JPH01133984A - Production of sintered body of hyperfine particle - Google Patents

Production of sintered body of hyperfine particle

Info

Publication number
JPH01133984A
JPH01133984A JP62291188A JP29118887A JPH01133984A JP H01133984 A JPH01133984 A JP H01133984A JP 62291188 A JP62291188 A JP 62291188A JP 29118887 A JP29118887 A JP 29118887A JP H01133984 A JPH01133984 A JP H01133984A
Authority
JP
Japan
Prior art keywords
chamber
ultrafine
sintering
sintered body
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291188A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shimizu
靖弘 清水
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62291188A priority Critical patent/JPH01133984A/en
Publication of JPH01133984A publication Critical patent/JPH01133984A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a dense sintered body of hyperfine particles having excellent heat resistance and wear resistance by carrying the hyperfine particle formed in a forming chamber to a sintering chamber given with a pressure difference, then depositing and sintering the same on a substrate kept at a specific temp. CONSTITUTION:The inside of the hyperfine particle forming chamber 1 and sintering chamber 2 connected by a carrying pipe 3 is evacuated to a vacuum and thereafter, gaseous N2, hydrocarbon, gaseous O2, etc., are introduced from cylinders 8, 8' into the forming chamber 1 from which these gases are discharged through the pipe 3 into the sintering chamber 2 so that the pressure difference is given between the forming chamber 1 and the sintering chamber 2. The raw material put into a crucible 5 disposed in the forming chamber 1 is then heated to evaporate by an induction coil 6 connected to an induction heating power supply 7 and is brought into reaction with the hydrocarbon to form the hyperfine particles. The hyperfine particles are introduced through the pipe 3 and a nozzle 19 into the sintering chamber 2 and are deposited on the substrate 9 kept at the temp. of 0.2-0.9 times the absolute temp. of the m. p. of the hyperfine particles by a heater 11 connected to a power supply 12. A laser beam 15 of a laser oscillator 13 connected to a power supply 14 is simultaneously irradiated thereon to sinter the deposited particle.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は超微粒焼結体の!!l造方決方法するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> This invention is an ultrafine sintered body! ! This is how you decide on how to make it.

〈従来の技術〉 従来、超微粒子の焼結体の製造方法としては、原料の超
微粒子粉末に適当な粘結材を加えて加圧成型した後、真
空またはガス中で焼結する粉末冶金法が知られている。
<Prior art> Conventionally, the method for manufacturing ultrafine sintered bodies is a powder metallurgy method in which a suitable caking agent is added to the raw material ultrafine particle powder, pressure molded, and then sintered in vacuum or gas. It has been known.

また、最近ではガス中での蒸発法にて作成した超微粒子
をガスで搬送して基板上に堆積さゼ、圧粉体を作る方法
のガスデポジション法も提案され、この圧粉体を焼結す
ることで緻密な焼結体を得る試みも行なわれている。
Recently, a gas deposition method has also been proposed, in which ultrafine particles created by evaporation in a gas are transported by gas and deposited on a substrate to create a green compact, and the green compact is sintered. Attempts have also been made to obtain a dense sintered body by sintering.

〈発明が解決しようとする問題点〉 しかしながら、上記した粉末冶金法は、鉄系合金、アル
ミ合金、硬質合金、高融点金属等の製造に適用して効果
を発揮しているが、超微粒子の焼結体を製造するに当っ
ては次のような問題点を有しているのである。
<Problems to be solved by the invention> However, although the powder metallurgy method described above has been applied effectively to the production of iron alloys, aluminum alloys, hard alloys, high melting point metals, etc., it is difficult to produce ultrafine particles. There are the following problems in manufacturing the sintered body.

まず第一に、超微粒子は表面が活性であるため、容易に
酸化が進み着火しやすい。この着火を防ぐために表面を
酸化させた粉末を用いると、焼結中に還元することが必
要になり、発生した酸素を含むガスは焼結体中に残って
、ボアを形成しやすい。
First of all, since the surface of ultrafine particles is active, they are easily oxidized and ignited. If a powder with an oxidized surface is used to prevent ignition, it will be necessary to reduce the powder during sintering, and the generated oxygen-containing gas will remain in the sintered body, easily forming bores.

また超微粒子は凝集性が強く、多成分系の合金を作ろう
とする場合、均一に分散することが困難である。
Furthermore, ultrafine particles have strong agglomeration properties, making it difficult to uniformly disperse them when attempting to make a multi-component alloy.

このような点で粉末冶金法による超微粒子焼結体の製法
は、必ずしも成功していなかった。
In this respect, methods for producing ultrafine particle sintered bodies using powder metallurgy have not always been successful.

さらにガスデポジション法は、F記の粉末冶金法におけ
る問題点を解決するものであり、超微粒子の高密度の圧
粉体を青ることができるが、しかしながら、この方法で
は緻密な焼結体を得ることは・できなかった。
Furthermore, the gas deposition method solves the problems in the powder metallurgy method described in F, and can produce a compact powder with a high density of ultrafine particles. It was not possible to obtain.

しかして、超微粒子の吹出しノズルを加熱したり、圧粉
体を作製後加熱することで緻密化する方法も考えられた
が成功するに至っていない。
Methods of densification by heating the ultrafine particle blowing nozzle or by heating the powder compact after production have been considered, but these have not been successful.

〈問題点を解決するための手段〉 本発明者らは上記した問題点を解決するべく検討した結
果、ガスデポジション法で得られる超微粒子堆積物を堆
8!Iすると同時に焼結することによって緻密な焼結体
を得るに至ったものである。
<Means for Solving the Problems> As a result of the inventors' studies to solve the above-mentioned problems, we have developed an ultrafine particle deposit obtained by a gas deposition method. By sintering and sintering at the same time, a dense sintered body was obtained.

即ち、この発明は超微粒子の生成室と焼結室とを搬送管
で連結し、生成室と焼結室に圧力差をつけて得られた超
微粒子をガスで生成室から焼結室に搬送し、焼結室中に
置いた基板上に超微粒子をj11積、焼結させる時に、
この基板の温度を超微粒子の融点の絶対温度の0.2倍
以上、0.9倍以下に保持することにより、緻密で空孔
がなく、また超微粒子の特徴を保った焼結体を得ること
に成功したものである。
That is, the present invention connects an ultrafine particle generation chamber and a sintering chamber with a transfer pipe, creates a pressure difference between the generation chamber and the sintering chamber, and uses gas to convey the obtained ultrafine particles from the generation chamber to the sintering chamber. When ultrafine particles are piled up on a substrate placed in a sintering chamber and sintered,
By maintaining the temperature of this substrate at 0.2 times or more and 0.9 times or less of the absolute temperature of the melting point of the ultrafine particles, a sintered body that is dense, has no pores, and maintains the characteristics of the ultrafine particles can be obtained. It was extremely successful.

〈作用〉 焼結体の強度は構成粒子の粒径の平方根の逆数に比例づ
ることか知られている。従って、粒径を小さくすれば、
焼結体の強度は向上する。超微粒子は通常0.1μm 
(100mm )以下の粒径を持つ粒子であり、これを
焼結すると極めて高い強度が冑られる。超微粒子はガス
中蒸発法によって得ることができる。使用するガスとし
ては水素、ヘリウム、アルゴン、窒素、炭化水素、酸素
などがあり、なかでも特に反応性ガスである窒素、炭化
水素、酸素などを用いることにより、窒化物、炭化物、
酸化物等の超微粒子を得ることができる。
<Operation> It is known that the strength of a sintered body is proportional to the reciprocal of the square root of the particle size of the constituent particles. Therefore, if the particle size is reduced,
The strength of the sintered body is improved. Ultrafine particles are usually 0.1 μm
(100 mm) or less in diameter, and when sintered, extremely high strength is achieved. Ultrafine particles can be obtained by evaporation in gas. Gases used include hydrogen, helium, argon, nitrogen, hydrocarbons, and oxygen. Among these, by using nitrogen, hydrocarbons, and oxygen, which are particularly reactive gases, nitrides, carbides,
Ultrafine particles such as oxides can be obtained.

また、上記のガスを混合ガスとして用いることもでき、
例えば窒素と炭化水素を用りると、炭窒化物の超微粒子
が得られる。
In addition, the above gases can also be used as a mixed gas,
For example, when nitrogen and hydrocarbon are used, ultrafine particles of carbonitride can be obtained.

また、これらのガスは超微粒子生成の媒体となるだけで
なく、得られた超微粒子を生成室から焼結室へと導くた
めの担体ともなるのである。
Furthermore, these gases not only serve as a medium for producing ultrafine particles, but also serve as carriers for guiding the obtained ultrafine particles from the production chamber to the sintering chamber.

このようにガスで搬送することにより、大気中に取出さ
ずにすみ、着火の問題も起こらない。
By conveying the gas in this manner, it is not necessary to take it out into the atmosphere, and there is no problem of ignition.

ガスで搬送された超微粒子は、その途中で均一に分散、
混合され、ノズルより焼結室中の基板上に堆積される。
Ultrafine particles transported by gas are uniformly dispersed along the way.
The mixture is mixed and deposited by a nozzle onto the substrate in the sintering chamber.

この基板は堆積される超微粒子の融点(2種以上の場合
はその低い方)の絶対温度の0.2倍以上、0.9倍以
下の温度に加熱されており、堆積してきた超微粒子は直
ちに焼結し、緻密化する。
This substrate is heated to a temperature of 0.2 times or more and 0.9 times or less of the absolute temperature of the melting point of the ultrafine particles to be deposited (the lower of the melting points in the case of two or more types), and the deposited ultrafine particles Sinter and densify immediately.

上記の基板の温度が超微粒子の融点の絶対温度の0.2
倍未満では、焼結体の緻密化が十分に進まず、このため
所望の強度が得られず、また0、9倍を超えると、粒成
長が著しくなり、超微粒子を用いる意味がなくなる。
The temperature of the above substrate is 0.2 of the absolute temperature of the melting point of the ultrafine particles.
If it is less than 0.9 times, the sintered body will not be sufficiently densified and the desired strength will not be obtained, and if it exceeds 0.9 times, grain growth will become significant and there will be no point in using ultrafine particles.

一度堆積させたものを焼結する方法では、内部に空孔が
残留しやすくなり、強度が十分にでない場合があるが、
この発明の方法によれば堆積と焼結が同時に進行するた
め、空孔の全く存在しない焼結体が得られ、著しい強度
向上が達成される。
In the method of sintering the material once deposited, pores tend to remain inside and the strength may not be sufficient.
According to the method of the present invention, since deposition and sintering proceed simultaneously, a sintered body completely free of pores can be obtained, and the strength can be significantly improved.

またノズルを加熱する方法は、流れる気流中の超微粒子
の加熱には十分でなく、基板の渇αが低いと、膜と基板
の密着性が十分でない。
Further, the method of heating the nozzle is not sufficient to heat the ultrafine particles in the flowing air stream, and if the temperature α of the substrate is low, the adhesion between the film and the substrate is insufficient.

基板を加熱する方法としては、基板全体を加熱してもよ
いが、局所的に加熱すると、焼結完了した部分での粒成
長を抑えることができて好ましい。
As a method of heating the substrate, the entire substrate may be heated, but local heating is preferable because grain growth can be suppressed in the portion where sintering has been completed.

そして、この局所加熱をするためにはレーザー加熱や赤
外線の集光による加熱を行なえばよい。
In order to perform this local heating, laser heating or heating by condensing infrared rays may be performed.

なお、この発明の方法によってSLCのほか、T−C、
Ti N 、 Zr0eなどの超微粒焼結体を得ること
ができる。また、この発明の方法を実施するに当たって
は、例えば図示するような装置を用いればよい。
In addition, by the method of this invention, in addition to SLC, T-C,
Ultrafine sintered bodies of TiN, ZrOe, etc. can be obtained. Further, in carrying out the method of the present invention, for example, an apparatus as shown in the drawings may be used.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1 第1図に示す装置を用いて、次のようにしてSLCの超
微粒焼結体を製造した。
Example 1 Using the apparatus shown in FIG. 1, an ultrafine sintered body of SLC was produced in the following manner.

まず装置全体即ち、超微粒子生成室1と焼結室2を1 
x 10’Torrまで真空に引いたのち、超微粒子生
成室1にガスボンベ8.8′よりメタンガスと水素ガス
を両者の流昂比1.H→/ H2= 1/10として導
入し、これを搬送管3を通して焼結室2へ排気すること
により、超微粒子生成室1を120■0「「、焼結室2
を1.OTorrに保持した。
First, the entire apparatus, that is, the ultrafine particle generation chamber 1 and the sintering chamber 2,
After evacuation to x 10' Torr, methane gas and hydrogen gas were introduced into the ultrafine particle generation chamber 1 from a gas cylinder 8.8' at a flow ratio of 1.8'. By introducing H→/H2=1/10 and exhausting it to the sintering chamber 2 through the conveying pipe 3, the ultrafine particle generation chamber 1 becomes 120■0'', the sintering chamber 2
1. It was held at OTorr.

このような状態で生成室1中のるつぼ5に入れた金属け
い素原料4を誘導加熱電源7と接続した誘導コイル6に
て高周波誘導加熱して溶解し、蒸発させると、蒸発した
けい素粒子はメタンガスと反応してSiCとなり、ガス
中で成長し、sonmのSしC超微粒子となった。
In this state, the metal silicon raw material 4 placed in the crucible 5 in the production chamber 1 is melted and evaporated by high-frequency induction heating using the induction coil 6 connected to the induction heating power source 7, and the evaporated silicon particles reacted with methane gas to become SiC, which grew in the gas and became ultrafine S and C particles of sonm.

この超微粒SLC粒子は生成室1と焼結室2の圧力差に
より搬送管3を通ってノズル19より焼結室2中に載置
した基板9上に堆積、焼結10された。
Due to the pressure difference between the generation chamber 1 and the sintering chamber 2, the ultrafine SLC particles were deposited and sintered 10 on the substrate 9 placed in the sintering chamber 2 through the nozzle 19 through the conveying pipe 3.

基板9は基板加熱用電源12に接続した基板加熱用ヒー
ター11により573″Kに加熱され、さらに焼結促進
のため基板9上に堆積した超微粒子にはレーザー電源1
4に接続したレーザー発振4113のレーザービーム1
5によって炭酸ガスレーザー(出力160W、ビーム径
8φ)を照射した。
The substrate 9 is heated to 573''K by a substrate heating heater 11 connected to a substrate heating power source 12, and a laser power source 1 is applied to the ultrafine particles deposited on the substrate 9 to promote sintering.
Laser beam 1 of laser oscillation 4113 connected to 4
A carbon dioxide gas laser (output 160 W, beam diameter 8 φ) was irradiated using the following method.

なお、基板はx、y、z軸方向に走査し、焼結体寸法を
5 rxtr X 10ntn X 30mjIに調整
した。
Note that the substrate was scanned in the x, y, and z axes directions, and the dimensions of the sintered body were adjusted to 5 rxtr x 10 ntn x 30 mjI.

得られた焼結体を4mjlX8闇X30iaのJIS抗
折試験片に加工し、抗折試験を行なうと同時にビッカー
ス硬さ試験を行なった。
The obtained sintered body was processed into a JIS bending test piece of 4 mjl x 8 dark x 30 ia, and a bending test and a Vickers hardness test were conducted at the same time.

なお、比較量として通常の粉末冶金法によりホットプレ
スで得たSLC焼結体についても同様の試験を行なった
。その結果は、第1表に示す通りであった。
As a comparison, a similar test was also conducted on an SLC sintered body obtained by hot pressing using a normal powder metallurgy method. The results were as shown in Table 1.

第     1     表 実施例2 第2図に示す装置を用いてTL N −Coの複合超微
粒焼結体を製造した。
Table 1 Example 2 A composite ultrafine sintered body of TL N -Co was produced using the apparatus shown in FIG.

まず装置全体即ち、超微粒子生成室1および1′と焼結
室2を1 x 10’Torrまで真空に引いたのち、
超微粒子生成室1にガスボンベ8よりヘリウムガスを導
入し、超微粒子生成室1′にはガスボンベ8′より窒素
ガスを導入し、これらを搬送管3を通して焼結室2へ排
気することにより、超微粒子生成室1を120 Tor
r、超微粒子生成室1′を110Torr、焼結室2を
1.0 Torrに保持した。このような状態で生成室
1中のるつぼ5に入れた金属Co原′)P#4を誘導加
熱電源7と接続した誘導コイル6にて高周波誘導加熱し
て溶解し、蒸発させると、蒸発した00粒子はガス中で
成長し、20nmのSLC超微粒子となった。
First, the entire apparatus, that is, the ultrafine particle generation chambers 1 and 1' and the sintering chamber 2, was evacuated to 1 x 10' Torr, and then
Helium gas is introduced into the ultrafine particle generation chamber 1 from the gas cylinder 8, nitrogen gas is introduced into the ultrafine particle generation chamber 1' from the gas cylinder 8', and these are exhausted to the sintering chamber 2 through the conveyor pipe 3. Particle generation chamber 1 at 120 Torr
r, the ultrafine particle generation chamber 1' was maintained at 110 Torr, and the sintering chamber 2 was maintained at 1.0 Torr. In this state, the metal Co source P#4 placed in the crucible 5 in the generation chamber 1 is melted and evaporated by high-frequency induction heating using the induction coil 6 connected to the induction heating power source 7. The 00 particles were grown in a gas to become 20 nm SLC ultrafine particles.

また、生成室1′中のるつぼ5′に入れた金属T、原料
4′を直流アーク電源7′と接続したアーク電極6′と
の間でアーク溶解し、導入ガスの窒素と反応させ、40
nmのTL N超微粒子を得た。
Further, the metal T and raw material 4' placed in the crucible 5' in the generation chamber 1' are arc melted between the arc electrode 6' connected to the DC arc power source 7', and reacted with the introduced gas nitrogen.
TLN ultrafine particles of nm size were obtained.

この超微粒CoおよびTL N粒子は生成室1および1
′と焼結室2の圧力差により搬送管3および3′を通っ
てノズル19より焼結室2中に載置した基板9上に堆積
、焼結10された。
These ultrafine Co and TL N particles are produced in the generation chambers 1 and 1.
Due to the pressure difference between ' and the sintering chamber 2, the particles were deposited and sintered 10 on the substrate 9 placed in the sintering chamber 2 through the nozzle 19 through the conveying pipes 3 and 3'.

なお、両用微粒子は搬送管で運ばれる間に均一に分散混
合された。
Note that the dual-use fine particles were uniformly dispersed and mixed while being conveyed by the conveying tube.

基板9は基板加熱用電源12に接続した基板加熱用ヒー
ター11により800″Kに加熱され、さらに焼結促進
のため基板9上に堆積した超微粒子にはレーザー電源1
4に接続したレーザー発振機13のレーザービーム15
によって炭酸ガスレーザー(出力150W、ビーム径8
φ)を照射した。
The substrate 9 is heated to 800''K by a substrate heating heater 11 connected to a substrate heating power source 12, and a laser power source 1 is applied to the ultrafine particles deposited on the substrate 9 to promote sintering.
Laser beam 15 of laser oscillator 13 connected to 4
carbon dioxide laser (output 150W, beam diameter 8
φ) was irradiated.

なお、基板はX、Y、Z軸方向に走査し、焼結体寸法を
5 mar X 13mm X 13闇に調整した。
The substrate was scanned in the X, Y, and Z axis directions, and the dimensions of the sintered body were adjusted to 5 mm x 13 mm x 13 mm.

得られた焼結体をI S OS N G N  120
408の形状の切削チップに加工し、以下の切削試験を
行なった。
The obtained sintered body was
A cutting chip having a shape of 408 was processed, and the following cutting test was conducted.

なお、比較量として通常の粉末冶金法により作成したT
L N −Co焼結体についても同様の試験を行なった
In addition, as a comparison amount, T made by ordinary powder metallurgy method
A similar test was also conducted on the LN-Co sintered body.

切削条件  被削材: S 0M435  (H8=2
80 )カッター: D N F 4160R チップ: S N G N 120408切削速度: 
150 m/min 送  リ:0.12IM/刃 切込み:2M 時  間:20分 この結果、本発明品のチップはV、w粍が0.17m5
で継続して使用可能であったのに体し、比較量のチップ
は殉摩耗が0.31m5で、しかもチッピングが多数発
生し、これ以上の切削は不可能であった。
Cutting conditions Work material: S 0M435 (H8=2
80) Cutter: D N F 4160R Tip: S N G N 120408 Cutting speed:
150 m/min Feed rate: 0.12 IM/blade depth of cut: 2 M Time: 20 minutes As a result, the tip of the present invention has a V and W diameter of 0.17 m5.
Although it was possible to continue using the tip, the comparative tip had a loss of wear of 0.31 m5, and many chippings occurred, making further cutting impossible.

〈弁明の効果〉 以上説明したように、この発明によれば緻密な超微粒子
の焼結体を得ることが可能となったのである。
<Effect of Explanation> As explained above, according to the present invention, it has become possible to obtain a sintered body of dense ultrafine particles.

従って、ファインはラミックス等の分野で機械的強度を
要求される部品、耐熱性、耐摩耗性を要求される部品な
どに利用すると効果的である。
Therefore, fine is effective when used in parts that require mechanical strength, heat resistance, and abrasion resistance in the field of lamics and the like.

また、切削工具、耐摩工具、塑性加工用工具などの硬質
合金の分野に使用しても非常に有効である。さらにプリ
ント基板の配線など電子材料分野に応用することも可能
である。
It is also very effective when used in the field of hard alloys such as cutting tools, wear-resistant tools, and plastic working tools. Furthermore, it is also possible to apply it to the field of electronic materials such as wiring for printed circuit boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の製造法を実施するに使
用する装置の一例を示す概略図である。 1.1′・・・超微粒子生成室  2・・・焼結室3.
3′・・・搬送管      4.4′・・・原料5.
5′・・・るつぼ      6・・・誘導コイル6′
・・・アーク電極    7・・・誘導加熱電源7′・
・・直流アーク電源  8.8′・・・ガスボンベ9・
・・基板        10・・・超微粒子焼結体。 11・・・基板加熱ヒーター  12・・・基板加熱用
電源13・・・レー(アー発振橢   14・・・レー
ザー電源15・・・レーザービーム   16・・・レ
ーザー用窓材17・・・基板駆動モーター  18・・
・モーター用電源19・・・ノズル
FIGS. 1 and 2 are schematic diagrams showing an example of an apparatus used to carry out the manufacturing method of the present invention. 1.1'... Ultrafine particle generation chamber 2... Sintering chamber 3.
3'...Transport pipe 4.4'...Raw material5.
5'... Crucible 6... Induction coil 6'
...Arc electrode 7...Induction heating power supply 7'
...DC arc power supply 8.8'...Gas cylinder 9.
...Substrate 10...Ultrafine particle sintered body. DESCRIPTION OF SYMBOLS 11... Substrate heating heater 12... Power source for substrate heating 13... Ray (ear oscillation) 14... Laser power source 15... Laser beam 16... Laser window material 17... Substrate drive Motor 18...
・Motor power supply 19...nozzle

Claims (3)

【特許請求の範囲】[Claims] (1)超微粒子の生成室と焼結室とを搬送管で連結し、
該生成室と焼結室に圧力差をつけて得られた超微粒子を
ガスで生成室から焼結室に搬送し、焼結室中に置かれた
基板上に該超微粒子を堆積、焼結させる超微粒焼結体の
製造方法において、前記基板の温度をその上に堆積、焼
結させる超微粒子の融点の絶対温度の0.2倍以上、0
.9倍以下に保持することを特徴とする超微粒焼結体の
製造方法。
(1) Connecting the ultrafine particle generation chamber and sintering chamber with a conveyance pipe,
The ultrafine particles obtained by applying a pressure difference between the generation chamber and the sintering chamber are transported by gas from the generation chamber to the sintering chamber, and the ultrafine particles are deposited and sintered on a substrate placed in the sintering chamber. In the method for producing an ultrafine sintered body, the temperature of the substrate is set to 0.2 times or more the absolute temperature of the melting point of the ultrafine particles to be deposited and sintered thereon.
.. A method for producing an ultrafine sintered body, characterized in that the particle size is maintained at 9 times or less.
(2)超微粒子を2種以上使用し、基板温度をそれらの
超微粒子の最も低い融点の絶対温度の0.2倍以上、0
.9倍以下に保持することを特徴とする特許請求の範囲
第1項記載の超微粒焼結体の製造方法。
(2) Two or more types of ultrafine particles are used, and the substrate temperature is 0.2 times or more the absolute temperature of the lowest melting point of those ultrafine particles.
.. 2. The method for producing an ultrafine sintered body according to claim 1, wherein the ultrafine sintered body is maintained at 9 times or less.
(3)基板の加熱をレーザーで局部的に行なうことを特
徴とする特許請求の範囲第1項または第2項記載の超微
粒焼結体の製造方法。
(3) A method for producing an ultrafine sintered body according to claim 1 or 2, characterized in that the substrate is locally heated with a laser.
JP62291188A 1987-11-18 1987-11-18 Production of sintered body of hyperfine particle Pending JPH01133984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291188A JPH01133984A (en) 1987-11-18 1987-11-18 Production of sintered body of hyperfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291188A JPH01133984A (en) 1987-11-18 1987-11-18 Production of sintered body of hyperfine particle

Publications (1)

Publication Number Publication Date
JPH01133984A true JPH01133984A (en) 1989-05-26

Family

ID=17765598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291188A Pending JPH01133984A (en) 1987-11-18 1987-11-18 Production of sintered body of hyperfine particle

Country Status (1)

Country Link
JP (1) JPH01133984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703036A3 (en) * 1990-11-09 1996-04-10 Dtm Corp
JP2002052233A (en) * 2000-08-11 2002-02-19 Sankyo Kk Cleaning device for grain material for polishing game medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703036A3 (en) * 1990-11-09 1996-04-10 Dtm Corp
JP2002052233A (en) * 2000-08-11 2002-02-19 Sankyo Kk Cleaning device for grain material for polishing game medium

Similar Documents

Publication Publication Date Title
US7270596B2 (en) Chemical mechanical polishing process
US5489449A (en) Coated particles of inorganic or metallic materials and processes of producing the same
EP0491521B1 (en) Process for producing diamond film
JPH0433490B2 (en)
JPS58171502A (en) Pulverized composite powder of ceramic and metal
KR100500551B1 (en) Process for manufacturing WC based powder by vaper reaction under vacuum pressure
JPH068170B2 (en) Method for producing high-purity magnesium oxide fine powder
JPH01133984A (en) Production of sintered body of hyperfine particle
WO1995031584A1 (en) Surface treatment techniques
US6126749A (en) Apparatus for manufacturing reaction bonded silicon carbide
US5527747A (en) Rapid process for the preparation of diamond articles
KR100494976B1 (en) Process for manufacturing WC based powder by vapor reaction under atmospheric pressure
US5001001A (en) Process for the fabrication of ceramic monoliths by laser-assisted chemical vapor infiltration
CN110158018B (en) Al/AlN composite coating and preparation method thereof
JP2524622B2 (en) Ultra fine particle film formation method
JPH01127630A (en) Production of hard alloy
JPS5827971A (en) Melt spraying for metal
JPS5825404A (en) Sintering method for sintered hard alloy
JPH01127629A (en) Production of hard alloy
JPH04139084A (en) Production of surface-coated carbon material
KR20040060183A (en) Process for manufacturing W powder by vaper reaction under vacuum pressure
JP4262957B2 (en) Manufacturing method of surface nitrided sintered body
JPH11171669A (en) Production of boron carbide film
JPH03131583A (en) Production of sintered material
JPS61141606A (en) Method for producing ultrafine powder of metal nitride, and apparatus therefor