JPH04125423A - Lateral leakage optical fiber type level gage - Google Patents

Lateral leakage optical fiber type level gage

Info

Publication number
JPH04125423A
JPH04125423A JP24654190A JP24654190A JPH04125423A JP H04125423 A JPH04125423 A JP H04125423A JP 24654190 A JP24654190 A JP 24654190A JP 24654190 A JP24654190 A JP 24654190A JP H04125423 A JPH04125423 A JP H04125423A
Authority
JP
Japan
Prior art keywords
light
optical fiber
liquid
leakage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24654190A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Mori
弘喜 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEAM SOKEN KK
Original Assignee
BEAM SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEAM SOKEN KK filed Critical BEAM SOKEN KK
Priority to JP24654190A priority Critical patent/JPH04125423A/en
Publication of JPH04125423A publication Critical patent/JPH04125423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To simplify a gage, reduce a cost and improve measurement accuracy by projecting light from one end of a lateral leakage optical fiber a part of which is soaked in liquid and by measuring a light amount output from the other end. CONSTITUTION:Light from a light source 1 comprising an LED, laser or bulb is input to a light input end 3 of a lateral leakage optical fiber 2. The optical fiber 2 has been worked so that an amount of light leakage per a lengthwise unit length is approximately constant. When a portion of the optical fiber 2 is in the air 8 and the other portion is in liquid 9, refractive indexes of the air 8 and the liquid 9 with respect to the light are different, that is, load impedance on a leakage path of the light is different, so that a leakage amount in the air 10 and a leakage amount in the liquid 11 per a unit length are different from each other. The light from the light source 1 passes through the optical fiber 2 to be output from a light output end 4 and enters a light receiver 5, where it is converted into an electric signal and displayed on a digital or analog display 7 via an amplifier.converter 6.

Description

【発明の詳細な説明】 本発明は側方漏洩光ファイバーを用いた液位泪に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to liquid level tearing using side-leaking optical fibers.

従来のこの種の技術にあっては、光ファイバーの端面か
らの出力光を液面に照射し、この液面からの反射光量若
しくは光の往復時間や変調信号の位相差を検出して液位
を計測する方式のものがあったが、これらの方式にあっ
ては、光の強度は距離の4乗に逆比例して減少するので
、この大幅な減衰をカバーするだけの大出力光源が必要
であり、それに相応してコストアップを招くという問題
点があった。
In conventional technology of this kind, the liquid level is determined by irradiating the liquid surface with output light from the end face of an optical fiber, and detecting the amount of light reflected from the liquid surface, the round trip time of the light, and the phase difference of the modulated signal. There were methods to measure the distance, but with these methods, the intensity of the light decreases in inverse proportion to the fourth power of the distance, so a high-output light source was required to cover this significant attenuation. However, there is a problem in that the cost increases accordingly.

また、前者の液面からの反射光量を計測する方式にあっ
ては、液面に波立、傾斜、動揺などがある場合には光の
反射条件が変動するので正確な計測が難しくなるという
問題点があった。
Another problem with the former method of measuring the amount of light reflected from the liquid surface is that if the liquid surface is rippled, tilted, or oscillated, the light reflection conditions will change, making accurate measurement difficult. was there.

一方、後者の光の往復時間や変調信号の位相差を計測す
るレーダ一方式にあっては、複雑な検出回路が必要なた
め高価になるという問題点があった。
On the other hand, the latter type of radar, which measures the round trip time of light and the phase difference of modulated signals, has the problem of being expensive because it requires a complicated detection circuit.

この発明はこれらの問題点を解決するためになされたも
のである。
This invention was made to solve these problems.

本発明は、光ファイバーの側方から光が漏洩するように
なされた側方漏洩光ファイバーの一端から光を投入し、
他端からの出力光量を計測するように構成し、該光ファ
イバーの一部を液体に浸すとき、液体に浸された部分と
浸されない部分の光の漏洩量に差異が生じる性質を利用
して液位を計測するようにした。
The present invention introduces light from one end of a side-leaking optical fiber that allows light to leak from the side of the optical fiber,
It is configured to measure the amount of light output from the other end, and uses the property that when a part of the optical fiber is immersed in liquid, there is a difference in the amount of light leaking between the part immersed in the liquid and the part not immersed in the liquid. The position can be measured.

本発明によれば、上記問題点を解決し、構造が極めて簡
単で、計測精度が高く、且つ安価な液位計を得ることが
できる。
According to the present invention, it is possible to solve the above-mentioned problems and obtain a liquid level meter that has an extremely simple structure, high measurement accuracy, and is inexpensive.

以下発明の詳細について図面と共に説明する。The details of the invention will be explained below with reference to the drawings.

第1図は本発明の原理説明図であり、LED、レーザー
、若しくは電球などからなる光源1からの光は側方漏洩
光ファイバー2の光入力端3に入力され、該光ファイバ
ー2の中を通過して光出力端4から出力されて受光器5
に入り、ここで電気信号に変換されて増幅・変換器6を
介してデジタル式若しくはアナログ式の表示器7に接続
されている。そして、該光ファイバー2は、その長手方
向単位長当たりの光の漏洩量がほぼ一定になるように加
工されている。以上のような構成の本発明の実施例にお
いて、該光ファイバー2のある部分が空気8中にあり、
他の部分が液体9中にあるとき、空気と液体の光に対す
る屈折率が異なるため、即ち光の漏洩経路における負荷
インピーダンスが異なることにより、単位長当たりの空
中漏洩量10と液中漏洩量】1とは異なったものとなる
FIG. 1 is a diagram explaining the principle of the present invention, in which light from a light source 1 consisting of an LED, a laser, a light bulb, etc. is input to the light input end 3 of a side leakage optical fiber 2, and passes through the optical fiber 2. The light is output from the light output end 4 and sent to the light receiver 5.
There, the signal is converted into an electrical signal and connected via an amplifier/converter 6 to a digital or analog display 7. The optical fiber 2 is processed so that the amount of light leakage per unit length in the longitudinal direction is approximately constant. In the embodiment of the present invention configured as described above, a certain portion of the optical fiber 2 is in the air 8,
When the other parts are in the liquid 9, the air and liquid have different refractive indices for light, that is, the load impedance on the light leakage path is different, so the amount of air leakage per unit length and the amount of leakage in the liquid] It will be different from 1.

この状況を第2図及び第3図に示す電気的等価回路によ
って説明すればより解りやすくなる。
This situation will be easier to understand if explained using the electrical equivalent circuits shown in FIGS. 2 and 3.

第2図は、該光ファイバー2がすべて空気中にある場合
の等価回路であり、光源1からの入力光Pは空気に対す
る漏洩インピーダンス2..22、・・・、Zヨ、Zn
 を介して空中に漏洩し、残りの出力光Rが受光器5に
入力される。一方策3図は1図中のC−C線とD−D@
の間が液中にある場合を示し、この区間の漏洩インピー
ダンスは液体に対する漏洩インピーダンスZ2+・・・
g  Z、に変わり、したがって出力光もRからrに変
わる。
FIG. 2 shows an equivalent circuit when all of the optical fibers 2 are in the air, and the input light P from the light source 1 has a leakage impedance of 2. .. 22, ..., Zyo, Zn
The remaining output light R is input into the light receiver 5. On the other hand, Figure 3 is the C-C line in Figure 1 and D-D@
Indicates the case where the area between is in the liquid, and the leakage impedance in this area is the leakage impedance to the liquid Z2+...
g Z, and therefore the output light also changes from R to r.

液位が上下に変化すると、即ちC−C線とDD線の間隔
が変わると、当然rの値が変わるのでこのrの値から液
位が検出できることになる。
When the liquid level changes up and down, that is, when the interval between the C-C line and the DD line changes, the value of r naturally changes, so the liquid level can be detected from this value of r.

第4図乃至第6図は共に側方漏洩光ファイバー2の構成
例を示し、第4図に示すようにコア12の外側を取り巻
くクラッド13の一部をA−A面で削除すれば、この削
除面から光が漏洩するようになるし、また第5図Bのよ
うに、クラッド13の適宜の位置に、適宜の寸法及び深
さの孔を穿つてもよい。更に第6図に示すように、光コ
アイノく−を一定値以下の曲率半径で湾曲させれば、光
ファイバーの側面から光が漏洩するようになる。これら
の他、クラッドを薄くシて光が側方から漏洩するように
予め設計・製作した光ファイバーを使用しても良い。
4 to 6 both show configuration examples of the side leakage optical fiber 2. If a part of the cladding 13 surrounding the outside of the core 12 is removed in the A-A plane as shown in FIG. Light leaks from the surface, and holes of appropriate dimensions and depth may be bored at appropriate positions in the cladding 13, as shown in FIG. 5B. Furthermore, as shown in FIG. 6, if the optical core is curved with a radius of curvature below a certain value, light will leak from the side surface of the optical fiber. In addition to these, it is also possible to use an optical fiber designed and manufactured in advance so that the cladding is thin so that light leaks from the sides.

以上説明したように、本発明による計測方法によれば、
液面からの光の反射を利用しないので、液面の影@を受
けにくく、正確な計測を行なうことができると共に、光
は空間を往復する必要がなく光フアイバー中を片道進行
するだけなので往復方式に比べて小出力の光源でよく、
更にレーダー方式のような複雑高価な回路を使用する必
要もないので、低価格化が実現できる。
As explained above, according to the measurement method according to the present invention,
Since it does not utilize the reflection of light from the liquid surface, it is less likely to be affected by shadows on the liquid surface, allowing for accurate measurements.In addition, the light does not need to travel back and forth in space, but only travels one way through the optical fiber, so it can be used in both directions. Compared to the method, a light source with a lower output is required,
Furthermore, since there is no need to use complicated and expensive circuits like the radar system, the cost can be reduced.

以上説明したように、本発明によれば構造が簡単で、計
測精度の高く、かつ安価な液位計を提供できるので産業
上の効果は非常に大きい。
As explained above, according to the present invention, it is possible to provide a liquid level meter that has a simple structure, high measurement accuracy, and is inexpensive, and therefore has a very large industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原理説明図、第2図及び第3ずは側方1liI
洩光フアイバーの電気的等価回路、第4図乃至第6図は
それぞれ側方漏洩光コアイノく−の実施例を示す図。 1・・・光源、2・・・側方漏洩光コアイノ<−、3・
・・光入力端、4・・光出力端、5・・・受光器、6・
・・増幅・変換器、7・・・表示器、8・・空気、9・
・・液体、10・・・空中漏洩、11・・・液中漏洩。
Figure 1 is a diagram explaining the principle, Figures 2 and 3 are lateral 1liI
4 to 6 are diagrams each showing an embodiment of a side leaking optical core. 1... Light source, 2... Lateral leakage light core ino<-, 3.
・・Optical input end, 4・・Optical output end, 5・・Receiver, 6・・
・・Amplifier/converter, 7・・Display device, 8・・Air, 9・
...liquid, 10...air leakage, 11...liquid leakage.

Claims (1)

【特許請求の範囲】[Claims] 液体のレベルを測定する計器において、液体中にその一
部を浸すようになされた側方漏洩光ファイバーの一端か
ら光を投入し、他端から出力された光量を計測すること
によって、液位を計測するようにしたことを特長とする
側方漏洩光ファイバー式液位計。
In an instrument that measures the level of a liquid, the liquid level is measured by injecting light from one end of a side-leaking optical fiber that is partially immersed in the liquid and measuring the amount of light output from the other end. A side leakage optical fiber type liquid level gauge.
JP24654190A 1990-09-17 1990-09-17 Lateral leakage optical fiber type level gage Pending JPH04125423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654190A JPH04125423A (en) 1990-09-17 1990-09-17 Lateral leakage optical fiber type level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654190A JPH04125423A (en) 1990-09-17 1990-09-17 Lateral leakage optical fiber type level gage

Publications (1)

Publication Number Publication Date
JPH04125423A true JPH04125423A (en) 1992-04-24

Family

ID=17149946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654190A Pending JPH04125423A (en) 1990-09-17 1990-09-17 Lateral leakage optical fiber type level gage

Country Status (1)

Country Link
JP (1) JPH04125423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607941B1 (en) * 1999-11-10 2006-08-03 삼성전자주식회사 Liquid level gauge
WO2008018281A1 (en) * 2006-08-07 2008-02-14 Hamamatsu Photonics K.K. Mobile optical communication system and mobile optical communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607941B1 (en) * 1999-11-10 2006-08-03 삼성전자주식회사 Liquid level gauge
WO2008018281A1 (en) * 2006-08-07 2008-02-14 Hamamatsu Photonics K.K. Mobile optical communication system and mobile optical communication method

Similar Documents

Publication Publication Date Title
Yang et al. A review of recent developed and applications of plastic fiber optic displacement sensors
ATE27489T1 (en) FIBER OPTIC MEASUREMENT DEVICE.
KR20070005597A (en) Method for measuring noncircularity of core portion of optical fiber preform and its instrument
CN204228235U (en) Based on the optical fiber continous way liquid level sensor system of CMFTIR effect
CN108398211B (en) Distributed optical fiber water leakage sensor based on external source positioning and water leakage detection method
EP0866313A1 (en) A sensor and a method for measuring distances to, and/or physical properties of, a medium
CN107782696A (en) The sensor-based system and method for distributed liquid refractivity are measured using tapered fiber
US6795598B1 (en) Liquid-level sensor having multiple solid optical conductors with surface discontinuities
CN107389154A (en) The continuous liquid level sensing device of hollow optic fibre and measuring method based on OFDR
JPH04125423A (en) Lateral leakage optical fiber type level gage
US7573565B1 (en) Methods and systems for determining the density and/or temperature of fluids
ATE8180T1 (en) DEVICE FOR MEASURING THICKNESS.
CN207147589U (en) The continuous liquid level sensing device of hollow optic fibre based on OFDR
CN104729628B (en) A kind of liquid level sensor and level measuring method based on optical fiber
JPS5796203A (en) Contactless displacement detector employing optical fiber
GB2196112A (en) Optical fibre measurement apparatus and method
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
CN214372917U (en) Sensing optical fiber, sensing assembly and sensor based on sensing optical fiber
RU44389U1 (en) OPTICAL INTEGRATING REFLECTOMETER
KR101894183B1 (en) The optical waveguide sensor and the concentration measurement system with it
JPH0318895Y2 (en)
JPS6224725B2 (en)
GB2206201A (en) Method of refractometry and refractometer therefor
Ramakrishnan Multimode optical fibre sensors
JPS57187677A (en) Measuring device for speed