preferable to set it as 00 pieces/arL.

(作用) 上述のように、本発明によれば、減圧プラズマ溶射条件
を適正に選定することによって、単繊維ットによる繊維
の破断は防止される上、溶射時の高温による繊維と金属
の反応も解消し、繊維の劣化は防止される。
(Function) As described above, according to the present invention, by appropriately selecting the low-pressure plasma spraying conditions, fiber breakage due to single fiber strands can be prevented, and the reaction between fibers and metal due to the high temperature during spraying can be prevented. is also eliminated, and fiber deterioration is prevented.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第7図は本発明において使用されるプラズマ溶射システ
ムの平面図であり、第一図はその側面図である。
FIG. 7 is a plan view of the plasma spray system used in the present invention, and FIG. 1 is a side view thereof.

これらの図において、減圧可能なタンク型容器l内には
プラズマ溶射ガンコと溶射用ドラム3が収容されている
In these figures, a plasma spray gun and a thermal spray drum 3 are housed in a tank-type container l that can be depressurized.

容器/の軸線方向の一端近傍にはその直径方向に伸びる
ガイトゲが設置されており、溶射用ドラム3はプラズマ
溶射ガン駆動用モータ5によって回転する送り軸乙によ
り駆動され、矢符A方向に移動する。なお、プラズマ溶
射ガンには、これと溶射用ドラム3の外周に巻回された
繊維基材(ワーク)7との間の距離りを変化させる機構
(図示せず)が付加されている。また、プラズマ溶射ガ
ン2には容器/を気密に貫通する配管系gを介して金属
粉末供給装置デと溶射制御装置10が接続されている。
A guide barb extending in the diameter direction is installed near one end in the axial direction of the container /, and the thermal spray drum 3 is driven by a feed shaft B rotated by a plasma spray gun driving motor 5, and moves in the direction of arrow A. do. Note that a mechanism (not shown) is added to the plasma spray gun to change the distance between the gun and the fiber base material (work) 7 wound around the outer periphery of the spray drum 3. Further, a metal powder supply device D and a thermal spray control device 10 are connected to the plasma spray gun 2 via a piping system g that passes through the container in an airtight manner.

容器/には、排気配管//を介して真空ポンプ/2が連
結され、容器l内を所定の圧力まで減圧する。
A vacuum pump /2 is connected to the container / via an exhaust pipe // to reduce the pressure inside the container l to a predetermined pressure.

また、溶射ドラム回転用モーター/3は溶射用ドラム3
を定速度で回転させ、溶射用ドラム3の外周面上に前記
した繊維分布密度で巻回した細径の繊維に、プラズマ溶
射ガ/ユがら溶射されるプラズマ金属を均一に被着させ
る。
In addition, the thermal spraying drum rotation motor/3 is the thermal spraying drum rotation motor/3.
is rotated at a constant speed to uniformly coat the plasma metal to be sprayed on the thin fibers wound on the outer peripheral surface of the thermal spraying drum 3 with the above-described fiber distribution density.

上述のように構成したプラズマ溶射装置においては、真
空ポンプノコを作動させて容器/内を所定の圧力に減圧
し、溶射ドラム駆動用モータ13を7起動させて溶射用
ドラム3を定速回転させた後、溶射制御装置IOの制御
の下で金属粉末供給装置デがらプラズマ溶射ガンコヘ金
属粉末を供給し、これを溶射用ドラム3上の繊維7に向
けて溶射する。
In the plasma spraying apparatus configured as described above, the vacuum pump saw was operated to reduce the pressure inside the container to a predetermined pressure, and the spraying drum drive motor 13 was activated to rotate the spraying drum 3 at a constant speed. Thereafter, under the control of the thermal spraying control device IO, the metal powder supply device supplies the metal powder to the plasma spraying gun, and sprays the metal powder toward the fibers 7 on the thermal spraying drum 3.

第3図は溶射金属としてアルミニュウムを使用し、大気
溶射時と、減圧下にてガン−ワーク間距離りを7gCm
から60儂まで変化させた減圧溶射時における単繊維表
面上の溶射被覆状態を示すもので、コーティング層は大
気溶射よりも減圧溶射の方が緻密になり、またガン−ワ
ーク間距離りが短くなるほど単繊維へのコーティング状
態も向上する。
Figure 3 shows the distance between the gun and the workpiece of 7gCm when aluminum is used as the spraying metal and when spraying in the atmosphere and under reduced pressure.
This figure shows the state of the thermal spray coating on the surface of a single fiber when the pressure was varied from 1 to 60 degrees.The coating layer becomes denser in vacuum spraying than in air spraying, and the shorter the distance between the gun and the workpiece, the more dense the coating layer becomes. The state of coating on single fibers is also improved.

一方、減圧下においては、第4図に云すように容器/内
の減圧度が上がる(圧力が下がる)につれてプラズマジ
ェットは長くなり、特に圧力の低い領域ではプラズマジ
ェットの長さは急激に伸びるO このため、コーティング層の緻密化とは逆に、!IJP
°ラズマジェットによる影響は、ガン−ワーク間距離り
が同じであれば大気中におけるよりも大きくなり、溶射
条件の設定とコントロールは難しくなる。
On the other hand, under reduced pressure, as shown in Figure 4, the plasma jet becomes longer as the degree of reduced pressure inside the container increases (pressure decreases), and the length of the plasma jet increases rapidly especially in areas of low pressure. O For this reason, contrary to the densification of the coating layer,! IJP
The influence of the lasma jet will be greater than that in the atmosphere if the distance between the gun and the workpiece is the same, making it difficult to set and control the spray conditions.

第S図は、溶射条件と溶射後のプリフォームから溶解抽
出した単繊維(この例では炭素繊維)の引張強度との関
係を示している。この図から明らかなように、ガン−ワ
ーク間距離りが長い場合には素材繊維とほぼ同一の引張
強度を有しているが、ガン−ワーク間距離が6gC!r
L以下になると、引張強度は急激に低下する傾向を示す
。これはガン−ワーク間距離りが一定値を超えて短(な
ると、プラズマジェットの影響によって被溶射部が高温
(r。
FIG. S shows the relationship between thermal spraying conditions and the tensile strength of single fibers (carbon fibers in this example) dissolved and extracted from the preform after thermal spraying. As is clear from this figure, when the distance between the gun and the workpiece is long, it has almost the same tensile strength as the material fiber, but the distance between the gun and the workpiece is 6gC! r
Below L, the tensile strength tends to decrease rapidly. This is because when the distance between the gun and the workpiece becomes shorter than a certain value, the area to be thermally sprayed becomes hot (r) due to the influence of the plasma jet.

=品αの場合、約A50”c’)となり、素材繊維と溶
射金属の間で反応が生じ、繊維強度が低下するためであ
ると考えられる。
In the case of product α, it is approximately A50"c'), and this is thought to be because a reaction occurs between the material fiber and the sprayed metal, resulting in a decrease in fiber strength.

上述したようなガン−ワーク間距離りに関する詳細な試
験の結果、プラズマジェットによる繊維べの悪影響を抑
え、かつ、緻密なコーティングが得れる適性条件として
ガンーワーク間距、雅りを6g〜7コαに選定する必要
のあることが判明した。
As a result of detailed tests regarding the distance between the gun and the workpiece as described above, the gun-work distance and elegance should be set at 6g to 7gα as suitable conditions to suppress the negative effects of the plasma jet on the fiber surface and to obtain a dense coating. It became clear that it was necessary to make a selection.

同様に種々の実験の結果、溶射パウダー粒径や繊維分布
密度等についてもプリフォームの性状を良好に保つため
前述した適性条件(溶射パウダー粒径≦!071m、繊
維分布密度: /200〜2000本/crrL)が存
在することが分かった。
Similarly, as a result of various experiments, in order to maintain good properties of the preform regarding thermal spray powder particle size and fiber distribution density, the suitability conditions described above (thermal spray powder particle size ≦!071 m, fiber distribution density: /200 to 2000 pieces) were found. /crrL) was found to exist.

第6図は上述した各適正条件を満足する条件下で製造し
たプリフォームの走査型電子顕微鏡(SEM)による観
察結果を示し、また第7図は各種のプラズマ溶射条件下
で製造したプリフォームをロール成形して得られた繊維
強化金属系複合材料の引張強度を示す。
Figure 6 shows the results of scanning electron microscopy (SEM) observation of preforms manufactured under conditions that satisfy each of the above-mentioned appropriate conditions, and Figure 7 shows the results of preforms manufactured under various plasma spraying conditions. This figure shows the tensile strength of a fiber-reinforced metal composite material obtained by roll forming.

これらの図からも明らかなように、本発明によれば、溶
射金属は単繊維の表面に均一に、しかも緻密にコーティ
ングされており、また、繊維強化金属系複合材料の引張
強度も最高値を示している。
As is clear from these figures, according to the present invention, the sprayed metal is coated uniformly and densely on the surface of single fibers, and the tensile strength of the fiber-reinforced metal composite material also reaches its highest value. It shows.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、細径の単g2雑に対し
ても均一で緻密なコーティング層を繊維基材の劣化を半
つことなく、しかも短時間で形成できる。
As described above, according to the present invention, a uniform and dense coating layer can be formed even on small-diameter single-g2 materials without half the deterioration of the fiber base material and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で使用される製造装置の具体例を
示す平面図、第2図は同裂造装置を示した側面図、第3
図はプラズマ溶射条件と溶射プリフォームの被覆組織を
図面代用写真を使ってグラフ化して示した図、第j図は
減圧度とプラズマジェットの長さの関係を示すグラフ、
第5図は素材および溶射条件を変化させて製造したプリ
フォーム中の単繊維の引張強度を示すグラフ、第6図は
本発明により製造したプラズマ溶射プリフォームの組、
熾を拡大して示した顕微鏡写真、第り図はプラズマ溶射
条件とロール成形後の繊維強化金属系複合材料の引張強
度の関係を示すグラフである。 /・・・容器、2・・・プラズマ溶射ガン、3・・・溶
射用ドラム、ダ・・・ガイド、5・・・プラズマ溶射ガ
ン駆動用モータ、6・・・ガイド軸、7・・・繊維基材
、ざ・・・配管系、//・・・排気配管、/、7・・・
溶射ドラム回転用モーター。
FIG. 1 is a plan view showing a specific example of the manufacturing device used in the method of the present invention, FIG. 2 is a side view showing the same manufacturing device, and FIG.
The figure is a graph showing the plasma spraying conditions and the coating structure of the sprayed preform using a photograph instead of a drawing. Figure J is a graph showing the relationship between the degree of pressure reduction and the length of the plasma jet.
FIG. 5 is a graph showing the tensile strength of single fibers in preforms manufactured by varying the materials and thermal spraying conditions, and FIG. 6 is a graph showing a set of plasma sprayed preforms manufactured according to the present invention.
The enlarged micrograph is a graph showing the relationship between the plasma spraying conditions and the tensile strength of the fiber-reinforced metal composite material after roll forming. /... Container, 2... Plasma spray gun, 3... Thermal spray drum, Da... Guide, 5... Plasma spray gun drive motor, 6... Guide shaft, 7... Fiber base material,... Piping system, //... Exhaust piping, /, 7...
Motor for rotating thermal spray drum.

Claims (1)

【特許請求の範囲】 1、基材となる金属を減圧可能な容器内にプラズマ溶射
するプラズマ溶射ガンと、強化繊維を整列するための溶
射用ドラムとを配置し、この溶射用ドラムを回転させな
がら、その表面に整列された強化繊維に向けて前記プラ
ズマ溶射ガンから基材金属をプラズマ溶射し、シート状
の中間素材を製造する方法において、前記容器内の減圧
度を50〜70Torr、ガン−ワーク間距離を68〜
78cm、溶射電流を600〜800A、プラズマジェ
ットの長さを13〜20cmとしてプラズマ溶射を行う
ことを特徴とする繊維強化金属系複合材料の中間素材の
製造方法。 2、プラズマガスがアルゴンであり、アークガスの圧力
が50〜70psiであることを特徴とする特許請求の
範囲第1項記載の繊維強化金属系複合材料の中間素材の
製造方法。 3、溶剤パウダー粒径が50μm以下であり、溶射用ド
ラム上の細径強化繊維(直径が25μm程度以下)の繊
維分布密度が1200〜2000本/cmであることを
特徴とする特許請求の範囲第1項または第2項記載の繊
維強化金属系複合材料の中間素材製造方法。 4、溶剤パウダー粒径が50μm以下であり、溶射用ド
ラム上の太径強化繊維(直径が50μm程度以上)の繊
維分布密度が1200〜2000本/cmであることを
特徴とする特許請求の範囲第1項または第2項記載の繊
維強化金属系複合材料の中間素材製造方法。
[Claims] 1. A plasma spraying gun for plasma spraying a base metal into a container capable of reducing pressure, and a spraying drum for aligning reinforcing fibers are arranged, and the spraying drum is rotated. However, in the method of manufacturing a sheet-like intermediate material by plasma spraying a base metal from the plasma spray gun to the reinforcing fibers aligned on the surface, the degree of vacuum in the container is set to 50 to 70 Torr, and the gun The distance between the workpieces is 68~
78 cm, a spraying current of 600 to 800 A, and a plasma jet length of 13 to 20 cm. A method for producing an intermediate material for a fiber-reinforced metal composite material. 2. The method for producing an intermediate material for a fiber-reinforced metal composite material according to claim 1, wherein the plasma gas is argon and the pressure of the arc gas is 50 to 70 psi. 3. The scope of claims characterized in that the particle size of the solvent powder is 50 μm or less, and the fiber distribution density of the small diameter reinforcing fibers (diameter of about 25 μm or less) on the thermal spray drum is 1200 to 2000 fibers/cm. A method for producing an intermediate material for a fiber-reinforced metal composite material according to item 1 or 2. 4. The scope of claims characterized in that the particle size of the solvent powder is 50 μm or less, and the fiber distribution density of large diameter reinforcing fibers (diameter of about 50 μm or more) on the thermal spray drum is 1200 to 2000 fibers/cm. A method for producing an intermediate material for a fiber-reinforced metal composite material according to item 1 or 2.
JP61098290A 1986-04-30 1986-04-30 Production of intermediate stock for fiber-reinforced composite metallic material Pending JPS62256954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098290A JPS62256954A (en) 1986-04-30 1986-04-30 Production of intermediate stock for fiber-reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098290A JPS62256954A (en) 1986-04-30 1986-04-30 Production of intermediate stock for fiber-reinforced composite metallic material

Publications (1)

Publication Number Publication Date
JPS62256954A true JPS62256954A (en) 1987-11-09

Family

ID=14215794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098290A Pending JPS62256954A (en) 1986-04-30 1986-04-30 Production of intermediate stock for fiber-reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS62256954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526196A (en) * 2009-05-08 2012-10-25 ズルツァー・メットコ・アクチェンゲゼルシャフト Method for coating a substrate and substrate having a coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138063A (en) * 1983-12-09 1985-07-22 ナシヨナル・エアロノーテイツクス・アンド・スペース・アドミニストレーシヨン Manufacture of metal matrix composite yonotape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138063A (en) * 1983-12-09 1985-07-22 ナシヨナル・エアロノーテイツクス・アンド・スペース・アドミニストレーシヨン Manufacture of metal matrix composite yonotape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526196A (en) * 2009-05-08 2012-10-25 ズルツァー・メットコ・アクチェンゲゼルシャフト Method for coating a substrate and substrate having a coating

Similar Documents

Publication Publication Date Title
JP7326171B2 (en) A process for producing round preforms by cold spray deposition
EP0358799B1 (en) Silicon-carbide reinforced composites of titanium aluminide
JPS60138063A (en) Manufacture of metal matrix composite yonotape
EP0358804B1 (en) Rf plasma method of forming multilayer reinforced composites
US4805294A (en) Method for finishing the surface of plasma sprayed TI-alloy foils
US5897922A (en) Method to manufacture reinforced axi-symmetric metal matrix composite shapes
CN105908047A (en) Titanium-aluminum-silicon-tantalum alloy material and preparation method thereof
EP0486056B1 (en) Method for producing a synthetic diamond structure
EP0358802B1 (en) Method for fabricating titanium alloys in foil form
JPS62256954A (en) Production of intermediate stock for fiber-reinforced composite metallic material
CN110158018B (en) Al/AlN composite coating and preparation method thereof
CN111286731B (en) Inner wall coating of polycrystalline silicon reduction furnace bell jar, preparation method of inner wall coating, spraying device of inner wall coating of polycrystalline silicon reduction furnace bell jar and application
JPH11302819A (en) Formation of wear resistant film and forming method
KR100743188B1 (en) Manufacturing Method Nano-Structured Super-High Hardness WC-Co Coating
CN1147617C (en) Vacuum plasma gas-phase deposit process to form multielement and multilayer discrete coating
NO344479B1 (en) Procedure for coating a hard substance, and jet rudder.
JPS60227856A (en) Low-pressure thermal spray device
JPH01215934A (en) Pretreatment equipment of fiber for metal-base composite material
CN117144350A (en) Titanium aluminum metal rotary target and preparation method thereof
JPH01133984A (en) Production of sintered body of hyperfine particle
JPH0820856A (en) Production of composite material, heat resistant hollow cylindrical member made of the same and reaction thermal spraying method
JPH02247373A (en) Coated tool steel and its production
JPS5920619B2 (en) Optical fiber metal coating method
JPH0570864A (en) Production of preform for carbon fiber-reinforced metallic composite material
JPH0288703A (en) Surface finish of plasma spray titanium alloy foil