JPS6225317A - Analog input device - Google Patents

Analog input device

Info

Publication number
JPS6225317A
JPS6225317A JP16416285A JP16416285A JPS6225317A JP S6225317 A JPS6225317 A JP S6225317A JP 16416285 A JP16416285 A JP 16416285A JP 16416285 A JP16416285 A JP 16416285A JP S6225317 A JPS6225317 A JP S6225317A
Authority
JP
Japan
Prior art keywords
analog input
input device
temperature
analog
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16416285A
Other languages
Japanese (ja)
Other versions
JPH0619697B2 (en
Inventor
Yukio Ito
幸男 伊東
Kazuji Yamada
一二 山田
Shigeyuki Kobori
小堀 重幸
Yasushi Shimizu
康司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP60164162A priority Critical patent/JPH0619697B2/en
Publication of JPS6225317A publication Critical patent/JPS6225317A/en
Publication of JPH0619697B2 publication Critical patent/JPH0619697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To suppress the influence of temperature and to perform high-precision analog input over a wide operation range by allowing a microprocessor to lean input output characteristics to the temperature of the whole analog circuit part previously. CONSTITUTION:An analog input device 12 converts an analog signal generated by a sensor 10 into a digital signal, which is transmitted to a logical operation circuit 14 as digital data. The digital data is processed and corrected variously on the basis of a program and data for compensation which are stored in a storage circuit 16 and outputted to an output display 18. The digital output Dout of an A/D converter is expressed by f(DT,Din), where Din and DT are a digital value and temperature when the analog input is A/D-converted ideally. For the purpose, the microprocessor is made to learn as to the Din, DT, and Dout, so that the digital data output Dout of the analog input device is corrected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアナログ入力装置に係り、特に高精度でしかも
広い動作温度範囲を有するアナログ人力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an analog input device, and more particularly to an analog human power device having high precision and a wide operating temperature range.

〔発明のft) 従来の装置は、特開昭59−114930号に記載のよ
うにアナログ入力をマルチプレクサにより選択し、ゲイ
ン切換可能な増幅器を介してA/D変換し、デジタルデ
ータ処理装置に供給している。しかしながら増幅器を初
めとするアナログ回路の温度及び入力振幅による利得変
化の点については配慮されていない。
[FT of the invention] As described in JP-A-59-114930, the conventional device selects an analog input using a multiplexer, performs A/D conversion through a gain-switchable amplifier, and supplies the converted signal to a digital data processing device. are doing. However, no consideration is given to changes in gain due to temperature and input amplitude of analog circuits such as amplifiers.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高精度でしかも広い動作温度範囲を有
するアナログ入力装置を提供するにある。
An object of the present invention is to provide an analog input device that is highly accurate and has a wide operating temperature range.

〔発明の概要〕[Summary of the invention]

従来のアナログ入力装置は、アナログ回路部分により生
じる誤差を回路手法又は高精度な素子を用いて補償して
いたが、この方法は複雑であり限界がある。そこで、マ
イクロプロセッサにあらかじめアナログ回路部分全体の
温度に対する入出力特性を学習させることにより、温度
影響をおさえ。
Conventional analog input devices compensate for errors caused by analog circuitry using circuit techniques or highly accurate components, but these methods are complex and have limitations. Therefore, by having the microprocessor learn in advance the input/output characteristics of the entire analog circuit section relative to temperature, we can suppress the effects of temperature.

広い動作範囲における高精度なアナログ入力を可能とし
た。また、アナログ入力装置を独立に補償することによ
り、装置の汎用性を高め、同様に独立に補償されるセン
サの互換性を可能とした。
This enables highly accurate analog input over a wide operating range. Also, by independently compensating the analog input device, the versatility of the device is increased and compatibility of sensors that are also compensated independently is made possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。第
1図はアナログ入力装置の基本的な使用方法を示すもの
である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 shows the basic method of using an analog input device.

アナログ入力装置12は、一般にセンサ10が発するア
ナログ振幅信号を順次入力してA/D変換し、論理演算
回路14ヘデジタルデータとして伝送する。デジタルデ
ータは、製造工程において記憶回路16にあらかじめ記
憶されたプログラム及び補償用データに基づき各種の演
算補正処理され、出力・表示装置18へ伝送される。
The analog input device 12 generally sequentially inputs analog amplitude signals generated by the sensor 10, performs A/D conversion, and transmits the converted signals to the logic operation circuit 14 as digital data. The digital data is subjected to various arithmetic correction processes based on the program and compensation data stored in advance in the storage circuit 16 during the manufacturing process, and is transmitted to the output/display device 18.

第2図はアナログ入力装置の詳細を示すものでアナログ
入力装置12は、アナログ入力装置の温度を測定する温
度センサ20、複数のアナログ入力から1人力を選択す
るマルチプレクサ22、マルチプレクサ22により選択
されたアナログ入力信号を信号の振幅に応じてA/D変
換器の適正レベルに増幅する可変利得増幅器24、A/
D変換器26.マルチプレクサ22のアナログ人力選択
を指定する入力セレクタ28、可変利得増幅24の利得
を指定する利得セレクタ30.アナログ入力装置に電力
を供給する電源回路32から構成されている。ここで精
度を低下させる要因としては、可変利得増幅器の各利得
における周囲温度とアナログ信号振幅の大きさによる利
得の変動、及び、周囲温度変化により生じるA/D変換
器のリファレンス変動による変換誤差があげられる。そ
こで、アナログ入力をvl、l、温度をTで表わすと利
得及びリファレンスはそれぞれA (T、V工II) 
PV、、、  (T)で表わされる。アナログ人力V1
.を理想的にA/D変換した場合のデジタルf!kDよ
、は、入力の最大値をV工Nm&X l nビット精度
で変換したとすれば、 で示される。また、アナログ人力V工やが前記可変利得
増幅器を介してA/D変換器に入力される時の大きさv
IN(□0は Vlg(4))=A  (T、  V、*)・Vxs 
 −(2)で示される。そして、V工N(AD)による
A/D変換器のデジタル出力り。、、アは、nビット精
度で変換したとすれば。
FIG. 2 shows the details of the analog input device. The analog input device 12 includes a temperature sensor 20 that measures the temperature of the analog input device, a multiplexer 22 that selects one input from a plurality of analog inputs, and a device selected by the multiplexer 22. A variable gain amplifier 24, which amplifies the analog input signal to an appropriate level for the A/D converter according to the amplitude of the signal;
D converter 26. an input selector 28 that specifies the analog manual selection of the multiplexer 22; a gain selector 30 that specifies the gain of the variable gain amplifier 24; It consists of a power supply circuit 32 that supplies power to the analog input device. Factors that reduce accuracy include gain fluctuations due to the ambient temperature and analog signal amplitude at each gain of the variable gain amplifier, and conversion errors due to A/D converter reference fluctuations caused by changes in ambient temperature. can give. Therefore, if the analog input is represented by vl, l, and the temperature is represented by T, the gain and reference are respectively A (T, V engineering II).
It is expressed as PV, , (T). Analog human power V1
.. Digital f! when ideally A/D converted. If the maximum value of the input is converted with n-bit accuracy, then kD is expressed as follows. Also, the magnitude v when the analog human power voltage is input to the A/D converter via the variable gain amplifier
IN (□0 is Vlg (4)) = A (T, V, *)・Vxs
−(2). Then, the digital output of the A/D converter is generated by the VN (AD). ,,A is converted with n-bit precision.

で示される。以上3式より理想デジタル変換量D1Nと
アナログ入力装置を介して得られるデジタル変換iD。
It is indicated by. From the above three equations, the ideal digital conversion amount D1N and the digital conversion iD obtained through the analog input device.

0アの関係は次のように示される。The relationship between 0a and 0a is shown as follows.

温度を表すデジタル量をDTとし、またvlNは(1)
式に示さ九るようにD工、を用いて表わされるから、上
述は次のように傅ける。
Let DT be the digital quantity representing temperature, and vlN is (1)
Since it is expressed using D as shown in the formula, the above can be satisfied as follows.

アナログ入力装置が理想状態であるときA (D、、 
Dl、)・V 1!+ +++ a X=1となりり。
When the analog input device is in an ideal state, A (D,,
Dl, )・V 1! + +++ a X=1.

uT=D工。と Vン、4 (D ? ) なる。しカーし、実際には DouT二f  (DT、Dl、)      −−−
−−(6)なる関数で示される。したがってり。uf 
? DT を得ることにより Dxs= g (Dy、Dour)     ”””(
7)としてDINを得ることが可能である。以上よりD
1□DTrDOuTに関してあらかじめマイクロプロセ
ッサが学習することにより、アナログ入力装置のデジタ
ルデータ出力り。u7を補正できる。
uT=D engineering. And Vn, 4 (D?) becomes. and actually DouT2f (DT, Dl,) ---
--It is shown by the function (6). Therefore. uf
? By obtaining DT, Dxs= g (Dy, Dour) ”””(
It is possible to obtain DIN as 7). From the above, D
1□The microprocessor learns about DTrDOut in advance to output digital data from an analog input device. u7 can be corrected.

第3図に基づいて、学習の方法を説明する。まず、恒温
槽34によりアナログ入力装置12の温度を一定温度に
保ち、高精度な可変電圧源36によって、プロダクショ
ン・コンピュータ38が指定したD x Nにより(1
)式を用いて定められるVエヨをアナログ入力装置12
へ供給する。アナログ入力装置12はプロダクション・
コンピュータ38の指示によりアナログ入力装置12上
の温度センサ出力、及びアナログ人力V I Nを順次
取り入れてA/D変換しD T t D Q LI T
をプロダクション・コンピュータ38へ伝送する。プロ
ダクション・コンピュータ38はDl、lと組合せ、(
D1□DT。
The learning method will be explained based on FIG. First, the temperature of the analog input device 12 is kept at a constant temperature using the constant temperature bath 34, and the temperature of the analog input device 12 is kept at a constant temperature by the highly accurate variable voltage source 36.
) The analog input device 12
supply to The analog input device 12 is a production
According to instructions from the computer 38, the temperature sensor output on the analog input device 12 and the analog human input VIN are sequentially input and A/D converted.
is transmitted to production computer 38. The production computer 38 is combined with Dl,l, (
D1□DT.

DoUl)  のデータ組としてメモリ40に記憶する
DoUl) is stored in the memory 40 as a data set.

この方法により、D1□、恒温槽温度を変化させ、必要
精度が得られるまで各利得において測定する。
By this method, D1□ and the constant temperature bath temperature are varied and measurements are made at each gain until the required accuracy is obtained.

図示したように、この作業は複数のアナログ入力装置を
同時に行うことが可能である。ここで。
As shown, this task can be performed simultaneously on multiple analog input devices. here.

Dl、に対応するV L Nは高精度が要求され、ノイ
ズ等外乱影響を除くためシールドなどの信置が必要であ
る。
V L N corresponding to Dl requires high accuracy, and requires a shield or the like to remove the influence of disturbances such as noise.

第4図は学習により得た、ある利得におけるDT、Do
uア、DLNのデータを示すにのデータ組をあらかじめ
、第1図に示される記憶回路16へ記憶させておくこと
により、アナログ入力装置から得られるD T I D
 011 Tから、補間計算により理想デジタル量り、
9が得られる。
Figure 4 shows DT and Do at a certain gain obtained through learning.
By storing in advance a data set indicating the data of uA and DLN in the storage circuit 16 shown in FIG.
From 011 T, the ideal digital scale is obtained by interpolation calculation,
9 is obtained.

第2図に示されるように受圧部は、差圧センサ・静圧セ
ンサ・温度センサより成りこれらのセンサは複合センサ
として一体化されている。差圧伝送器が目的とする差圧
の検出は、差圧センサにより行なわれるが、差圧センサ
出力には外圧力及び温度の影響があるため、これらを補
償するために静圧及び温度を各々検出し、マイクロプロ
セッサにより補正処理を行う。この場合も、通常、あら
かじめ製造工程において周囲条件に対する各センサ出力
を学習することによって補償を行う。差圧伝送器がフィ
ールドで使用される時には、一般に、センサ部の温度と
アナログ入力装置の温度は異なっているが、本発明によ
るアナログ入力装置は独立に温度補償されているため、
この影響を無視でき、マイクロプロセッサはセンサ本来
の出力に比例したデジタルデータを得られる。
As shown in FIG. 2, the pressure receiving section consists of a differential pressure sensor, a static pressure sensor, and a temperature sensor, and these sensors are integrated as a composite sensor. The differential pressure that the differential pressure transmitter aims to detect is carried out by a differential pressure sensor, but since the output of the differential pressure sensor is affected by external pressure and temperature, static pressure and temperature must be adjusted separately to compensate for these. Detected and corrected by a microprocessor. In this case as well, compensation is usually performed by learning each sensor output relative to the ambient conditions in advance during the manufacturing process. When a differential pressure transmitter is used in the field, the temperature of the sensor section and the temperature of the analog input device are generally different, but since the analog input device according to the present invention is independently temperature compensated,
This effect can be ignored and the microprocessor can obtain digital data proportional to the sensor's original output.

本実施例によれば、差圧伝送器のフィールドでの使用時
に受圧部とアナログ入力装置間において温度差が生じて
も、独立な温度補償によりアナログ入力装置の湿度・入
力による利得影響を無視できた。また、独立に学習した
差圧・静圧・温度センサより成る複合センサは、学習内
容即ち学習データを交換することによって、受圧部のセ
ンサの交換を容易に行うことが可能となった。そして。
According to this embodiment, even if a temperature difference occurs between the pressure receiver and the analog input device when the differential pressure transmitter is used in the field, the influence of gain due to humidity and input of the analog input device can be ignored due to independent temperature compensation. Ta. In addition, the composite sensor consisting of differential pressure, static pressure, and temperature sensors that have been independently trained can now easily replace the sensor in the pressure receiving section by exchanging the learning content, that is, the learning data. and.

本発明によるアナログ入力装置と、マイクロプロセッサ
により補正処理されたデータを出力する出力装置を合わ
せもつ入出力回路をLSI化した場合、前記入出力LS
I(以下I10と略す)は、様々な温度下にあるセンサ
出力を、l10LSTの温度条件によらず広い温度範囲
で高精度に入力可能であり、汎用性が高い。
When an input/output circuit having both an analog input device according to the present invention and an output device that outputs data corrected by a microprocessor is integrated into an LSI, the input/output LS
I (hereinafter abbreviated as I10) can input sensor outputs under various temperatures with high accuracy over a wide temperature range regardless of the temperature conditions of the l10LST, and is highly versatile.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アナログ入力装置の周囲温度による入
出力特性が補償されるために、広い動作範囲において高
精度を有するアナログ入力装置とすることができる。
According to the present invention, since the input/output characteristics of the analog input device depending on the ambient temperature are compensated for, the analog input device can have high accuracy over a wide operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアナログ入力装置の使用例を示したブロック図
、第2図はアナログ入力装置の詳細図、第3図はアナロ
グ入力装置の学習方法を示す概略図、第4図はアナログ
入力装置の入出力データを示す3次元グラフである。 10・・・センサ、12′・・・アナログ入力装置、1
4・・・論理演算回路、16・・・記憶回路、18・・
・出力・表示装置、20・・・温度センサ、22・・・
マルチプレクサ、24・・・可変利得増幅器、26・・
・A/D変換器、32・・・電源回路、34・・・恒温
槽、36・・可変電圧源、38・・・プロダクションコ
ンピュータ、40・・・メモリ。
Figure 1 is a block diagram showing an example of how to use an analog input device, Figure 2 is a detailed diagram of the analog input device, Figure 3 is a schematic diagram showing a learning method for the analog input device, and Figure 4 is a diagram of the analog input device. It is a three-dimensional graph showing input and output data. 10...Sensor, 12'...Analog input device, 1
4...Logic operation circuit, 16...Memory circuit, 18...
・Output/display device, 20...Temperature sensor, 22...
Multiplexer, 24... Variable gain amplifier, 26...
- A/D converter, 32... Power supply circuit, 34... Constant temperature chamber, 36... Variable voltage source, 38... Production computer, 40... Memory.

Claims (1)

【特許請求の範囲】[Claims] 1、アナログ入力を選択するマルチプレクサ、前記アナ
ログ入力をその振幅に応じて増幅する可変利得増幅器、
この可変利得増幅器により増幅されたアナログ入力をデ
ジタル量に変換するA/D変換器、前記マルチプレクサ
の入力を変更又は指定する入力セレクタ、前記可変利得
増幅器の利得を変更又は指定する利得セレクタ、電力を
供給する電源回路とよりなるアナログ入力装置において
、前記アナログ入力装置の温度と基準のアナログ入力を
変化させたときの前記アナログ入力装置の出力と関係を
記憶した記憶装置を備えたことを特徴とするアナログ入
力装置。
1. A multiplexer that selects an analog input; a variable gain amplifier that amplifies the analog input according to its amplitude;
an A/D converter that converts the analog input amplified by the variable gain amplifier into a digital quantity; an input selector that changes or specifies the input of the multiplexer; a gain selector that changes or specifies the gain of the variable gain amplifier; An analog input device comprising a power supply circuit, characterized in that it includes a storage device that stores a relationship between the output of the analog input device when the temperature of the analog input device and the reference analog input are changed. Analog input device.
JP60164162A 1985-07-26 1985-07-26 I / O device Expired - Lifetime JPH0619697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164162A JPH0619697B2 (en) 1985-07-26 1985-07-26 I / O device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164162A JPH0619697B2 (en) 1985-07-26 1985-07-26 I / O device

Publications (2)

Publication Number Publication Date
JPS6225317A true JPS6225317A (en) 1987-02-03
JPH0619697B2 JPH0619697B2 (en) 1994-03-16

Family

ID=15787904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164162A Expired - Lifetime JPH0619697B2 (en) 1985-07-26 1985-07-26 I / O device

Country Status (1)

Country Link
JP (1) JPH0619697B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443362A (en) * 1990-06-11 1992-02-13 Fuji Photo Film Co Ltd Plate making method
JPH06237171A (en) * 1992-08-31 1994-08-23 Crystal Semiconductor Corp A/d converter provided with continuously calibrated reference voltage
JP2014077746A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Monitoring control system for servo valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834623A (en) * 1981-08-25 1983-03-01 Toshiba Corp Analog inputting device
JPS5958912A (en) * 1982-09-28 1984-04-04 Toshiba Corp Analog input device
JPS617918A (en) * 1984-06-22 1986-01-14 Fuji Electric Co Ltd Multipoint analog input device
JPS61173398A (en) * 1985-01-28 1986-08-05 株式会社チノー Input take-in unit
JPS6223352U (en) * 1985-07-25 1987-02-12

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834623A (en) * 1981-08-25 1983-03-01 Toshiba Corp Analog inputting device
JPS5958912A (en) * 1982-09-28 1984-04-04 Toshiba Corp Analog input device
JPS617918A (en) * 1984-06-22 1986-01-14 Fuji Electric Co Ltd Multipoint analog input device
JPS61173398A (en) * 1985-01-28 1986-08-05 株式会社チノー Input take-in unit
JPS6223352U (en) * 1985-07-25 1987-02-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443362A (en) * 1990-06-11 1992-02-13 Fuji Photo Film Co Ltd Plate making method
JPH06237171A (en) * 1992-08-31 1994-08-23 Crystal Semiconductor Corp A/d converter provided with continuously calibrated reference voltage
JP2014077746A (en) * 2012-10-12 2014-05-01 Mitsubishi Electric Corp Monitoring control system for servo valve

Also Published As

Publication number Publication date
JPH0619697B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US20120286872A1 (en) Method and apparatus for increasing the effective resolution of a sensor
JP2001527648A (en) System and method for accuracy compensation of non-linear offset and sensitivity change of a sensor due to temperature change
JPS58140604A (en) Temperature compensating circuit for semiconductor strain gage
CN113951859B (en) Intracranial pressure sensor signal conditioning method
US6307496B1 (en) Sensing apparatus including an A/D conversion circuit for detecting a physical quantity
JPS6343005B2 (en)
US4914611A (en) Force measuring device
US9331707B1 (en) Programmable temperature compensated voltage generator
CN112269065A (en) Double-excitation high-precision absolute impedance measurement method
JP3244212B2 (en) Digital measuring instrument
JPS6225317A (en) Analog input device
JPH0664678B2 (en) Analog input device
JPH1144585A (en) Sensor apparatus
JP4682668B2 (en) A / D converter and sensor device including A / D converter
JPS62218813A (en) Pressure detector
JP5128910B2 (en) Temperature correction apparatus and temperature correction method
US5477471A (en) Method of compensating for power supply variation in a sensor output
CN115102275A (en) Self-adaptive adjustment method and device for data acquisition channel of power system
JPH06229861A (en) Pressure sensor with temperature characteristic correction
CN202737817U (en) Gain calibrating system of instrument amplifier
Yu et al. Optimization of linearity of piezoresistive pressure sensor based on pade approximation
JPS61209331A (en) Input apparatus of temperature measuring resistor
JP2004320553A (en) Compensating circuit
JP2000146620A (en) Sensor device
JPH05101294A (en) Analog input system