JPS6224725B2 - - Google Patents

Info

Publication number
JPS6224725B2
JPS6224725B2 JP810680A JP810680A JPS6224725B2 JP S6224725 B2 JPS6224725 B2 JP S6224725B2 JP 810680 A JP810680 A JP 810680A JP 810680 A JP810680 A JP 810680A JP S6224725 B2 JPS6224725 B2 JP S6224725B2
Authority
JP
Japan
Prior art keywords
light
fiber coil
fiber
movable body
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP810680A
Other languages
Japanese (ja)
Other versions
JPS56106110A (en
Inventor
Ichiro Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP810680A priority Critical patent/JPS56106110A/en
Publication of JPS56106110A publication Critical patent/JPS56106110A/en
Publication of JPS6224725B2 publication Critical patent/JPS6224725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/28Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication
    • G01D5/30Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバコイルを用いて被測定物の
位置を検出する位置検出器に関し、その目的とす
るところは、光フアイバを巻回して曲率半径の小
さなフアイバコイルを形成するとともに、このフ
アイバコイルから漏れた光を、被測定物の位置に
よつて変化する光入力可動体(鏡又はフアイバコ
イル)を用いて元のフアイバコイルに戻して可動
体の変化量に応じた光を出力するようにし、よつ
て無電源で場所の制約を受けることなく被測定物
の位置を検出する位置検出器を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position detector that detects the position of an object to be measured using an optical fiber coil, and its purpose is to form a fiber coil with a small radius of curvature by winding an optical fiber. At the same time, the light leaking from this fiber coil is returned to the original fiber coil using a light input movable body (mirror or fiber coil) that changes depending on the position of the object to be measured, and the light is returned to the original fiber coil according to the amount of change in the movable body. The present invention provides a position detector that outputs light and thus detects the position of an object to be measured without a power source and without being subject to space restrictions.

以下、本発明の一実施例について図面を参照し
て説明するにあたり、先ず光フアイバの損失につ
いて述べる。光フアイバの損失は、コア部内部の
不純物による吸収損失の外に、コア部の屈折率の
不均一性による散乱損失、光フアイバの曲りによ
る回折損失等があり、しかも回折損失は光フアイ
バの曲率半径が小さい程大きく変化する。これら
の損失を総合して全損失と呼ぶ。この全損失中、
特に、回折損失は光フアイバを強く曲げると、光
(電磁波)がコア部内部で曲がり切れずに外部に
漏れる現象であつて、その光の漏れ量は曲率半
径、光フアイバの種類および光の伝播周波数によ
つて異なる。光フアイバの種類は、母体となるガ
ラスの種類とコア部付近の屈折率分布から種々の
ものがあり、第1図はSiO2をベースにして不純
物PiO2(2酸化チタン)、GeO2(2酸化ゲルマニ
ウム)、P2O5(5酸化リン)を適宜混合して得た
3種類の光フアイバA,B,Cの回折損失つまり
光の漏れ量(但し、光の伝播周波数一定)の実測
値を示す。この図から明らかなように、光フアイ
バの曲率半径を略90mm以下にすると、光フアイバ
からの光の漏れ量が非常に大きくなり、その分だ
け光フアイバー端部から入力した光が減衰して光
フアイバ他端部から出力する光の光量を低下させ
ることになる。
In explaining one embodiment of the present invention with reference to the drawings, loss in the optical fiber will first be described. Optical fiber losses include absorption loss due to impurities inside the core, scattering loss due to non-uniformity of refractive index in the core, and diffraction loss due to bending of the optical fiber.Moreover, diffraction loss is caused by the curvature of the optical fiber. The smaller the radius, the greater the change. These losses are collectively called the total loss. During this total loss,
In particular, diffraction loss is a phenomenon in which when an optical fiber is bent strongly, light (electromagnetic waves) leaks outside without being able to fully bend inside the core.The amount of light leakage depends on the radius of curvature, the type of optical fiber, and the propagation of light. Depends on frequency. There are various types of optical fibers depending on the type of glass used as the matrix and the refractive index distribution near the core. Actual measurements of the diffraction loss, that is, the amount of light leakage (however, the propagation frequency of light is constant) of three types of optical fibers A, B, and C obtained by appropriately mixing germanium oxide) and P 2 O 5 (phosphorous pentoxide). shows. As is clear from this figure, when the radius of curvature of the optical fiber is set to approximately 90 mm or less, the amount of light leaking from the optical fiber becomes extremely large, and the light input from the end of the optical fiber is attenuated by that amount. This results in a reduction in the amount of light output from the other end of the fiber.

そこで、本発明は以上述べた光フアイバの回折
損失を利用して被測定物の位置を検出するもので
あり、以下、その実施例を述べる。第2図は例え
ば液体の液位を検出する場合等の例である。この
位置検出器は、支持体10に穿孔された開口部に
筒体11を挿通し、この筒体11は筒体上端部の
つば11aを支持体10に係合しねじ12によつ
て固定される。この筒体11の内壁部には光フア
イバ13を巻装して形成されたフアイバコイル1
4が配置されている。この内壁部に銀メツキ等を
施こし、より光を反射できるようにして反射効率
を高めてもよい。なお、筒体11の内径は比較的
小さく形成されているので、この筒体内側に配置
せるフアイバコイル14の曲率半径が小さく、こ
のため光源15からコイル一端部に光を入力する
と、その光の大半がフアイバコイル外部に漏れ、
コイル他端部から出力せられる光は殆んど減衰さ
れた状態となる。16は受光素子である。
Therefore, the present invention detects the position of an object to be measured by utilizing the above-mentioned diffraction loss of the optical fiber, and an embodiment thereof will be described below. FIG. 2 shows an example in which the level of liquid is detected, for example. In this position detector, a cylindrical body 11 is inserted into an opening bored in a support 10, and the cylindrical body 11 is fixed with a screw 12 by engaging a collar 11a at the upper end of the cylinder with the support 10. Ru. A fiber coil 1 is formed by winding an optical fiber 13 on the inner wall of the cylinder 11.
4 is placed. This inner wall portion may be plated with silver or the like to reflect more light and increase reflection efficiency. Note that since the inner diameter of the cylindrical body 11 is relatively small, the radius of curvature of the fiber coil 14 disposed inside the cylindrical body is small, and therefore, when light is input from the light source 15 to one end of the coil, the light is Most of it leaks outside the fiber coil,
Most of the light output from the other end of the coil is attenuated. 16 is a light receiving element.

一方、このフアイバコイル14の内側には、図
示しない被測定物となる液体の液位の変化に追従
して昇降する駆動軸17が挿入され、しかもこの
駆動軸17の胴部一部に表面鏡18を装着してい
る。この表面鏡18は可動しながらフアイバコイ
ル14の漏洩光を反射させて該コイル14に戻す
光入力可動体を構成している。従つて、液位の変
化によつて表面鏡18が昇降し、これによつてフ
アイバコイル14から漏れた光が該表面鏡18で
反射されて再びフアイバコイル14に戻つて入力
される。この反射された光の量は表面鏡18の昇
降によつて異なるので、この結果、フアイバコイ
ル14の他端部に近接配置される受光素子16で
はその光の変化から表面鏡18の上端部がどの位
置にあり、ひいては液位がどの程度であるかを容
易に知ることができる。19は駆動軸17のガイ
ド部材である。第3図は第2図を簡略化した構成
図である。
On the other hand, a drive shaft 17 is inserted inside the fiber coil 14 and moves up and down in accordance with changes in the liquid level of a liquid (not shown), which is an object to be measured. I am wearing 18. This surface mirror 18 constitutes a light input movable body that reflects leaked light from the fiber coil 14 and returns it to the coil 14 while moving. Therefore, the surface mirror 18 moves up and down as the liquid level changes, whereby the light leaking from the fiber coil 14 is reflected by the surface mirror 18 and inputted back into the fiber coil 14. Since the amount of reflected light varies depending on the elevation of the front mirror 18, as a result, the light receiving element 16 disposed close to the other end of the fiber coil 14 detects the upper end of the front mirror 18 due to the change in light. You can easily know where it is located and what the liquid level is. 19 is a guide member for the drive shaft 17. FIG. 3 is a simplified configuration diagram of FIG. 2.

次に、第4図は本発明の他の実施例である。即
ち、この位置検出器は、第2図とは反対に光入力
可動体をフアイバコイル14の外側に配置したも
のである。この光入力可動体は、底部を閉塞し内
側に内面鏡21を設けた筒体22で構成され、こ
れに駆動軸17を取着するとともに、この筒体2
2の内側の巻付体(筒体でも可)に光フアイバ1
3を巻装したフアイバコイル14を配置したもの
である。
Next, FIG. 4 shows another embodiment of the present invention. That is, in this position detector, the optical input movable body is arranged outside the fiber coil 14, contrary to the configuration shown in FIG. This light input movable body is composed of a cylinder 22 whose bottom is closed and an inner mirror 21 is provided inside.
Optical fiber 1 is wrapped around the inner wrapping body of 2 (a cylindrical body is also possible).
3 is arranged.

この位置検出器にあつては、第2図と同様に駆
動軸17の昇降によつて光入力可動体が昇降する
ため、フアイバコイル14から漏れた光が内面鏡
21で反射されて再びフアイバコイル14に入
り、同フアイバコイル14から出力する光の光量
を増加させるので、この出力光の光量変化からプ
ロセス量ひいては被測定物の位置を検出すること
ができる。
In this position detector, the light input movable body moves up and down as the drive shaft 17 moves up and down, as shown in FIG. 14, and increases the amount of light output from the fiber coil 14, so that the process amount and the position of the object to be measured can be detected from the change in the amount of output light.

なお、上記実施例はフアイバコイル14の内側
又は外側に光入力可動体を配置したものである
が、内側と外側の両方に配置してもよいことは言
うまでもない。
In the above embodiment, the optical input movable body is arranged inside or outside the fiber coil 14, but it goes without saying that it may be arranged both inside and outside.

次に、第5図は本発明の他の実施例を示す構成
図である。この位置検出器は、第1のフアイバコ
イル14aと第2のフアイバコイル14bとを同
軸的に配置してこれらのコイル14a,14b内
部に駆動軸17に装着した表面鏡18を挿通す
る。そして、第1のフアイバコイル14aは常時
表面鏡18との対向面積を変えない基準スパン部
Oを形成し、第2のフアイバコイル14bは被
測定物の位置変化によつて表面鏡18との対向面
積を変える測定スパン部LXを形成している。
Next, FIG. 5 is a block diagram showing another embodiment of the present invention. This position detector has a first fiber coil 14a and a second fiber coil 14b arranged coaxially, and a surface mirror 18 attached to a drive shaft 17 inserted into these coils 14a and 14b. The first fiber coil 14a forms a reference span portion L O whose facing area with the front mirror 18 does not change at all times, and the second fiber coil 14b forms a reference span portion L O whose facing area with the front mirror 18 does not change at all times. A measurement span portion LX is formed that changes the facing area.

今、光源15からの光を分岐器30で分岐して
前記2つのフアイバコイル14a,14bの一端
部に入力するものとする。
Now, assume that the light from the light source 15 is split by the splitter 30 and input to one end of the two fiber coils 14a and 14b.

この場合、基準スパン部LOとなる第1のフア
イバコイル14aの他端部から出力される光は、
フアイバコイル14aと表面鏡18との対向面積
不変故常に一定光量の基準光となる。そこで、こ
の基準光を受光素子31に供給し、ここで電気信
号に変換し更に増幅回路32で増幅して出力すれ
ば、抵抗33両端には常に等しいレベルの基準電
圧EOが得られる。一方、測定スパン部LXとなる
第2のフアイバコイル14bの他端部から出力さ
れる測定光は、表面鏡18の位置変化によつて対
向面積が変つているので変化することになる。従
つて、この測定光を受光素子34に供給し、ここ
で電気信号に変換し更に増幅回路35で増幅して
出力すれば、被測定物の位置によつて変化する測
定電圧EXが得られる。このようにして、測定電
圧EXと基準電圧EOとを得たならば、これらの電
圧EX,EOを後続の減算機能を有する増幅回路3
6に入れて減算増幅すると、β(EX―EO)の電
圧信号を取り出すことができる。従つて、両電圧
の差電圧からプロセス量ひいては被測定物の位置
を正確に検出することができる。ただしβは定数
である。
In this case, the light output from the other end of the first fiber coil 14a, which is the reference span section L O , is as follows:
Since the facing area of the fiber coil 14a and the front mirror 18 remains unchanged, the reference light always has a constant amount of light. Therefore, by supplying this reference light to the light-receiving element 31, converting it into an electrical signal there, amplifying it in the amplifier circuit 32, and outputting it, a reference voltage E O of the same level can always be obtained across the resistor 33. On the other hand, the measurement light outputted from the other end of the second fiber coil 14b serving as the measurement span section LX changes because the opposing area changes due to the change in the position of the front mirror 18. Therefore, by supplying this measurement light to the light-receiving element 34, converting it into an electrical signal there, amplifying it in the amplifier circuit 35, and outputting it, a measurement voltage E X that changes depending on the position of the object to be measured can be obtained. . Once the measurement voltage E X and the reference voltage E O are obtained in this way, these voltages E
6 and subtract and amplify it, it is possible to extract a voltage signal of β(E x −E o ). Therefore, the process amount and the position of the object to be measured can be accurately detected from the voltage difference between the two voltages. However, β is a constant.

次に、第6図は同じく本発明の他の実施例を示
す図である。この位置検出器は、基準側フアイバ
コイル14aと測定側フアイバコイル14bとを
同軸的に配置する点は第5図と同じであり、特に
第5図と異なるところは、反射鏡として機能する
表面鏡18の代りに駆動軸17に光を故意に外部
に漏らす漏洩光用フアイバコイル40を設けたも
のである。
Next, FIG. 6 is a diagram showing another embodiment of the present invention. This position detector is the same as that shown in FIG. 5 in that the reference side fiber coil 14a and the measurement side fiber coil 14b are arranged coaxially. Instead of 18, a leakage light fiber coil 40 is provided on the drive shaft 17 to intentionally leak light to the outside.

而して、この位置検出器にあつては、光源15
から分岐器30を経て3分岐された光をフアイバ
コイル14a,14b,40の一端部に入力す
る。基準側フアイバコイル14aは常時漏洩光用
フアイバコイル40から漏洩光を受けているの
で、コイル14a他端部から常に定まつた光量の
基準光を取り出すことができる。一方、測定側フ
アイバコイル14bはプロセス量の変化によつて
漏洩光用フアイバコイル40との対向面積を変え
るため、そのプロセス量によつて測定側フアイバ
コイル14bの他端部から出力する測定光の光量
は常に変化している。そこで、測定側フアイバコ
イル14bと漏洩光用フアイバコイル40の出力
光とを光集合器41で集合し、受光素子34で電
気信号に変換して増幅回路34で増幅して得た測
定電圧EXを、基準光を受光素子31で電気信号
に変換し増幅回路32で増幅して得た基準電圧E
Oで引算すると、第5図と全く同様の動作によつ
て差電圧を取り出すことができる。
Therefore, in this position detector, the light source 15
The light that is split into three through the splitter 30 is input to one end of the fiber coils 14a, 14b, and 40. Since the reference side fiber coil 14a always receives leakage light from the leakage light fiber coil 40, a constant amount of reference light can always be taken out from the other end of the coil 14a. On the other hand, since the measurement side fiber coil 14b changes the area facing the leakage light fiber coil 40 depending on the process amount, the measurement light output from the other end of the measurement side fiber coil 14b changes depending on the process amount. The amount of light is constantly changing. Therefore, the output lights of the measurement side fiber coil 14b and the leakage light fiber coil 40 are collected by the light collector 41, converted into an electric signal by the light receiving element 34, and amplified by the amplifier circuit 34 to obtain the measurement voltage E A reference voltage E is obtained by converting the reference light into an electric signal by the light receiving element 31 and amplifying it by the amplifier circuit 32.
By subtracting by O , the differential voltage can be obtained by an operation exactly similar to that shown in FIG.

なお、本発明はその要旨を逸脱しない範囲で
種々変形実施できる。即ち、上記実施例では、被
測定物として液体の液位の検出について述べた
が、駆動軸17の位置を可変する被測定物であれ
ば特にその被測定対象物は問わないものである。
また、第5図および第6図はフアイバコイル14
a,14bの内側に表面鏡17や光漏洩用フアイ
バコイル40等の光入力可動体を配置したが、コ
イル14a,14bの外側又は内側および外側の
両方に配置してもよいものである。
Note that the present invention can be modified in various ways without departing from the gist thereof. That is, in the above embodiment, the detection of the liquid level was described as the object to be measured, but the object to be measured is not particularly limited as long as it is an object to be measured in which the position of the drive shaft 17 is varied.
In addition, FIGS. 5 and 6 show the fiber coil 14.
Although the light input movable bodies such as the surface mirror 17 and the fiber coil 40 for light leakage are arranged inside the coils 14a and 14b, they may be arranged outside the coils 14a and 14b or both inside and outside the coils 14a and 14b.

以上詳記したように本発明によれば、小さな曲
率半径のフアイバコイルの内側および外側の何れ
か一方又は両方に被測定物の位置に応じて可動し
ながら該フアイバコイルの漏洩光を反射して元に
戻し或いは自ら光を倣つて入力する光入力可動体
を配置した構成としたので、特別に電源を用いる
ことなくプロセス量を検出することができる。し
かも、無電源で使用できるので防爆地域の使用に
最適であり、かつ静電誘導や電磁誘導等の影響を
受けないので正確に位置検出できる。また、耐食
性にすぐれている点から種々の液体を取扱うもの
に使用して有用なものである。
As described in detail above, according to the present invention, leakage light from the fiber coil is reflected on one or both of the inside and outside of the fiber coil having a small radius of curvature while moving according to the position of the object to be measured. Since the structure includes a light input movable body that returns the light to the original state or traces the light and inputs the light, the process amount can be detected without using a special power source. Furthermore, since it can be used without a power source, it is ideal for use in explosion-proof areas, and it is not affected by electrostatic induction or electromagnetic induction, so it can accurately detect positions. In addition, it is useful for applications that handle various liquids due to its excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバの回折損失を説明する特性
図、第2図は本発明に係る位置検出器の一実施例
を説明する一部断面にて示す構成図、第3図は第
2図を簡略化した図、第4図ないし第6図は本発
明の他の実施例を説明する構成図である。 14…フアイバコイル、14a…基準側フアイ
バコイル、14b…測定側フアイバコイル、15
…光源、16…受光素子、17…駆動軸、18…
表面鏡、21…内面鏡、22…筒体、30…分岐
器、31,34…受光素子、40…光漏洩用フア
イバコイル、41…光集合器。
FIG. 1 is a characteristic diagram illustrating the diffraction loss of an optical fiber, FIG. 2 is a partial cross-sectional configuration diagram illustrating an embodiment of a position detector according to the present invention, and FIG. The simplified drawings, FIGS. 4 to 6, are configuration diagrams illustrating other embodiments of the present invention. 14... Fiber coil, 14a... Reference side fiber coil, 14b... Measurement side fiber coil, 15
...Light source, 16... Light receiving element, 17... Drive shaft, 18...
Surface mirror, 21... Inner mirror, 22... Cylindrical body, 30... Brancher, 31, 34... Light receiving element, 40... Fiber coil for light leakage, 41... Light collector.

Claims (1)

【特許請求の範囲】 1 光フアイバを小さな曲率半径で巻回して形成
されたフアイバコイルと、このフアイバコイルの
内側および外側の何れか一方又は両方に配置さ
れ、被測定物の位置に応じて前記フアイバコイル
と対向面積を変えながら該フアイバコイルに光を
入力する光入力可動体とを備えてなることを特徴
とする位置検出器。 2 光入力可動体は、反射鏡で構成しフアイバコ
イルの漏洩光を反射させて該フアイバコイルに入
力するようにした特許請求の範囲第1項記載の位
置検出器。 3 フアイバコイルは、常時光入力可動体と対向
面積を変えない基準側フアイバコイルと、被測定
物の位置によつて前記光入力可動体と対向面積を
変える測定側フアイバコイルとからなるようにし
た特許請求の範囲第1項記載の位置検出器。 4 光入力可動体は曲率半径の小さい漏洩光用フ
アイバコイルで構成した特許請求の範囲第1項又
は第3項記載の位置検出器。
[Scope of Claims] 1. A fiber coil formed by winding an optical fiber with a small radius of curvature; A position detector comprising a fiber coil and a light input movable body that inputs light to the fiber coil while changing its facing area. 2. The position detector according to claim 1, wherein the light input movable body is constituted by a reflecting mirror to reflect leaked light from the fiber coil and input the reflected light to the fiber coil. 3. The fiber coil consists of a reference side fiber coil whose area facing the light input movable body does not change at all times, and a measurement side fiber coil whose area facing the light input movable body changes depending on the position of the object to be measured. A position detector according to claim 1. 4. The position detector according to claim 1 or 3, wherein the light input movable body is constituted by a leakage light fiber coil with a small radius of curvature.
JP810680A 1980-01-26 1980-01-26 Position detector Granted JPS56106110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP810680A JPS56106110A (en) 1980-01-26 1980-01-26 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP810680A JPS56106110A (en) 1980-01-26 1980-01-26 Position detector

Publications (2)

Publication Number Publication Date
JPS56106110A JPS56106110A (en) 1981-08-24
JPS6224725B2 true JPS6224725B2 (en) 1987-05-29

Family

ID=11684039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP810680A Granted JPS56106110A (en) 1980-01-26 1980-01-26 Position detector

Country Status (1)

Country Link
JP (1) JPS56106110A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403152A (en) * 1981-05-18 1983-09-06 General Electric Company Optical fiber position sensor
JPS58150912A (en) * 1982-03-04 1983-09-07 Furukawa Electric Co Ltd:The Photodetector

Also Published As

Publication number Publication date
JPS56106110A (en) 1981-08-24

Similar Documents

Publication Publication Date Title
US4342919A (en) Fiber optical measuring device
Hartog A distributed temperature sensor based on liquid-core optical fibers
US4933545A (en) Optical pressure-sensing system using optical resonator cavity
US10234344B2 (en) Compact multicore fiberoptic device for sensing components of force
JP2007024826A (en) Optical detection sensor
CN105911025A (en) Distributed spiral core optical fiber surface plasmon resonance sensor and measurement method thereof
CN109709499A (en) A kind of probe-type magnetic field vector sensor and preparation method thereof based on fiber grating
EP0079944B1 (en) Fiber optic interferometer
JPS59160729A (en) Optical fiber thermometer
JPS6022613A (en) Detector for deflection of diaphragm
Betta et al. An intrinsic fiber optic temperature sensor
JPS6224725B2 (en)
CN110207849B (en) Temperature sensor based on reflective long-period fiber grating and measuring method
Morishita Refractive-index-profile determination of single-mode optical fibers by a propagation-mode near-field scanning technique
US4349276A (en) Method of and system for determining refractive-index profiles of optical fibers
US5450192A (en) Apparatus including an index continuity cell for measuring the index profile of an optical fiber preform having an outer envelope and a core
JP5768473B2 (en) Cut-off wavelength measurement method
Bois et al. Loss compensated fiber-optic displacement sensor including a lens
Kitano et al. Measurement of fourth-order aberration in a lens-like medium
Bernini et al. Planar antiresonant reflecting optical waveguides as integrated optical refractometer
JPH04125423A (en) Lateral leakage optical fiber type level gage
JPH0232570B2 (en)
SU1624290A1 (en) Device for measuring pressure
JPH0258575B2 (en)
RU1825977C (en) Optoelectronic transducer