JPS62251440A - Fuel supply controlling method for deceleration of internal combustion engine - Google Patents

Fuel supply controlling method for deceleration of internal combustion engine

Info

Publication number
JPS62251440A
JPS62251440A JP9409186A JP9409186A JPS62251440A JP S62251440 A JPS62251440 A JP S62251440A JP 9409186 A JP9409186 A JP 9409186A JP 9409186 A JP9409186 A JP 9409186A JP S62251440 A JPS62251440 A JP S62251440A
Authority
JP
Japan
Prior art keywords
engine
fuel
fuel supply
deceleration
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9409186A
Other languages
Japanese (ja)
Other versions
JPH0754099B2 (en
Inventor
Akira Fujimura
章 藤村
Yoji Fukutomi
福富 庸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61094091A priority Critical patent/JPH0754099B2/en
Publication of JPS62251440A publication Critical patent/JPS62251440A/en
Publication of JPH0754099B2 publication Critical patent/JPH0754099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent acceleration performance from declining in order to prevent unburnt component of fuel from increasing by stopping fuel supply to an engine when the engine reaches the specified deceleration operating state after the engine keeps the specified steady operating state for the specified time. CONSTITUTION:It is judged at a step 8 whether fuel cut (F/C) condition has been established. When the judged result of the step 8 is positive (Yes), it is judged at a step 9 whether the specified time tFCDLY has passed. When the judged result of the step 9 is positive, fuel cut is carried out since delay time after establish a fuel cut condition has passed. In this way, acceleration performance after gear change can be prevented from declining. Also, no surplus fuel is obtained, so that unburnt component CO and HC of refuse can be prevented from increasing.

Description

【発明の詳細な説明】 (技術分野) 本発明は内燃エンジンの減速時に燃料供給停止を行なう
燃料供給制御方法に関し、特に燃料供給の停止をより適
切な時に行なうようにした方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fuel supply control method for stopping fuel supply when an internal combustion engine is decelerating, and more particularly to a method for stopping fuel supply at a more appropriate time.

(発明の技術的背景とその問題点) 内燃エンジンの減速時の吸気管内絶対圧が低いときにエ
ンジンに燃料の供給を行なうと大量の未燃燃料が排出さ
れ燃費特性、排気ガス特性等に悪影響を及ぼすと共に、
排気通路に三元触媒等の排気浄化装置を備える内燃エン
ジンにあっては排気ガス中に未燃燃料が大量に含まれる
結果触媒床を焼損して有害排気ガスの浄化に支障をきた
す。この不都合を回避する方法としてエンジン減速時の
所定運転領域では燃料供給停止(フューエルカット)を
行なう方法が知られている(例えば、特開昭58−20
6835号、特開昭54−45423号等)。
(Technical background of the invention and its problems) If fuel is supplied to the engine when the absolute pressure in the intake pipe is low during deceleration of the internal combustion engine, a large amount of unburned fuel will be discharged, which will have an adverse effect on fuel consumption characteristics, exhaust gas characteristics, etc. as well as
In an internal combustion engine equipped with an exhaust gas purification device such as a three-way catalyst in the exhaust passage, a large amount of unburned fuel is contained in the exhaust gas, which burns out the catalyst bed and impedes purification of harmful exhaust gas. As a method to avoid this inconvenience, a method is known in which the fuel supply is stopped (fuel cut) in a predetermined operating range during engine deceleration (for example, JP-A-58-20
No. 6835, JP-A-54-45423, etc.).

このような方法においては、エンジンの高回転域からの
減速時は、減速開始から直ちにフューエルカットを行な
うが、エンジンの低回転域からの減速のときは、ギヤチ
ェンジのために、一時的に減速状態となることがあり、
この場合、フューエルカットを行なうと、ギヤチェンジ
後の加速性−が低下するので、エンジンが減速状態とな
っても、所定時間はフューエルカットを行なわないよう
にしている。
In this method, when the engine is decelerating from a high speed range, the fuel is cut off immediately after the start of deceleration, but when the engine is decelerating from a low speed range, the fuel is temporarily decelerated to change gears. The condition may be
In this case, if the fuel is cut, the acceleration performance after the gear change will be reduced, so even if the engine is in a deceleration state, the fuel is not cut for a predetermined period of time.

即ち、エンジンの低回転においては、減速時のフューエ
ルカットを所定時間遅らせるようにしている。
That is, when the engine is running at low speeds, the fuel cut during deceleration is delayed for a predetermined period of time.

しかしながら、この方法では、エンジンが低回転であっ
ても、比較的運転状態が安定している所謂クルーズ運転
状態からエンジンが減速状態となった場合でも、前記所
定時間が経過するまではフューエルカットが行なわれな
いので、燃料が過剰となる。このため、燃料の燃焼が良
好に行なわれず、未燃成分であるCOやHCが増加する
という問題があった。
However, in this method, even if the engine speed is low and the engine is decelerated from a so-called cruise operation state where the operating state is relatively stable, the fuel cut is not performed until the predetermined time elapses. If this is not done, there will be excess fuel. For this reason, there is a problem in that fuel combustion is not performed well and unburnt components such as CO and HC increase.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、ギヤチェン
ジ後の加速性能の低下を防止すると共に、クルーズ運転
等のエンジンの定常運転状態がらの減速時の未燃成分の
排出の増加を防止するようにした内燃エンジンの減速時
の燃料供給制御方法を提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above circumstances, and is intended to prevent deterioration of acceleration performance after a gear change, and to discharge unburned components during deceleration during steady engine operation such as cruise operation. An object of the present invention is to provide a fuel supply control method during deceleration of an internal combustion engine that prevents an increase in the amount of fuel.

(発明の構成) 上記目的を達成するために、本発明によれば、エンジン
が所定の減速運転状態にあり且つ該減速運転状態が第1
の所定時間継続した後エンジンへの燃料供給を停止する
内燃エンジンの燃料供給制御方法において、エンジンが
所定の定常運転状態を第2の所定時間継続しに後、エン
ジンが前記所定の減速運転状態に至ったときは、直ちに
エンジンへの燃料供給を停止することを特徴とする内燃
エンジンの減速時の燃料供給制御方法が提供される。
(Structure of the Invention) In order to achieve the above object, according to the present invention, the engine is in a predetermined deceleration operation state, and the deceleration operation state is in a first deceleration operation state.
In the fuel supply control method for an internal combustion engine, which stops fuel supply to the engine after a second predetermined period of time, the engine enters the predetermined deceleration operating state after the engine continues a predetermined steady state of operation for a second predetermined period of time. Provided is a method for controlling fuel supply during deceleration of an internal combustion engine, which is characterized by immediately stopping the fuel supply to the engine when the deceleration occurs.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は燃料供給制御装置の全体の構成図であり、符号
1は例えば4気筒の車輌用内燃エンジンを示し、エンジ
ン1には吸気管2が接続され、吸気管2の途中にはスロ
ットル弁3が設けられている。スロットル弁3にはスロ
ットル弁開度センサ4が連結されてスロットル弁の弁開
度を電気的信号に変換し電子コントロールユニット(以
下rEcUJと言う)5に送るようにされている。
FIG. 1 is an overall configuration diagram of a fuel supply control device. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine for a vehicle. An intake pipe 2 is connected to the engine 1, and a throttle valve is installed in the middle of the intake pipe 2. 3 is provided. A throttle valve opening sensor 4 is connected to the throttle valve 3 and converts the opening of the throttle valve into an electrical signal and sends it to an electronic control unit (hereinafter referred to as rEcUJ) 5.

吸気管2のエンジン1とスロットル弁3間には燃料噴射
弁6が設けられている。この燃料噴射弁6は吸気管2の
図示しない吸気弁の少し上流側に各気筒ごとに設けられ
ており、各噴射弁は図示しない燃料噴射ポンプに接続さ
れていると共にECU3に電気的に接続されて、ECU
3からの信号によって燃料噴射の開弁時間が制御される
A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle valve 3. This fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown) in the intake pipe 2, and each injection valve is connected to a fuel injection pump (not shown) and electrically connected to the ECU 3. Well, ECU
The valve opening time of fuel injection is controlled by the signal from 3.

一方、スロットル弁3の直ぐ下流には管7を介して絶対
圧センサ8が設けられており、この絶対圧センサ8によ
って電気的信号に変換された絶対圧信号は前記ECU3
に送られる。
On the other hand, an absolute pressure sensor 8 is provided immediately downstream of the throttle valve 3 via a pipe 7, and the absolute pressure signal converted into an electrical signal by the absolute pressure sensor 8 is sent to the ECU 3.
sent to.

エンジン本体1にはエンジン水温センサ10が設けられ
、このセンサ10はサーミスタ等から成り、冷却水が充
満したエンジン気筒周壁内に挿着されて、その検出水温
信号をECU3に供給する。
The engine body 1 is provided with an engine water temperature sensor 10, which is made of a thermistor or the like, is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 3.

エンジン回転数センサ(以下rNeセンサ」と言う)1
1および気筒判別センサ12がエンジンの図示しないカ
ム軸周囲又はクランク軸周囲に取り付けられており、前
者11はTDC信号即ちエンジンのクランク軸の180
°回転毎に所定のクランク角度位置で、後者12は特定
の気筒の所定のクランク角度位置でそれぞれ1パルスを
出力するものであり、これらのパルスはECU3に送ら
れる。
Engine speed sensor (hereinafter referred to as rNe sensor) 1
1 and a cylinder discrimination sensor 12 are attached around the camshaft or crankshaft (not shown) of the engine, and the former 11 receives the TDC signal, that is, the 180°C of the engine crankshaft.
The latter 12 outputs one pulse each at a predetermined crank angle position of a specific cylinder at a predetermined crank angle position for each rotation, and these pulses are sent to the ECU 3.

エンジン1の排気管13には三元触媒14が配置され排
気ガス中のHC,Co、NOx成分の浄化作用を行なう
。この三元触媒14の上流側には02センサ15が排気
管13に挿着されこのセンサ15は排気中の酸素濃度を
検出しその検出値信号をECU3に供給する。
A three-way catalyst 14 is disposed in the exhaust pipe 13 of the engine 1 to purify HC, Co, and NOx components in the exhaust gas. An 02 sensor 15 is inserted into the exhaust pipe 13 upstream of the three-way catalyst 14, and this sensor 15 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the ECU 3.

更に、ECU3には、車速を検出するセンサ16が接続
されており、ECU3はセンサ16からの検出値信号を
供給される。
Further, a sensor 16 for detecting vehicle speed is connected to the ECU 3, and the ECU 3 is supplied with a detection value signal from the sensor 16.

ECU3は上述の各種エンジンパラメータ信号に基づい
て、フューエルカット運転領域等のエンジン運転状態を
判別すると共に、エンジン運転状態に応じて以下に示す
式で与えられる燃料噴射弁6の燃料噴射時間TQLJT
を演算する。
Based on the various engine parameter signals described above, the ECU 3 determines the engine operating state such as the fuel cut operating range, and also determines the fuel injection time TQLJT of the fuel injection valve 6 given by the formula shown below depending on the engine operating state.
Calculate.

ToUT=TiXK+ +に2     =  (1)
ここにTiは基本燃料噴射時間を示し、この基本燃料噴
射時間Tiは吸気管内絶対圧PBAとエンジン回転数N
eに応じて演算される。係数に1及びに2は前述の各種
センサ、すなわち、スロットル弁開度センサ4、吸気管
内絶対圧センサ8、吸気温センサ9、エンジン水温セン
サ10、Neセンサ11、気筒判別センサ12.02セ
ンサ15、及び車速センサ16からのエンジンパラメー
タ信号に応じて演算される補正係数であってエンジン運
転状態に応じ、始動特性、排気ガス特性、燃費特性、エ
ンジン加速特性等の緒特性が最適なものとなるように所
定の演算式に基づいて演算される。
ToUT=TiXK++2=(1)
Here, Ti indicates the basic fuel injection time, and this basic fuel injection time Ti is determined by the intake pipe absolute pressure PBA and the engine rotation speed N.
It is calculated according to e. Coefficients 1 and 2 are the various sensors mentioned above, namely, throttle valve opening sensor 4, intake pipe absolute pressure sensor 8, intake air temperature sensor 9, engine water temperature sensor 10, Ne sensor 11, cylinder discrimination sensor 12, sensor 15 , and a correction coefficient calculated according to the engine parameter signal from the vehicle speed sensor 16, which optimizes starting characteristics, exhaust gas characteristics, fuel efficiency characteristics, engine acceleration characteristics, etc. according to the engine operating state. It is calculated based on a predetermined calculation formula.

ECU3は上述のようにして求めた燃料噴射時間Tou
7に基づいて燃料噴射弁6を開弁させる駆動信号を燃料
噴射弁6に供給する。
ECU3 calculates the fuel injection time Tou as described above.
7, a drive signal for opening the fuel injection valve 6 is supplied to the fuel injection valve 6.

第2図は第1図のECU3内部の回路構成を示す図で、
第1図のNeセンサ11からのエンジン回転数信号は波
形整形回路501で波形整形された後、・TDC信号と
して中央処理装置(以下rcPUJと言う)503に供
給されると共にMeカウンタ502にも供給される。M
eカウンタ502はNeセンサ11からの前回所定位置
信号の入力時から今回所定位置信号の入力時までの時間
間隔を計数するもので、その計数値Meはエンジン回転
数Neの逆数に比例する。Meカウンタ502はこの計
数値Meをデータバスケーブル510を介してCPU5
03に供給する。
FIG. 2 is a diagram showing the circuit configuration inside the ECU 3 of FIG.
After the engine rotational speed signal from the Ne sensor 11 in FIG. be done. M
The e counter 502 counts the time interval from the input of the previous predetermined position signal from the Ne sensor 11 to the input of the current predetermined position signal, and the count value Me is proportional to the reciprocal of the engine rotation speed Ne. The Me counter 502 sends this counted value Me to the CPU 5 via the data bus cable 510.
Supply to 03.

第2図のスロットル弁開度センサ4、吸気管内絶対圧P
BAセンサ8、エンジン水温センサ10等の各種センサ
からのそれぞれの出力信号はレベル修正回路504で所
定電圧レベルに修正された後、マルチプレクサ505に
より順次A/Dコンバータ506に供給される。A/D
コンバータ506は前述の各センサからの出力信号を順
次デジタル信号に変換して該デジタル信号をデータバス
ケーブル510を介してCPU503に供給する。
Throttle valve opening sensor 4 in Fig. 2, absolute pressure P in the intake pipe
Output signals from various sensors such as the BA sensor 8 and the engine water temperature sensor 10 are corrected to a predetermined voltage level by a level correction circuit 504, and then sequentially supplied to an A/D converter 506 by a multiplexer 505. A/D
Converter 506 sequentially converts the output signals from each of the sensors described above into digital signals and supplies the digital signals to CPU 503 via data bus cable 510 .

CP U303は、更に、データバスケーブル510を
介してリードオンリメモリ (以下FROMJと言う)
507、ランダムアクセスメモリ(RAM)508及び
駆動回路509に接続されており、RAM508はCP
U503での演算結果等を一時的に記憶し、ROM50
7はCPU503で実行される制御プログラム、燃料噴
射弁6の基本燃料噴射時間Tiマツプ、所定のフューエ
ルカット判別値等を記憶している。CPU503はRO
M507に記憶されている制御プログラムに従うて前述
の各種エンジンパラメータ信号に応じた燃料噴射弁6の
燃料噴射時間TOUTを演算して、これら演算値をデー
タバスケーブル51Oを介して駆動回路509に供給す
る。駆動回路509は前記演算値に応じて燃料噴射弁6
を開弁させる制御信号を該噴射弁6に供給する。
The CPU 303 also has a read-only memory (hereinafter referred to as FROMJ) via a data bus cable 510.
507, a random access memory (RAM) 508 and a drive circuit 509, and the RAM 508 is connected to the CP
Temporarily stores calculation results etc. in U503 and stores them in ROM50.
7 stores a control program executed by the CPU 503, a basic fuel injection time Ti map of the fuel injection valve 6, a predetermined fuel cut determination value, and the like. CPU503 is RO
According to the control program stored in the M507, the fuel injection time TOUT of the fuel injection valve 6 is calculated according to the various engine parameter signals mentioned above, and these calculated values are supplied to the drive circuit 509 via the data bus cable 51O. . The drive circuit 509 controls the fuel injection valve 6 according to the calculated value.
A control signal for opening the injection valve 6 is supplied to the injection valve 6.

第3図は前記制御プログラムに含まれる燃料供給停止サ
ブルーチンの処理手順を示すフローチャートであり、こ
れはTDC信号パルスの発生に同期して実行される。
FIG. 3 is a flowchart showing the processing procedure of the fuel supply stop subroutine included in the control program, which is executed in synchronization with the generation of the TDC signal pulse.

まず、ステップ1で、エンジン水温センサ10により検
出されるエンジン水温Twが所定温度’[’wpc1 
(例えば70℃)以上か否かを判別し、その答が否定(
No)のときは、後述するステップ5及び6で使用され
るtDLYタイマをリセットしくステップ11)、減速
時等のフューエルカット条件成立時のフューエルカット
遅延時間(第1の所定時間)を後述する所定時間tpc
QLYOより長い通常の所定時間tpcoLy+  (
例えばLsec)とする。これにより、エンジン冷間時
はフューエルカット遅延時間は長く設定される。
First, in step 1, the engine water temperature Tw detected by the engine water temperature sensor 10 is set to a predetermined temperature '['wpc1
(for example, 70℃) or higher, and if the answer is negative (
If No), reset the tDLY timer used in steps 5 and 6, which will be described later.In step 11), set the fuel cut delay time (first predetermined time) when the fuel cut condition is met, such as during deceleration, to a predetermined time described later. time tpc
Normal predetermined time tpcoLy+ (
For example, Lsec). As a result, the fuel cut delay time is set longer when the engine is cold.

次に、ステップ8で、フェーエルカット(F/C)条件
が成立したか否かを判別する。この判別は検出エンジン
回転数Ne及び検出スロットル弁開度θTH1又は検出
エンジン回転数Ne及び検出吸気管内絶対圧PBに基づ
いて行なわれる。ステップ8の答が否定(NO)のとき
は、直ちに本プログラムを終了する。
Next, in step 8, it is determined whether the F/C condition is satisfied. This determination is made based on the detected engine speed Ne and the detected throttle valve opening θTH1, or the detected engine speed Ne and the detected intake pipe absolute pressure PB. If the answer to step 8 is negative (NO), the program is immediately terminated.

ステップ8の判別結果が肯定(Yes)のときは、ステ
ップ9で第1の所定時間tF CDLYが経過したか、
例えばダウンカウンタであるtF CDLYタイマのタ
イマ値が所定値tF CDLYo 、1(例えばO,1
sec 、  1sec )以下になったか否かを判別
し、その答が否定(NO)のときは、直ちに本プログラ
ムを終了する。
When the determination result in step 8 is affirmative (Yes), in step 9 it is determined whether the first predetermined time tFCDLY has elapsed;
For example, the timer value of the tFCDLY timer, which is a down counter, is set to a predetermined value tFCDLYo, 1 (for example, O, 1
sec, 1sec) or less, and if the answer is negative (NO), the program is immediately terminated.

ステップ9の判別結果が肯定(Yes)のときは、フュ
ーエルカット条件成立後の遅延時間が経過しているので
、フューエルカットを実行する(ステップ10)。
If the determination result in step 9 is affirmative (Yes), the delay time after the fuel cut condition is met has elapsed, so the fuel cut is executed (step 10).

一方、ステップ1の判別結果が肯定(Yes)のときは
、次のステップ2,3.4で車輌がクルーズ運転状態で
あるか否かを判別する。即ち、ステップ2では車速Vが
所定速度VFC(例えば15km / h )以上であ
るか否かを、ステップ3ではエンジン回転数Neが所定
回転数NFCDLY(例えば1200rpm)より高い
か否かを、ステップ4では吸気管内絶対圧Paか所定圧
PBFCDLY(例えば400n+Hg)より低いか否
かをそれぞれ判別する。ステップ2,3.4のいずれか
1つのステップの判別結果が否定(NO)のときは、車
輌がクルーズ運転状態でなく、エンジンの燃焼状態が安
定しにいくので、前記ステップ11及び12を実行し、
toしyタイマをリセットすると共にフューエルカット
遅延時間を長く設定する。その後は、前記ステップ8,
9.10を実行し、本プログラムを終了する。
On the other hand, when the determination result in step 1 is affirmative (Yes), it is determined in the next step 2, 3.4 whether or not the vehicle is in a cruise driving state. That is, in step 2, it is determined whether the vehicle speed V is equal to or higher than a predetermined speed VFC (for example, 15 km/h), in step 3, it is determined whether the engine rotation speed Ne is higher than a predetermined rotation speed NFCDLY (for example, 1200 rpm), and in step 4 Then, it is determined whether the intake pipe absolute pressure Pa is lower than a predetermined pressure PBFCDLY (for example, 400n+Hg). If the determination result in any one of steps 2 and 3.4 is negative (NO), the vehicle is not in a cruise driving state and the combustion state of the engine is about to stabilize, so steps 11 and 12 are executed. death,
To reset the timer and set the fuel cut delay time longer. After that, step 8,
Execute 9.10 and end this program.

ステップ2,3.4の判別結果がいずれも肯定(Yes
)のときは、車輌がクルーズ運転状態であるので、ステ
ップ5でtDLYタイマをスタートさせて所定時間to
LY(第2の所定時間)のカウントを開始し、ステップ
6でダウンカウンタであるtDLYタイマのタイマ値が
0となったか否かを判別する。この答が否定(No)の
ときは、車輌のクルーズ運転状態が所定時間tDLY以
上継続していないので、前記ステップ12を実行し、フ
ューエルカット遅延時間を長く設定する。その後は、前
記ステップ8,9.10を実行し、本プログラムを終了
する。
The determination results in steps 2 and 3.4 are both positive (Yes).
), the vehicle is in cruise mode, so in step 5 the tDLY timer is started and the predetermined time to
Counting of LY (second predetermined time) is started, and in step 6 it is determined whether the timer value of the tDLY timer, which is a down counter, has become 0. If the answer is negative (No), the cruise driving state of the vehicle has not continued for more than the predetermined time tDLY, so step 12 is executed and the fuel cut delay time is set longer. After that, steps 8, 9 and 10 are executed, and the program is ended.

ステップ6の判別結果が肯定(Yes)のときは、車輌
のクルーズ運転状態が所定時間tDLY以上継続したの
で、前記フューエルカット遅延時間を所定時間tpco
Lyo  (例えば0.1sec)とする。これにより
、次のステップ8でフューエルカット条件が成立した後
、ステップ9の判別結果は肯定(Yes)となり、ステ
ップ10で直ちにフューエルカットが行なわれる。この
ため、燃料供給が過剰となることがない。
If the determination result in step 6 is affirmative (Yes), the cruise driving state of the vehicle has continued for more than the predetermined time tDLY, so the fuel cut delay time is
Lyo (for example, 0.1 sec). As a result, after the fuel cut condition is satisfied in the next step 8, the determination result in step 9 becomes affirmative (Yes), and the fuel cut is immediately performed in step 10. Therefore, the fuel supply will not become excessive.

(発明の効果) 以上詳述したように本発明の内燃エンジンの減速時の燃
料供給制御方法は、エンジンが所定の減速運転状態にあ
り且つ該減速運転状態が第1の所定時間継続した後エン
ジンへの燃料供給を停止する内燃エンジンの燃料供給制
御方法において、エンジンが所定の定常運転状態を第2
の所定時間継続した後、エンジンが前記所定の減速運転
状態に至ったときは、直ちにエンジンへの燃料供給を停
止するようにしたので、ギヤチェンジ後の加速性能の低
下を防止することができると共に、エンジンが低回転で
あっても、比較的運転状態が安定している状態において
、エンジンが減速状態となったときも、燃料が過剰とな
らず、未燃成分であるCOやHCが増加することを防止
できる。
(Effects of the Invention) As described in detail above, the fuel supply control method during deceleration of an internal combustion engine according to the present invention is effective when the engine is in a predetermined deceleration operation state and after the deceleration operation state continues for a first predetermined time, In a method for controlling fuel supply to an internal combustion engine, the engine is brought into a predetermined steady state of operation in a second state.
When the engine reaches the predetermined deceleration operating state after continuing for a predetermined period of time, the fuel supply to the engine is immediately stopped, which prevents deterioration in acceleration performance after a gear change. Even if the engine speed is low, the operating conditions are relatively stable, and even when the engine is decelerating, there is no excess fuel, and unburnt components such as CO and HC increase. This can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法が通用された燃料供給制御装置の
全体構成図、第2図は第1図の電子コントロールユニッ
ト(ECU)の内部構成を説明する図、第3図は本発明
の方法による処理手順を示すフローチャートである。 l・・・内燃エンジン、3・・・スロットル弁、4・・
・スロットル弁開度センサ、5・・・ECU、6・・・
燃料噴射弁、8・・・吸気管内絶対圧センサ、11・・
・エンジン回転数センサ。
FIG. 1 is an overall configuration diagram of a fuel supply control device to which the method of the present invention is applied, FIG. 2 is a diagram explaining the internal configuration of the electronic control unit (ECU) of FIG. 1, and FIG. 3 is a flowchart showing a processing procedure according to the method. l... Internal combustion engine, 3... Throttle valve, 4...
・Throttle valve opening sensor, 5...ECU, 6...
Fuel injection valve, 8...Intake pipe absolute pressure sensor, 11...
・Engine speed sensor.

Claims (1)

【特許請求の範囲】[Claims] 1、エンジンが所定の減速運転状態にあり且つ該減速運
転状態が第1の所定時間継続した後エンジンへの燃料供
給を停止する内燃エンジンの燃料供給制御方法において
、エンジンが所定の定常運転状態を第2の所定時間継続
した後、エンジンが前記所定の減速運転状態に至ったと
きは、直ちにエンジンへの燃料供給を停止することを特
徴とする内燃エンジンの減速時の燃料供給制御方法。
1. A fuel supply control method for an internal combustion engine in which the engine is in a predetermined deceleration operating state and the fuel supply to the engine is stopped after the decelerating operating state continues for a first predetermined period of time, wherein the engine is in a predetermined steady-state operating state. A method for controlling fuel supply during deceleration of an internal combustion engine, characterized in that when the engine reaches the predetermined deceleration operating state after continuing for a second predetermined period of time, fuel supply to the engine is immediately stopped.
JP61094091A 1986-04-23 1986-04-23 Fuel supply control method during deceleration of internal combustion engine Expired - Lifetime JPH0754099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61094091A JPH0754099B2 (en) 1986-04-23 1986-04-23 Fuel supply control method during deceleration of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61094091A JPH0754099B2 (en) 1986-04-23 1986-04-23 Fuel supply control method during deceleration of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62251440A true JPS62251440A (en) 1987-11-02
JPH0754099B2 JPH0754099B2 (en) 1995-06-07

Family

ID=14100783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61094091A Expired - Lifetime JPH0754099B2 (en) 1986-04-23 1986-04-23 Fuel supply control method during deceleration of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0754099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179151A (en) * 1987-01-21 1988-07-23 Japan Electronic Control Syst Co Ltd Fuel feed stop control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293438A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Fuel feed control method for internal combustion engine in deceleration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293438A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Fuel feed control method for internal combustion engine in deceleration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179151A (en) * 1987-01-21 1988-07-23 Japan Electronic Control Syst Co Ltd Fuel feed stop control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0754099B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US6688101B2 (en) Control system for internal combustion engine
US6453664B2 (en) Control system for internal combustion engine
US6550449B2 (en) Control system for internal combustion engine
JPH0251061B2 (en)
US6397585B2 (en) Catalyst temperature estimating apparatus
JPH0522059B2 (en)
JPH09133034A (en) Fuel injection control device of internal combustion engine
JP4306004B2 (en) Engine control device
JPS62251440A (en) Fuel supply controlling method for deceleration of internal combustion engine
JP3389835B2 (en) Catalyst deterioration determination device for internal combustion engine
JPS59188041A (en) Fuel-feed control for deceleration of internal- combustion engine
JP3641016B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3156582B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2623755B2 (en) Apparatus for detecting torque fluctuation of internal combustion engine
JPH0333913B2 (en)
JP3972925B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH077561Y2 (en) Fuel supply control device during deceleration of internal combustion engine for vehicle
JP3334453B2 (en) Catalyst deterioration detection device for internal combustion engine
JP2696766B2 (en) Air-fuel ratio control method for a vehicle internal combustion engine
JP2004245196A (en) Start control device for compression ignition internal combustion engine
JPH11101150A (en) Control device for internal combustion engine
JPH0568628B2 (en)
JPS6293437A (en) Air-fuel ratio control for mixed gas of internal combustion engine for vehicle
JPS6267251A (en) Air-fuel ratio feedback controlling method for internal combustion engine
JPH03130549A (en) Fuel supply control method at deceleration time in internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term