JPS62235349A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPS62235349A
JPS62235349A JP7726786A JP7726786A JPS62235349A JP S62235349 A JPS62235349 A JP S62235349A JP 7726786 A JP7726786 A JP 7726786A JP 7726786 A JP7726786 A JP 7726786A JP S62235349 A JPS62235349 A JP S62235349A
Authority
JP
Japan
Prior art keywords
resin
weight
crosslinked
rubber
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7726786A
Other languages
Japanese (ja)
Inventor
Kazuo Kishida
岸田 一夫
Yutaka Toyooka
豊岡 豊
Haruyoshi Kitahara
春義 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP7726786A priority Critical patent/JPS62235349A/en
Publication of JPS62235349A publication Critical patent/JPS62235349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition, obtained by blending a graft polymer prepared from a crosslinked acrylic rubber, etc., of a multiple structure having a core of a rigid crosslinked resin in particles of an acrylic acid ester based rubber with AES resin, etc., in specific amounts and having improved weather, impact resistance, molding external appearance, etc. CONSTITUTION:A composition obtained by blending (A) 5-95wt% graft polymer prepared by polymerizing (A2) a monomer mixture consisting of 10-90wt% one or more aromatic vinyl compounds, e.g. styrene, etc., and 90-10wt% one or more ethylenically unsaturated monomers expressed by the formula CH2=CRX (R is H, etc.; X is CN, etc.), e.g. acrylonitrile, etc., in the presence of (A1) a latex containing a crosslinked acrylic rubber of a multiple structure containing 5-50wt% rigid crosslinked resin having 0.15-0.4mu core particle diameter in the particles and outer layer part thereof consisting of 95-50wt% crosslinked acrylic acid ester based polymer with (B) 5-95wt% AES resin and (C) 0-50wt% rigid thermoplastic resin to give 100wt% total thereof.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は耐候性、耐衝撃性、成形外観および底形性に優
れた熱可塑性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermoplastic resin composition having excellent weather resistance, impact resistance, molded appearance and bottom shape.

(従来の技術〕 耐衝撃性樹脂として、樹脂−ゴムニ相系からなるAES
樹脂がある。しかし、このAES樹脂は、耐衝撃性を付
与するためのゴム成分であるブタジェン系重合体がその
主鎖中に化学的に不安定な二重結合を多く有している交
め、紫外線などによって劣化しやすく、耐候性に劣るこ
とか良く知られている。
(Prior art) AES consisting of a resin-rubber two-phase system is used as an impact-resistant resin.
There is resin. However, this AES resin is difficult to use due to the fact that the butadiene polymer, which is the rubber component for imparting impact resistance, has many chemically unstable double bonds in its main chain. It is well known that it deteriorates easily and has poor weather resistance.

このAES樹脂の耐候it改良する方法として、主鎖中
に二重結合を殆ど有さない飽和ゴム状重合体を使用する
方法が提案されており、その代表的なものにアクリル酸
エステル系ゴムを使用し友ものが知られている。このア
クリル酸エステル系ゴムにスチレン、アクリロニトリル
全グラフト重合したいわゆるAEIAi脂は優れ良耐候
性に加え、AES樹脂同様に機械的強度。
As a method to improve the weather resistance of this AES resin, a method has been proposed to use a saturated rubbery polymer that has almost no double bonds in the main chain, and a typical example is acrylic ester rubber. Friends who use it are known. The so-called AEIAi resin, which is made by completely graft polymerizing styrene and acrylonitrile to this acrylic ester rubber, has excellent weather resistance and mechanical strength similar to AES resin.

衝撃強度、耐熱性等の物性バランスが良好で成形加工し
やすいという特長を有する丸め、車輌分野、家庭電器製
品および工業部品分野等屋内外にわたり広く利用されて
いる。
It has a good balance of physical properties such as impact strength and heat resistance, and is easy to mold and process, so it is widely used both indoors and outdoors, such as in the vehicle, home appliance, and industrial parts fields.

しかしながら、これらの利用分野でまた新用途開発にお
いてAHA樹脂は次のような問題点を有している。
However, in these fields of application and in the development of new applications, AHA resins have the following problems.

第1に、このアクリル酸エステル系ゴムは紫外線に対し
ては安定である反面、架橋やグラフト活性点を有してい
ない九め、樹脂−ゴム二相系樹脂での必須条件であるゴ
ム架橋やグラフト構造をと9にくく、ジエン系ゴムを用
いたものに比べると、軟らかく、弾性率が低く、弾性回
復か遅いという欠A′t″有している。そのため、この
ようなアクリル酸エステル系ゴムt−用いたAB13m
脂に類似し友樹脂組底物ヲ属形材料として用いて射出成
形金行うと、ゴム粒子の配向か著しく、成形物の表面の
全領域あるいは一定流動万同に真珠様光沢か発現する。
First, although this acrylic ester rubber is stable against ultraviolet rays, it does not have crosslinking or grafting active sites. Compared to those using diene-based rubbers, these acrylic ester-based rubbers have the disadvantages of being soft, having a low elastic modulus, and slowing elastic recovery. t-AB13m used
When injection molding is carried out using resin composites, which are similar to oils, as the molding material, the orientation of the rubber particles is remarkable, and a pearl-like luster appears over the entire surface area of the molded product or throughout the constant flow.

また、顛科等で着色された場合に、更にこの傾向が強調
される友め商品価値が低下するという欠点があった。こ
の欠点全改良するために架橋剤の種類を選定して共重合
する方法、過酸化物架橋等による方法、ジエン系ゴムを
粒子内部に含む多重構造架橋アクリルゴム會使用する方
法等が特公昭47−47863号公報、特開昭56−8
6918号公報、特開昭56−133311号公報、特
開昭57−167308号公報、特開昭58−1206
65号公報等に提案されている。
Furthermore, when the material is colored with dyes or the like, this tendency is further accentuated, resulting in a reduction in commercial value. In order to completely overcome this drawback, methods such as selecting the type of crosslinking agent and copolymerizing it, using peroxide crosslinking, etc., and using multi-structure crosslinked acrylic rubber containing diene rubber inside the particles were proposed. Publication No.-47863, JP-A-56-8
6918, JP 56-133311, JP 57-167308, JP 58-1206
This is proposed in Publication No. 65, etc.

第2に、A8A樹脂の低温衝撃強度はAES樹脂、AE
S樹脂より劣っている。それはこれらのゴム源のガラス
転移温度の這いによるものと推察される。すなわちA3
Am脂のアクリル酸エステル系ゴムのガラス転移温度が
AESIII脂のブタシェフ系ゴム、AFiEllll
の]l[iPDM(エチレン−プロピレン−非共役ジエ
ン系ゴム弾性体)のそれより高いことに起因しているも
のと思われる。
Second, the low-temperature impact strength of A8A resin is
Inferior to S resin. It is presumed that this is due to the creep of the glass transition temperature of these rubber sources. That is A3
AFiEllll is a Butashev-based rubber with an AESIII-based AESIII resin glass transition temperature.
This seems to be due to the fact that it is higher than that of iPDM (ethylene-propylene-nonconjugated diene rubber elastic material).

し危がって、耐候性を有しASA樹脂の低温衝撃強度を
改良する方法としては、Ash倒脂とAK8樹脂をブレ
ンドしtmm初物考えられる。−万、AES樹脂に関し
ては光沢発現性が悪く、′!友ゴム粒子の弾性率が低く
且つ平均粒子径か大きいことに起因する真珠様光沢の発
現か強いという欠点を有している。そのtめ耐候性を低
下させず光沢の改良および真珠様光沢を低減する方法が
求められているのが現状である。
Therefore, as a method to improve the low-temperature impact strength of ASA resin with weather resistance, it is possible to blend Ash fallen fat and AK8 resin to create a TMM product. - 10,000, AES resin has poor gloss development,'! It has the disadvantage that it has a strong pearl-like luster due to the low elastic modulus and large average particle size of the rubber particles. Currently, there is a need for a method for improving gloss and reducing pearl-like luster without reducing weather resistance.

なお、A8A樹脂とAFf日樹脂とのブレンド系で耐衝
撃性改善効果を目的とした樹脂組成物が特公昭53−3
4212、特開昭60−4545号公報等に提案されて
いる。
In addition, a resin composition that is a blend of A8A resin and AFf resin and is intended to improve impact resistance was published in Japanese Patent Publication No. 53-3.
4212, Japanese Patent Laid-Open No. 60-4545, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに上記公報等に記載された樹脂組成物については
、 (1)  成形性において 射出成形時に、ゴム粒子の変形配向が著しく、成形物表
面の全領域にあるいは一定流動万同に依然として真珠様
光沢が発現する。
However, regarding the resin compositions described in the above-mentioned publications, (1) In terms of moldability, the deformation and orientation of the rubber particles is significant during injection molding, and pearl-like luster still remains over the entire surface area of the molded product or even during constant flow. manifest.

(2)成形物光沢と耐衝撃性の関係において光沢−耐衝
撃性のパラノスが低レベルにある。
(2) In the relationship between molded product gloss and impact resistance, the gloss-impact resistance paranoia is at a low level.

(3]  低温耐衝撃性について AES樹脂、ムBB1114脂等より劣っている等の改
良すべき問題点が指摘され、目的とする優れ次耐候性、
耐衝撃性、成形外観および成形性を有する熱可塑性樹脂
は未だ得られていないのが現状である。
(3) Problems that should be improved were pointed out, such as the low-temperature impact resistance being inferior to AES resin, Mu BB1114 resin, etc., and the desired excellent weather resistance,
At present, a thermoplastic resin having good impact resistance, molded appearance, and moldability has not yet been obtained.

し問題点を解決する之めの手段〕 本発明者らは上述し友如き現状に鑑み鋭意検討した結果
、アクリル酸エステル系ゴム粒子の粒子径を小さくせず
弾性率を高めることか最も有効であるとの考えから、ア
クリル駿エステル系ゴム粒子内部に架橋され次特定範囲
の粒子径を有する硬質樹脂の芯を設けた多重構造架橋ア
クリル糸ゴムに芳香族ビニル化合物およびエチレン性不
飽和単量体をグラフト重合したグラフト重合体とAES
樹脂を夫々特定の範囲で、必要により他の硬質熱可塑性
樹脂を配合することにより所期の目的を達成しうろこと
を見出し本発明に到達した。
Means for Solving the Problem] The present inventors have conducted intensive studies in view of the above-mentioned current situation, and have found that the most effective method is to increase the elastic modulus without reducing the particle size of the acrylic ester rubber particles. Based on the idea that this is the case, we added aromatic vinyl compounds and ethylenically unsaturated monomers to multi-structure crosslinked acrylic thread rubber, which has a core of hard resin that is crosslinked inside the acrylic ester rubber particles and has a particle size within a specific range. The graft polymer obtained by graft polymerization and AES
The present invention was achieved by discovering that the desired objective could be achieved by blending each resin within a specific range and, if necessary, other hard thermoplastic resins.

即ち本発明の要旨とするところは、芯粒子径が[L15
〜α4μであるような硬質架橋樹脂(a)5〜50重量
tst粒子内部に含み、且つアクリル酸エステルを主成
分とする架橋アクリル酸エステル系重合体(1)) 9
5〜50重量係がその外層部を構成してなる多重構造架
橋アクリル系ゴム(1) 100重量部を含むラテック
スの存在下で、芳香−族ビニル化合物の少なくと4−1
[10〜90重量係と一般式(H,=ORX (RFi
HまたはQHg : XはONま友は0OOR,(Rt
は炭素数1〜Bのアルキル基))t−有するエチレン性
不飽和単量体の少なくとも一′m90〜10重量%とか
らなる単量体温金物(2)5〜900重量部を重合させ
て得られるグラフト重合体(り5〜95重量係、A!I
i8樹脂(It) 5〜95重量慢および他の硬質熱可
塑性樹脂(■)0〜50重tSで、且つ(1)、  (
n)および(1)の各成分の合計量が100重isとな
るように配合された熱可塑性樹脂組成物にある。
That is, the gist of the present invention is that the core particle diameter is [L15
Hard crosslinked resin (a) having a particle size of ~α4μ (a) 5 to 50 weight crosslinked acrylic ester polymer (1) containing acrylic ester as a main component and contained inside the tst particles 9
Multi-structure crosslinked acrylic rubber (1) comprising 5 to 50 parts by weight of a latex comprising 100 parts by weight of at least 4 to 1 parts by weight of an aromatic vinyl compound.
[10 to 90 weight factor and general formula (H,=ORX (RFi
H or QHg: X is ON, friend is 0OOR, (Rt
is an alkyl group having 1 to B carbon atoms)) obtained by polymerizing 5 to 900 parts by weight of a monomer thermometallic material (2) consisting of 90 to 10% by weight of an ethylenically unsaturated monomer having t- Graft polymer (5-95 weight, A!I
i8 resin (It) 5-95 heavy and other hard thermoplastic resins (■) 0-50 heavy tS, and (1), (
The thermoplastic resin composition is such that the total amount of each component (n) and (1) is 100 parts by weight.

本発明において多層構造架橋アクリル系ゴム(1)粒子
の芯を構成する硬質架橋樹脂(a)としては常温で硬質
であり、通常の乳化1合法により得られるものであれば
特に限定されない。具体的なものとしてはスチレン、α
−メチルスチレン、ビニルトルエン、核ハロゲン化スチ
レン等の芳香族ビニル化合物:アクリロニトリル。
In the present invention, the hard crosslinked resin (a) constituting the core of the multilayer structure crosslinked acrylic rubber (1) particles is not particularly limited as long as it is hard at room temperature and can be obtained by the usual emulsification method. Specifically, styrene, α
- Aromatic vinyl compounds such as methylstyrene, vinyltoluene, and nuclear halogenated styrene: acrylonitrile.

メタクリル酸アリル等のシアン化ビニル化合物:メタク
リル酸メチル、メタクリル酸エチル。
Vinyl cyanide compounds such as allyl methacrylate: methyl methacrylate, ethyl methacrylate.

メタクリル酸プロピル等のメタクリル酸アルキルエステ
ル等の化合物の少なくと%−3t″架橋性単量体の存在
下で乳化重合して得られるものが挙げられる。
Examples include those obtained by emulsion polymerization of compounds such as alkyl methacrylates such as propyl methacrylate in the presence of at least %-3t'' crosslinking monomer.

また多層構造架橋アクリル系ゴム(1)粒子の外層を構
成する架橋アクリル酸エステル系重合体(1))の主成
分であるアクリル酸エステルとしてはアルキル基の炭素
数が1〜12のアクリル酸アルキルエステル:アクリル
酸ベンジルま之はフェネチル等のアクリル酸芳香族エス
テル等が挙げられる。常温においてゴム状であるだめに
はアクリル酸エステル、好ましくは炭素数1〜8のアル
キルエステルが該架橋アクリル酸エステル系重合体(1
))中に60重tチ以上構成底分として用いられること
が好ましい。
In addition, the acrylic ester that is the main component of the crosslinked acrylic ester polymer (1) constituting the outer layer of the multilayer structure crosslinked acrylic rubber (1) particles is an alkyl acrylate having an alkyl group having 1 to 12 carbon atoms. Ester: Examples of benzyl acrylate include aromatic acrylic esters such as phenethyl. An acrylic ester, preferably an alkyl ester having 1 to 8 carbon atoms, is used to form the crosslinked acrylic ester polymer (1
)) It is preferable to use it as a constituent part of 60 weights or more.

上記架橋アクリル酸エステル系重合体(1))には40
重量%迄の共重合性単量体を便用することができる。ア
クリル酸エステルと共重合可能な単量体としてはメタク
リル酸メチル、メタクリルcRn−ブチルのようなメタ
クリル酸エステル、アクリロニトリル、スチレン等が挙
ケラレる。
The cross-linked acrylic acid ester polymer (1)) contains 40
Up to % by weight of copolymerizable monomers can be used. Examples of monomers copolymerizable with acrylic esters include methacrylic esters such as methyl methacrylate and cRn-butyl methacrylate, acrylonitrile, and styrene.

上記硬質架橋樹脂(&)および架橋アクリル酸エステル
系重合体(1))t−形成するために用いられる架橋性
単量体とじては非共役のC=C結合を少なくと′%2個
有する架橋性単量体であり、例、t ハエチレングリコ
ールジメタクリレート、ブタンジオールジアクリレート
のようなポリオールの不飽和酸エステル題:シアヌル虐
トリアリル、イソシアヌル酸トリアリルのような多塩基
性酸の不飽和アルコールエステル類;ジビニルベンゼン
のような狭義のジビニル化合物:メタクリル酸アリル、
フタル酸ジアリルのような不飽和酸の木飽和アルコール
エステル類等が挙げられる。
The crosslinkable monomer used to form the above-mentioned hard crosslinked resin (&) and crosslinked acrylic acid ester polymer (1) has at least 2% non-conjugated C=C bonds. It is a crosslinking monomer, for example, an unsaturated acid ester of polyols such as ethylene glycol dimethacrylate, butanediol diacrylate. Esters; narrowly defined divinyl compounds such as divinylbenzene: allyl methacrylate,
Examples include saturated alcohol esters of unsaturated acids such as diallyl phthalate.

硬質架橋樹脂(a)および架橋アクリル酸エステル系重
合体(1))を形成するには上記硬質樹脂形成単量体ま
友は上記アクリル酸エステル系重合体形成単量体と上記
架橋性単量体と混合して重合するか、あるいは上記硬質
樹脂形成単量体ま次は上記アクリル酸エステル系重合体
形成単量体金夫々重合後過酸化ペノゾイルのような有機
パーオキサイドを加えてラテックス状態で加熱するか、
さらにはこれら両者上併用して行うことができる。
To form the hard crosslinked resin (a) and the crosslinked acrylic ester polymer (1), the hard resin forming monomers are combined with the acrylic ester polymer forming monomer and the crosslinkable monomer. Alternatively, the above hard resin-forming monomers are polymerized with the above-mentioned acrylic acid ester polymer-forming monomers, and then an organic peroxide such as penozoyl peroxide is added to form a latex state. Heat it or
Furthermore, both of these can be used in combination.

本発明において多重構造架橋アクリル系ゴム(1)粒子
内部に硬質架橋樹脂(a) ’に芯として含ませる方法
としては次のような方法が挙げられる。即ち上記架橋性
単量体[1L01〜5mfi%。
In the present invention, the following method may be used to incorporate the hard crosslinked resin (a)' as a core inside the particles of the multilayer crosslinked acrylic rubber (1). That is, the above-mentioned crosslinkable monomer [1L01-5mfi%.

好ましくはα1〜2重量%を含有する硬質樹脂形成単量
体混合物を乳化重合法により重合する。
Preferably, a hard resin-forming monomer mixture containing α1 to 2% by weight is polymerized by emulsion polymerization.

架橋性単量体の量が1101重量%禾満で上底形品か外
観不良となる傾向になるので好ましくない。te3重量
est−超える量では流動性、衝撃強度が低下する傾向
になるので好ましくない。
If the amount of the crosslinking monomer is less than 1101% by weight, it is not preferable because it tends to result in a top-bottomed product or poor appearance. If the amount exceeds te3 weight est-, fluidity and impact strength tend to decrease, which is not preferable.

本発明において重要なことはこの硬質架橋樹脂(IL)
の粒子径t−(L15〜α4μ、好ましくはα25〜α
4μ、さらに好ましくはα3〜α4μとすることであり
、これにより成形品の外観や衝撃強度上着しく改良する
。この粒子径か015μ未満ではこの硬質架橋樹脂(a
)の外層部に架橋アクリル酸エステル系重合体(kl)
 t−設けてなる多重構造架橋アクリル系ゴム(1)の
粒子径が大きいものか得られにくくなる九め衝撃強度の
面で満足すべき結果か得られにくい傾向となる〇ま九こ
の粒子径かα4μを超す場合には後述の架橋アクリル酸
エステル系重合体(1))の重合段階まtはそれ以降の
グラフト重合段階においてラテックスが凝集金起し易く
なつtり、また最終的に粒子径が大きくなり成形品の外
観上低下させる傾向となるため好ましくない。
What is important in the present invention is this hard crosslinked resin (IL)
Particle diameter t-(L15~α4μ, preferably α25~α
4μ, more preferably α3 to α4μ, thereby significantly improving the appearance and impact strength of the molded product. If this particle size is less than 0.015μ, this hard crosslinked resin (a
) with cross-linked acrylic ester polymer (kl) in the outer layer.
If the particle size of the multi-structure cross-linked acrylic rubber (1) provided is large, it will be difficult to obtain a satisfactory result in terms of impact strength. When α4μ is exceeded, the latex tends to form agglomerates during the polymerization step of the crosslinked acrylic acid ester polymer (1)) or the subsequent graft polymerization step, which will be described later, and the particle size eventually decreases. This is not preferable because it tends to increase in size and deteriorate the appearance of the molded product.

矢に上記粒子径範囲に調整され次硬質架橋樹脂ラテック
ス(固形分として)5〜50重量係、好ましくは10〜
30重tesの存在下で新しい粒子の発生を抑制する条
件下でアクリル酸エステルを主成分とするアクリル系ゴ
ム構成単量体ま几は単量体混合物95〜50重量%、好
ましくは90〜75x食%(硬質架橋樹脂ラテックス(
固形分として)とアクリル系ゴム構成単量体ま友は単量
体混合物の合計量100重量%)t−X合させる、いわ
ゆるシード重合方式により多重構造架橋アクリル系ゴム
(1) を得ル。
The hard crosslinked resin latex (as solid content) adjusted to the above particle size range is 5-50% by weight, preferably 10-50% by weight.
Under conditions that suppress the generation of new particles in the presence of 30% TES, the acrylic rubber constituent monomer containing acrylic acid ester as a main component is added to the monomer mixture in an amount of 95 to 50% by weight, preferably 90 to 75x. Food% (Hard cross-linked resin latex (
A multi-structured crosslinked acrylic rubber (1) is obtained by a so-called seed polymerization method in which the solid content of the acrylic rubber constituent monomers (as solid content) and the acrylic rubber constituent monomers (total amount of the monomer mixture is 100% by weight) are combined.

この多重構造架橋アクリル系ゴム(1)中の硬質架橋樹
脂芯の含有量は5〜5oxt*であり、5!を慢上底で
あれば硬質架橋樹脂芯としての効果が見られなくなる。
The content of the hard crosslinked resin core in this multi-structure crosslinked acrylic rubber (1) is 5 to 5oxt*, and 5! If the upper base is arrogant, the effect as a hard crosslinked resin core will not be seen.

まt5o重量%を超える場合には衝撃強度の面で満足で
きる結果か得られにくい傾向となる。
If it exceeds 50% by weight, it tends to be difficult to obtain satisfactory results in terms of impact strength.

まtこの多重構造架橋アクリル系ゴム(1)のμ未満で
あれは最終的に得られるグラフト重合体(1)とAFt
8@脂(n) t−配合してなる樹脂組成物の衝撃強度
の面で満足するものが得られにぐい傾向となるので好ま
しくない。ま几15μを超える場合には衝撃強度の面で
は良好な結果が得られる反面、射出成形品の成形外観が
不良となり好ましくない。
If it is less than μ of this multi-structure cross-linked acrylic rubber (1), the final graft polymer (1) and AFt
8@Fat (n) It is not preferable because it tends to be difficult to obtain a resin composition containing t- that is satisfactory in terms of impact strength. If the diameter exceeds 15μ, good results can be obtained in terms of impact strength, but the molded appearance of the injection molded product will be poor, which is not preferable.

次に上記多重構造架橋アクリル系ゴム(1)100重量
部を含むラテックスの存在下で芳香族ビニル化合物の少
なくとも1m10〜90重量%と一般式OH,=ORX
 (RはIIまたはOHs:XはONt九は0OOR,
(Rtは炭素数1〜8のアルキル基))t−有するエチ
レン性不飽和化合物の少なくとも11190〜10重量
%とからなる単量体混合物(2)5〜900重量部を乳
化グラフト重合し、得られ几グラフトポリマーラテック
スを通常の方法にて凝固、脱水、乾燥を行うことにより
本発明で使用するグラフト重合体中を得る。
Next, in the presence of a latex containing 100 parts by weight of the multi-structured crosslinked acrylic rubber (1), at least 1 ml of an aromatic vinyl compound (10 to 90% by weight) with the general formula OH,=ORX
(R is II or OHs: X is ONt9 is 0OOR,
(Rt is an alkyl group having 1 to 8 carbon atoms) 5 to 900 parts by weight of a monomer mixture (2) consisting of at least 11190 to 10% by weight of an ethylenically unsaturated compound having t- The graft polymer used in the present invention is obtained by coagulating, dehydrating, and drying the graft polymer latex in a conventional manner.

ここで芳香族ビニル化合物としては例えばスチレノ、α
−メチルスチレン、ビニルトルエン。
Examples of aromatic vinyl compounds include styrene, α
-Methylstyrene, vinyltoluene.

核ハロゲン化スチレンが、まt一般式0H2=ORX 
 で表わされる化合物としては例えばアクリロニトリル
、メタクリロニトリル、アクリル酸またはメタクリル酸
のメチル、エチル、プロピル、ブチルエステル等が挙げ
られる。
Nuclear halogenated styrene has the general formula 0H2=ORX
Examples of the compound represented by the above include acrylonitrile, methacrylonitrile, methyl, ethyl, propyl, and butyl esters of acrylic acid or methacrylic acid.

次に本発明におけるA18樹脂(■)としては例えばA
l13樹脂の製造に用いられる兄PDM(エチレン−プ
ロピレン−非共役ジエン系ゴム弾性体)はエチレン/プ
ロピレンCti比);ox80/20〜50/70、ま
た非共役ジエン(ジシクロペンタジェン、アルキリデン
ノルボルネン、1.4−へキサジエン等)の含量が(1
1〜10モルチのものであり、かかるKPDMにスチレ
ン、α−メチルスチレン、ビニルトルエン、核ハロゲン
化スチレン等の芳香族ビニル化合物、好ましくはスチレ
7を、およびアクリロニトリル、メタクリロニトリル等
のシアン化ビニル化合物、好ましくはアクリロニトリル
を塊状、塊状−懸濁、または乳化重合法によりグラフト
重合させる周知の方法によって得られるものであれば特
に限定しなめ。
Next, as the A18 resin (■) in the present invention, for example, A
The older brother PDM (ethylene-propylene-nonconjugated diene rubber elastic material) used in the production of l13 resin has an ethylene/propylene Cti ratio); , 1,4-hexadiene, etc.) is (1
1 to 10 molar, and such KPDM is combined with an aromatic vinyl compound such as styrene, α-methylstyrene, vinyltoluene, or nuclear halogenated styrene, preferably styrene 7, and a vinyl cyanide such as acrylonitrile or methacrylonitrile. There are no particular limitations as long as the compound, preferably acrylonitrile, can be obtained by a well-known method of graft polymerizing by bulk, bulk-suspension, or emulsion polymerization.

本発明の熱可塑性樹脂組成物は主として上記グラフト重
合体(I)5〜95ifi%およびAK8樹脂(11)
 5〜95TL′!jkToから構成されるものである
か、必要であればさらにこれに他の硬質熱意W注樹脂(
III) ffi全樹脂組底物中50重量係迄配合する
ことができ、これら(1)、  (u)および(fil
)の樹脂の合計iを100重量優とする。
The thermoplastic resin composition of the present invention mainly comprises 5 to 95 ifi% of the above-mentioned graft polymer (I) and AK8 resin (11).
5~95TL'! jkTo or, if necessary, additionally add other hard resins (
III) Up to 50% by weight of ffi all-resin composite soles can be blended, and these (1), (u) and (fil
), the total i of the resins is 100% by weight.

硬質熱可塑性樹脂(II)としては常温で硬質であれば
特に制限はないが、例えばメタクリル酸エチル、メタク
リル酸エチル、メタクリル酸プロピル等のメタクリル酸
アルキルエステルの単独重合体、アクリロニトリル−ス
チレン共X合体、アクリロニトリル−α−メチルスチレ
ン共重合体、α−メチルスチレン−メチルメタクリレー
ト−アクリロニトリル三元共重合体、スチレノーメチル
メタクリレート共i合体、 スチレン−アクリロニトリ
ル−メチルメタクリレート三元共重合体、スチレン−無
水マレイン酸共重合体、アクリロニトリル−スチレン−
無水マレイン酸三元共重合体、スチレン−マレイミド類
共重合体、スチレンーアクリロニトリル−マレイミド類
共重合体、α−メチルスチレン−アクリロニトリル−マ
レイミド類共重合体、アクリロニトリル−マレイミド類
共重合体、ポリスチレン、ポリ塩化ビニル、塩素化ポリ
エチレンのビニル系重合体、AB8樹脂やポリカーボネ
ート樹脂等の耐衝撃性樹脂、さらにはポリフェニレンエ
ーテル、ポリエチレンテレフタレート。
The hard thermoplastic resin (II) is not particularly limited as long as it is hard at room temperature, but examples include homopolymers of alkyl methacrylates such as ethyl methacrylate, ethyl methacrylate, and propyl methacrylate, and acrylonitrile-styrene co-X polymers. , acrylonitrile-α-methylstyrene copolymer, α-methylstyrene-methylmethacrylate-acrylonitrile terpolymer, styrene-methylmethacrylate copolymer, styrene-acrylonitrile-methylmethacrylate terpolymer, styrene-maleic anhydride Acid copolymer, acrylonitrile-styrene-
Maleic anhydride terpolymer, styrene-maleimide copolymer, styrene-acrylonitrile-maleimide copolymer, α-methylstyrene-acrylonitrile-maleimide copolymer, acrylonitrile-maleimide copolymer, polystyrene, Vinyl polymers such as polyvinyl chloride and chlorinated polyethylene, impact-resistant resins such as AB8 resin and polycarbonate resin, as well as polyphenylene ether and polyethylene terephthalate.

ポリブチレンテレフタレート、ポリスルホン等のエンジ
ニアリングプラスチック等を挙けることができる。
Examples include engineering plastics such as polybutylene terephthalate and polysulfone.

本発明の熱可塑性樹脂組成物は上記グラフト重合体(1
)、Al1C8樹脂(■)、必要に応じ他の硬質熱可塑
性樹脂<m> t−上述し次範囲で配合し。
The thermoplastic resin composition of the present invention comprises the above-mentioned graft polymer (1
), Al1C8 resin (■), and other hard thermoplastic resins if necessary <m> t- Blend in the following range as described above.

これをヘノシェルミキサーまたはタフブラー等で機械的
に混合した後溶融押出機ま几はバンバリーミキサ−等で
混練しペレット化することにより得られる。
The mixture is mechanically mixed using a Henoshel mixer or a Tough Blur, and then kneaded using a Banbury mixer or the like to form pellets into a melt extruder.

本発明の熱可塑性樹脂組成物には必要に応じて染顔料等
の着色剤や金属石ケン等の滑剤、光に対する安定剤とし
てヒンターードアミン系化合物やベンゾ) IJアゾー
ル系化合物、ベンゾフェノン系化合物を単独または併用
して使用することも、また熱に対する安定剤としてはヒ
ンジーダードフェノール糸化合物やチオエーテル系化合
物、ホスファイト系化合物全夫々単独または併用して使
用することも可能である。さらには、無機または有機の
粒状、粉状または繊維状の充填剤:発泡剤等を添加する
ことも可能である。
The thermoplastic resin composition of the present invention may optionally contain coloring agents such as dyes and pigments, lubricants such as metal soap, and stabilizers against light such as hindered amine compounds, benzo-IJ azole compounds, and benzophenone compounds. It is also possible to use either alone or in combination, and as a stabilizer against heat, a hinged phenol compound, a thioether compound, or a phosphite compound can be used alone or in combination. Furthermore, it is also possible to add inorganic or organic granular, powdery or fibrous fillers such as foaming agents.

し実施例〕 以下に実施例によp本発明を具体的に説明する。Example] The present invention will be specifically explained below with reference to Examples.

なお各実施例、各比較例中「部」および「係」は夫々「
X置部」および「重量係」である。
In addition, in each example and each comparative example, "department" and "person in charge" are respectively "
"X holder" and "weight section".

′!た各ラテックスの粒子径はメチルメタクリv −ト
/ 7 り’)ロートリル/スチレン=20/20/6
0(重量比)から構成される未架橋樹脂ラテックスに関
し電顕法で求めt粒子径と、そのラテックスの稀釈溶液
(15f/l)の波長700mμにおける吸光度との関
係から図面に示す検量線を作り、各種ラテックスの吸光
度を測定することによりその検量線から読みとっtもの
である。
′! The particle size of each latex was methyl methacrylate/7 ri') lautrile/styrene = 20/20/6
A calibration curve shown in the drawing was created from the relationship between the particle diameter t determined by electron microscopy for an uncrosslinked resin latex composed of It can be read from the calibration curve by measuring the absorbance of various latexes.

さらに多層構造架橋アクリル糸ゴムのゲル含量および膨
潤度は次式により算出した。
Further, the gel content and degree of swelling of the multilayer crosslinked acrylic thread rubber were calculated using the following formula.

ゲル含量=−× 100(%) O 町 ここでWo=初めの試料の重量 W、=約150倍量のメチルエチル ケトンに試料を浸漬し、30’C。Gel content = - x 100 (%) O town Here, Wo = weight of the initial sample W, = about 150 times the amount of methyl ethyl Immerse the sample in ketone at 30'C.

24時間靜置後の重量 W、=Wlの絶乾状態での重量 実施例1 (Al硬質架橋樹脂ラテックスの製法 反応器内にイオン交換水200部を入れ攪押下窒素置換
を光分に行なった後昇温して内温を80℃にする。この
反応器内に過硫酸カリウムα06部金加え下記の混合物
を30分間に亘って連続的に注入し九〇 メチルメタクリレート(MMA)    5部アクリロ
ニトリル(AN)       21スチレン    
(BT)      8〃トリアリルイソシアヌレート
(TA工C) [1L061ペレツクスOTP    
     r15 1(花王アトラス株式会社製ジオク
チルスルホサクシネート系乳化剤、登録商標)注入後1
時間程度で発熱反応は終了した。得られ九硬質架橋樹脂
ラテックスの粒子径は027μであつ次。
Weight after standing for 24 hours W, = Weight in absolute dry state of Wl Example 1 (Production method of Al hard crosslinked resin latex 200 parts of ion-exchanged water was placed in a reactor, stirred and pressed, and nitrogen substitution was performed in an optical manner. Afterwards, the temperature is raised to bring the internal temperature to 80°C.Into this reactor, 06 parts of potassium persulfate α is added, and the following mixture is continuously injected over a period of 30 minutes: 90 parts of methyl methacrylate (MMA), 5 parts of acrylonitrile ( AN) 21 styrene
(BT) 8〃Triallylisocyanurate (TA Engineering C) [1L061 Perex OTP
After injection of r15 1 (dioctyl sulfosuccinate emulsifier manufactured by Kao Atlas Co., Ltd., registered trademark) 1
The exothermic reaction was completed in about an hour. The particle size of the nine hard crosslinked resin latex obtained was 0.27μ.

(Bl多重構造架橋アクリル糸ゴムラテックスの製法 (A)で得九硬質架1に樹脂ラテックスに過硫酸カリウ
ム[L24部を追加添加して多重構造架橋アクリル系ゴ
ムの外層部を構成する下記混合物t−80℃で2時間に
亘って連続的に注入したO n−ブチルアクリレート(BA)   44部AN  
             3”TA工Cα5〃 ペレツクスOTP          α3部注人後1
時間の熟厄ヲ行つ友。このようにして得られ友硬質架橋
樹脂を芯部とする多重構造架橋アクリル系ゴムの膨潤度
はaOで、ゲル含量は90%、平均粒子径は03μであ
った0 (C)グラフト重合体の製法 引続1i(刑で得られた多層構造架橋アクリル系ゴムラ
テックスに下記の混合物を80℃で2時間に亘って連続
的に注入した。
(Produced by method (A) of Bl multi-structure cross-linked acrylic yarn rubber latex) To the hard fiber 1, 24 parts of potassium persulfate [L] was added to the resin latex, and the following mixture t was added to form the outer layer of the multi-structure cross-linked acrylic rubber. 44 parts AN of O n-butyl acrylate (BA) continuously injected over 2 hours at -80°C
3” TA engineering Cα5〃 Perex OTP α3 parts after injection 1
A friend who goes through the troubles of time. The swelling degree of the thus obtained multi-layer crosslinked acrylic rubber having a hard crosslinked resin as the core was aO, the gel content was 90%, and the average particle size was 03μ. Continuation of the manufacturing method 1i (The following mixture was continuously injected into the multilayered crosslinked acrylic rubber latex obtained in Step 1i at 80° C. for 2 hours.

MMA             8部AN     
          81S T          
    24/’n−オクチルメルカプタン  r:1
.04〃過酸化ベノゾイル      α20〃このよ
うにして得られたグラフト重合体ラテックスt″5倍量
の塩化カルシウム水浴液に攪拌しながら投入し、凝固後
、脱水、洗浄、脱水を行ない乾燥してグラフト重合体を
得t0(コブレンドと評価 上記(0)で得次グラフト重合体とAE8樹脂(日本合
成ゴム株式会社製 、TEiRAZ8110゜登録商標
)およびAN/日T=28772@量比)を懸濁重合法
により得aLv〕=06(DMF、25℃での測定値)
なるA8m脂を表1に示す割合で計量し友樹脂100部
に対して、ステアリン酸バリウム1部、アンテージW−
300(登録商標、Jl1口化学株式会社製、フェノー
ル系酸化防止剤)α1部、チヌビンーP(登録商標、チ
バガイギー社製、紫外線吸収剤)α5部を加え、ヘンシ
ェルミキサーで2000 rp&、5分間混合した後、
40罵φ押出機によりシリンター一温度200℃でベレ
ット化し九〇 このベレットヲ用い射出成形機(山域精機プ)にて各檀
試験片を作製し諸物性および成形品の外観全評価し次。
MMA 8th part AN
81ST
24/'n-octyl mercaptan r:1
.. 04 Benozoyl peroxide α20 The graft polymer latex thus obtained was poured into a calcium chloride water bath solution of 5 times the volume with stirring, and after coagulation, dehydration, washing, dehydration, and drying were performed to obtain the graft polymer latex. The resulting t0 (evaluation as co-blend) of the graft polymer and AE8 resin (manufactured by Japan Synthetic Rubber Co., Ltd., TEiRAZ8110゜registered trademark) and AN/day T = 28772 @ weight ratio) was carried out using a suspension polymerization method. aLv] = 06 (DMF, measured value at 25°C)
Weighed A8m fat in the proportions shown in Table 1, and added 1 part of barium stearate and 1 part of Antige W- to 100 parts of resin.
300 (registered trademark, manufactured by Jl1 Kuchi Kagaku Co., Ltd., a phenolic antioxidant) α1 part and Tinuvin-P (registered trademark, manufactured by Ciba Geigy, Inc., ultraviolet absorber) α5 parts were added and mixed for 5 minutes at 2000 rpm with a Henschel mixer. rear,
The material was made into pellets using a 40mm diameter extruder at a cylinder temperature of 200°C, and each test piece was prepared using an injection molding machine (Yamae Seiki Co., Ltd.) using the pellets, and the physical properties and appearance of the molded products were completely evaluated.

これらの結果を表1に示す。These results are shown in Table 1.

なお表1中のアイゾツト衝撃値(工z)(25℃および
一30℃で夫々測定)はAs TM D−256法によ
V、耐熱性の指標であるビカット軟化温度(VST)は
工80  R−306法(5に9荷重)により、また溶
融時の流動性の指標であるメルトフローインデックス(
M工)はASTM  D−1238法(200℃、5曙
荷!!L)により評価した。成形外観は底形温度220
℃、金型温度60℃にて178インチ厚の平板を射出速
度を速くして成形し成形品の真珠様光沢等の発現状態を
目視にて判定し几。また光沢測定用試片は底形外観用試
片にも供し友。光沢度はスガ試験機株式会社製デジタル
変角元沢計(入射角 60°)により測定した。なおこ
れらの評価法および評示は後の実施例および比較例に共
通である。
In Table 1, the Izod impact value (Z) (measured at 25°C and -30°C, respectively) is V according to AsTM D-256 method, and the Vicat softening temperature (VST), which is an index of heat resistance, is 80 R. -306 method (5 to 9 loads), and the melt flow index (which is an index of fluidity during melting)
M engineering) was evaluated by ASTM D-1238 method (200°C, 5 hours of loading!!L). The molded appearance has a bottom temperature of 220
A 178-inch thick flat plate was molded at a mold temperature of 60°C and the injection speed was increased, and the development of pearl-like luster, etc. in the molded product was visually determined. The test piece for gloss measurement can also be used as a test piece for bottom appearance. The glossiness was measured using a digital angle-angle Motosawa meter (incident angle: 60°) manufactured by Suga Test Instruments Co., Ltd. Note that these evaluation methods and evaluations are common to the later examples and comparative examples.

実施例1の(AJの硬質架橋樹脂ラテックスの製法の段
階において表1に示す硬質架橋樹脂ラテックスの粒子径
の異なるものを作成し、実施例1の(B)、(1:!]
と同じ操作を行ないグラフト重合体金得た。そのグラフ
ト重合体を用いて実施例1の(Dlと同じ操作にてペレ
ット化を行い実施例1と同様の評価を行つ友。これらの
結果を表1に併せて示す。
At the stage of the hard crosslinked resin latex manufacturing method of (AJ) of Example 1, hard crosslinked resin latexes with different particle sizes shown in Table 1 were created, and (B) of Example 1, (1:!)
Graft polymer gold was obtained by carrying out the same operation as above. The graft polymer was pelletized in the same manner as in Example 1 (Dl) and evaluated in the same manner as in Example 1. These results are also shown in Table 1.

実施例4〜5.比較例4〜6 グラフト重合体を製造するに際し硬質架橋樹脂(Nのモ
ノマー組凧t−AN/ST/トリアリルシアヌレート(
TAC)=25/75/α5(部)、多重構造架橋アク
リル系ゴムの外層部上構成するアクリル酸エステルを主
成分とする重合体(B)でのモノマー紐取をBA/A1
1i/TAC=90/10/α5(部)、グラフト重合
体(0)の製造段階のモノマー組Iy:、をAN/5T
=25/75[相]とし、各段階(Al、 (B)、 
(1mりの比率を表2に示す如き種々異なるようにして
グラフト重合体を実施例1と同様の方法で乳化剤量、開
始剤量を調整して得t0得られtグラフト重合体上実施
例1と同様に実施例1で用い7’1−AEiS樹脂とA
N/α−メチルスチレノ=26/74(1JLjl比)
を乳化重合法により得友シη〕=15(DMF、25℃
での測定値)なるAN−α−メチルスチレン共重合体(
α8AN )とをブレンドしペレット化して各種評価を
行つ几。これらの結果を表2に示すO 表1および表2の結果から明らかなように、比較例2の
ようにグラフト重合体中の硬質架橋1樹脂芯の粒子径が
(L15μ15μ多層構造架橋アクリル系ゴムの粒子径
かCL3μ未満のものを用い友場合には底形外観、光沢
は良好であるがアイゾツト衝撃強度か劣るのがわかる@
ま友比較例5のようにグラフト重合体中の硬質架橋樹脂
芯の粒子径が14μを超えるものを用い九場合には成形
外観およびアイゾツト衝撃強度等の面で問題か生じるこ
とがわかる。さらに、比較例4のように硬質架橋樹脂芯
t−Nしないグラフト重合体を用い九場合および比較例
6のように硬質架橋樹脂芯の粒子径が01μでゴムの粒
子径が035μのグラフト重合体を用いる場合には底形
外観が著しく低下することがわかる。さらにまた比較例
2のようにJF8樹脂を配合しない場合には低温におけ
るアイゾツト衝撃強度が実施例1に比較して低い値を与
えることかわかる。
Examples 4-5. Comparative Examples 4 to 6 When producing a graft polymer, hard crosslinked resin (monomer combination of N t-AN/ST/triallyl cyanurate (
TAC) = 25/75/α5 (parts), BA/A1 for monomer stringing in the polymer (B) whose main component is an acrylic ester, which constitutes the outer layer of the multi-structure crosslinked acrylic rubber.
1i/TAC=90/10/α5 (parts), monomer set Iy at the production stage of graft polymer (0): AN/5T
=25/75 [phase], and each stage (Al, (B),
(The graft polymers were prepared in the same manner as in Example 1 by adjusting the amount of emulsifier and initiator at various ratios per 1 m as shown in Table 2.) Similarly to Example 1, the 7'1-AEiS resin and A
N/α-methylstyrene = 26/74 (1JLjl ratio)
obtained by emulsion polymerization method = 15 (DMF, 25°C
AN-α-methylstyrene copolymer (measured value)
α8AN) is blended into pellets and subjected to various evaluations. These results are shown in Table 2. As is clear from the results in Tables 1 and 2, as in Comparative Example 2, the particle size of the hard crosslinked 1 resin core in the graft polymer was (L15μ15μ multilayer structure crosslinked acrylic rubber When using particles with a particle size of less than CL3μ, the bottom shape appearance and gloss are good, but the Izot impact strength is inferior.
It can be seen that when a graft polymer in which the particle size of the hard crosslinked resin core exceeds 14 microns is used as in Comparative Example 5, problems arise in terms of molded appearance, Izot impact strength, etc. Further, as in Comparative Example 4, a graft polymer with a hard crosslinked resin core without t-N was used, and as in Comparative Example 6, a graft polymer with a hard crosslinked resin core having a particle size of 01μ and a rubber particle size of 035μ was used. It can be seen that when using , the bottom shape appearance is significantly reduced. Furthermore, it can be seen that when JF8 resin is not blended as in Comparative Example 2, the Izot impact strength at low temperatures is lower than that of Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明の熱可塑性樹脂組成物は上述し几如き構成とする
ことによって耐候性に優れることは言うまでもなく、耐
衝隼性、成形外観および成形性にも優れ、これを用いて
射出成形、押出成形、真空成形等の各種成形加工法によ
り上記優れた特性を有する成形品とすることができる。
It goes without saying that the thermoplastic resin composition of the present invention has excellent weather resistance by having the above-mentioned precise structure, and also has excellent impact resistance, molding appearance, and moldability. A molded article having the above-mentioned excellent properties can be obtained by various molding methods such as , vacuum forming, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は電顕法で求めたラテックス粒子径とそのラテック
ス希釈溶液の波長700mμにおける吸光度の関係を示
す検量線である。 特許出願人  三菱レイヨン株式会社 吸大友
The figure is a calibration curve showing the relationship between the latex particle diameter determined by electron microscopy and the absorbance of a diluted latex solution at a wavelength of 700 mμ. Patent applicant: Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、芯粒子径が0.15〜0.4μであるような硬質架
橋樹脂(a)5〜50重量%を粒子内部に含み、且つア
クリル酸エステルを主成分とする架橋アクリル酸エステ
ル系重合体(b)95〜50重量%がその外層部を構成
してなる多重構造架橋アクリル系ゴム(1)100重量
部を含むラテックスの存在下で、芳香族ビニル化合物の
少なくとも1種10〜90重量%と一般式CH_2=C
RX(RはHまたはCH_3:XはCNまたはCOOR
_1(R_1は炭素数1〜8のアルキル基))を有する
エチレン性不飽和単量体の少なくとも1種90〜10重
量%とからなる単量体混合物(2)5〜900重量部を
重合させて得られるグラフト重合体( I )5〜95重
量%、AES樹脂(II)5〜95重量%および他の硬質
熱可塑性樹脂(III)0〜50重量%で、且つ( I )、
(II)および(III)の各成分の合計量が100重量%
となるように配合された熱可塑性樹脂組成物。
1. A crosslinked acrylic ester polymer containing 5 to 50% by weight of a hard crosslinked resin (a) with a core particle diameter of 0.15 to 0.4μ inside the particles and containing an acrylic ester as a main component. (b) 10 to 90 weight % of at least one aromatic vinyl compound in the presence of a latex containing 100 parts by weight of multi-structure crosslinked acrylic rubber (1) of which 95 to 50 weight % constitutes the outer layer. and the general formula CH_2=C
RX (R is H or CH_3: X is CN or COOR
_1 (R_1 is an alkyl group having 1 to 8 carbon atoms)) 5 to 900 parts by weight of a monomer mixture (2) consisting of 90 to 10% by weight of at least one ethylenically unsaturated monomer having _1 (R_1 is an alkyl group having 1 to 8 carbon atoms) (I) 5 to 95% by weight of the graft polymer (I), 5 to 95% by weight of the AES resin (II) and 0 to 50% by weight of the other rigid thermoplastic resin (III);
The total amount of each component (II) and (III) is 100% by weight
A thermoplastic resin composition formulated to have the following properties.
JP7726786A 1986-04-03 1986-04-03 Thermoplastic resin composition Pending JPS62235349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7726786A JPS62235349A (en) 1986-04-03 1986-04-03 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7726786A JPS62235349A (en) 1986-04-03 1986-04-03 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS62235349A true JPS62235349A (en) 1987-10-15

Family

ID=13629067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7726786A Pending JPS62235349A (en) 1986-04-03 1986-04-03 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS62235349A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025941A (en) * 2010-06-24 2012-02-09 Techno Polymer Co Ltd Thermoplastic resin composition for lamp housings, and molded article
JP2014516104A (en) * 2012-02-03 2014-07-07 エルジー・ケム・リミテッド ASA-based graft copolymer composition
JP2014530957A (en) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド Alkyl acrylate-aromatic vinyl compound-vinyl cyanide compound copolymer having improved low-temperature impact strength and polycarbonate composition containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025941A (en) * 2010-06-24 2012-02-09 Techno Polymer Co Ltd Thermoplastic resin composition for lamp housings, and molded article
JP2014516104A (en) * 2012-02-03 2014-07-07 エルジー・ケム・リミテッド ASA-based graft copolymer composition
JP2014530957A (en) * 2012-10-11 2014-11-20 エルジー・ケム・リミテッド Alkyl acrylate-aromatic vinyl compound-vinyl cyanide compound copolymer having improved low-temperature impact strength and polycarbonate composition containing the same

Similar Documents

Publication Publication Date Title
US4052525A (en) Multi-layer structure acrylic polymer composition
US4801646A (en) Low gloss weather and impact resistant resins
US3655824A (en) Rubbery acrylic resin composition containing a resinous 4 4&#39;-dioxy diarylalkane polycarbonate
JPS6235415B2 (en)
JPS6229453B2 (en)
JPH02166145A (en) Ductile blow-moldable composition
JPH0768318B2 (en) Multi-layered acrylic polymer
JPH0192260A (en) Thermoplastic resin composition
JPS62235349A (en) Thermoplastic resin composition
JPH08259638A (en) Powdery graft copolymer and thermoplastic molding material containing same with improved colorability
JPS6126646A (en) Thermoplastic resin composition
JP2796595B2 (en) Multilayer polymer and resin composition
JPH02292351A (en) Sheathing resin composition without coating
JPH0632961A (en) Preparation of thermoplastic resin composition excellent in impact resistance, weatherability, moldability and appearance
JP3422431B2 (en) Acrylic thermoplastic resin composition
JP2501015B2 (en) Impact resistance, weather resistance, thermoplastic resin composition
JPH0781062B2 (en) Impact-resistant methacrylic resin composition
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JPH0673199A (en) Delustered film for laminate
JPH09286890A (en) Methacrylic resin composition
JPH0673200A (en) Delustered film for laminate
JPS61195148A (en) Heat-resistant and impact-resistant thermoplastic resin composition
JPH04146910A (en) Multilayer graft copolymer
JPH06122827A (en) Thermoplastic resin composition
JPH0559247A (en) Weather-resistant, high-impact polymer composition excellent in heat resistance