JPS62230346A - Winding method of brushless motor - Google Patents

Winding method of brushless motor

Info

Publication number
JPS62230346A
JPS62230346A JP7047886A JP7047886A JPS62230346A JP S62230346 A JPS62230346 A JP S62230346A JP 7047886 A JP7047886 A JP 7047886A JP 7047886 A JP7047886 A JP 7047886A JP S62230346 A JPS62230346 A JP S62230346A
Authority
JP
Japan
Prior art keywords
slot
phase
winding
coil
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7047886A
Other languages
Japanese (ja)
Other versions
JPH0799923B2 (en
Inventor
Tadahiro Miyamoto
恭祐 宮本
Hirobumi Inoguchi
猪ノ口 博文
Hiroshi Ikeda
弘 池田
Takayuki Toya
遠矢 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP7047886A priority Critical patent/JPH0799923B2/en
Publication of JPS62230346A publication Critical patent/JPS62230346A/en
Publication of JPH0799923B2 publication Critical patent/JPH0799923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a torque ripple by spatial higher harmonics by executing fractional slot winding so that the number of poles for a motor and the slot number of a stator core for an armature satisfy specific relationship. CONSTITUTION:N slots are formed to a stator core l, and each phase coil 4-9 is executed to the slots. Permanent magnets 2 are disposed so that P magnetic poles are shaped onto the outer circumference of a rotor yoke 3. Each phase coil 4-9 is formed so as to be adapted to the conditions of (3/2)P<N<3P-that is, in the three-layer winding of the two-layer lap winding of fractional slots in which the slot number (q) of every-pole every-phase is kept within a range of (l/2)<q<1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば産業用ロボットなどFA(工場自動化
>msに必要な小形、高出力のブラシレスモータに関し
、とくにその巻線方法の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a small, high-output brushless motor required for FA (factory automation > ms) such as industrial robots, and in particular relates to an improvement in its winding method. .

(従来の技術) ブラシレスモータにおいて小形、高出力とするためには
、出力トルクを入力銅損の平方根で割って求めた値つま
りモータ定数MCを大きくする必要がある。
(Prior Art) In order to achieve a small size and high output in a brushless motor, it is necessary to increase the value obtained by dividing the output torque by the square root of the input copper loss, that is, the motor constant MC.

第5図にあるモータコア径を設定した場合に、極数を変
化さけたときのモータ定数M。の値を表わす。この第5
図よりモータ定数Mcを大きくするには、モータの極数
を多くする必要がある。
Motor constant M when the motor core diameter is set as shown in Figure 5 and the number of poles is avoided. represents the value of This fifth
As shown in the figure, in order to increase the motor constant Mc, it is necessary to increase the number of poles of the motor.

従来の多極界磁を使ったブラシレスモータの例の正断面
図を第6図に示す。
FIG. 6 shows a front sectional view of an example of a brushless motor using a conventional multi-polar field.

この従来例では回転子(ロータヨーク3)に6極の永久
磁石2の界磁を備え、固定子は18個のスロットを有す
るステータコア1に3相巻線U。
In this conventional example, the rotor (rotor yoke 3) is equipped with a field of six-pole permanent magnets 2, and the stator has a stator core 1 having 18 slots and a three-phase winding U.

V、W、U、7.w(0はUに対し電流の方向が逆で、
、Wについても同様である)を施し、U相帯コイルを4
、O租借コイル5.w相帯コイルを6.W相帯コイルを
7.V相帯コイルを8.相帯コイルを9と表わす。
V, W, U, 7. w (0 is the direction of the current is opposite to U,
, and the same applies to W), and the U phase band coil is
, O lease coil 5. 6. W phase band coil. 7. W phase band coil. V phase band coil 8. The phase band coil is represented by 9.

この巻線方法は、毎極毎相のスロット数qがq=18ス
ロット/3相・6極 =1 の整数スロット巻線である。
This winding method is an integer slot winding in which the number of slots q for each pole and each phase is q=18 slots/3 phases/6 poles=1.

複素平面を考え、原点の周りに単位円を描き、この単位
円の円周を6等分して、順次U、w、V。
Considering a complex plane, draw a unit circle around the origin, divide the circumference of this unit circle into 6 equal parts, and divide them into 6 equal parts, sequentially U, w, and V.

C7,W、の6相帯に対応させる。そして、U相帯を1
番目(以下、単に「#1」と記す)のスロットに対応さ
せ、この点を起点として単位円周上で、極数をP、スロ
ット数をNとしたとき、角度Pπ/N (rad )ず
つ[ここでは7r/3 (rad ) ]隔てて割り出
した点を順次、#2以降#18までの各スロットに対応
させた図が第7図である。
It corresponds to the 6-phase band of C7 and W. Then, the U phase belt is 1
(hereinafter simply referred to as "#1"), and on the unit circumference with this point as the starting point, where P is the number of poles and N is the number of slots, the angle is Pπ/N (rad). FIG. 7 is a diagram in which points determined at intervals of [here, 7r/3 (rad)] are sequentially associated with slots #2 to #18.

この第7図から各相帯のコイル数は3コイルで、U相帯
、V相帯、W相帯は互いに電気角で2/3・πラジアン
(rad)の位相角をなしており、O相帯、相帯、W相
帯についても同様rある。
From this Figure 7, the number of coils in each phase band is 3, and the U-phase band, V-phase band, and W-phase band form a phase angle of 2/3·π radian (rad) in electrical angle with each other, and O Similarly, there are r phase belts, phase belts, and W phase belts.

また、第7図より各スロットにU相、■相、W相の各相
コイルの配置を示した図を第8図に表わす。
Further, from FIG. 7, FIG. 8 shows the arrangement of the U-phase, ■-phase, and W-phase coils in each slot.

各コイルの飛びは、ピッチ係数に、=1.0としている
ので3スロツトとしている。したがって、各スロット内
に収められる2つのコイル辺は、第6図をみてもわかる
ように、同じ相に属するコイルの上コイル辺、下コイル
辺であり、−例としてはスロット番号#4に収納される
2つのコイル辺は、U和書コイル4の上コイル辺と0相
帯コイル5の下コイル辺であり、U和書コイル4とO租
借コイル5の巻回数は同じで巻方向は逆方向となる。
Since the pitch coefficient of each coil is set to 1.0, there are 3 slots. Therefore, as can be seen from Fig. 6, the two coil sides stored in each slot are the upper coil side and the lower coil side of the coil belonging to the same phase, and - for example, they are stored in slot number #4. The two coil sides are the upper coil side of the U Japanese coil 4 and the lower coil side of the 0-phase band coil 5, and the number of turns of the U Japanese coil 4 and the O lease coil 5 are the same, but the winding directions are opposite. Become.

他のスロットの場合も、U和書コイル4.O租借コイル
5またはV相帯コイル8.租借コイル9もしくはW相帯
コイル7、W和書コイル6を用いて同様になされている
In the case of other slots, U Japanese coil 4. O lease coil 5 or V phase band coil 8. The same thing can be done using the lease coil 9, the W phase band coil 7, or the W Japanese coil 6.

この整数スロット巻線の毎極毎相のスロット数q=1の
巻線方法は、有限のス【コツトピッチに対して従来多用
されている整数スロット巻線の中では、最も極数を多く
とれる巻線であり、モータコア径を制限した条件で最も
小形、?a高出力あるブラシレスモータである。
This winding method of integer slot winding with the number of slots q = 1 for each pole and each phase is the winding method that allows the largest number of poles among the integer slot windings that are conventionally used for a finite pitch. wire, and the smallest size under the condition of limiting the motor core diameter? aIt is a high output brushless motor.

(発明が解決しようとする問題点) 従来例の整数スロット巻線で毎極、毎相のスロット数q
=1の巻線方法では、rを1.3.5゜7・・・・・・
の高周波次数とりる巻線係数kW、=1.0となり、ギ
ヤツブ磁速分布中に含まれる高調波成分が低減できない
。従って、誘起電圧波形が歪みトルクリップルが発生す
る。
(Problem to be solved by the invention) In the conventional integer slot winding, the number of slots per pole and per phase is q.
In the winding method of =1, r is 1.3.5°7...
The winding coefficient kW, which takes a high frequency order, is 1.0, and the harmonic components included in the gear gear magnetic velocity distribution cannot be reduced. Therefore, the induced voltage waveform is distorted and torque ripple occurs.

そこで、トルクリップル低減の対策として以下の3つの
手段があるがいずれも数々の問題点を含む。すなわち、 ■ 電機子スロットまたは永久磁石にスキューを施すと
、スキュー効果によりトルクリップルは低減できるが、
スロット内の巻線の占有率を悪くし、材料の有効活用を
妨げ、モータの効率、力率を犠牲にするから好ましくな
い。
Therefore, there are the following three measures to reduce torque ripple, but all of them involve a number of problems. In other words, ■ If the armature slot or permanent magnet is skewed, torque ripple can be reduced due to the skew effect, but
This is undesirable because it impairs the occupancy rate of the windings in the slot, hinders the effective use of materials, and sacrifices the efficiency and power factor of the motor.

■ 第9図[(a)はロータの要部の正断面図、(b)
はその斜視図である]に示すごとく、界磁磁石2をギャ
ップ磁束分布が正弦波分布となるように、ロータヨーク
3の外周(内R)と永久磁石2の外周(外R)の中心点
が異なる形状に界磁磁石2を加工する(ただし、内R〉
外Rである)と、トルクリップルは低減できるが、加工
が複雑どなるため、永久磁石2がコスト高となる。
■ Figure 9 [(a) is a front sectional view of the main parts of the rotor, (b)
is a perspective view], the center point of the outer periphery (inner R) of the rotor yoke 3 and the outer periphery (outer R) of the permanent magnet 2 are aligned so that the field magnet 2 has a sinusoidal gap magnetic flux distribution. Process the field magnet 2 into a different shape (within R)
(outer R), the torque ripple can be reduced, but the machining becomes complicated and the cost of the permanent magnet 2 increases.

■ 電機子の毎極毎相のスロット数q>1の分数スロッ
ト巻線を用いれば、良好な誘起電圧波形が得られトルク
リップルも低減されるが、q=1に比べて明らかにモー
タ極数の多極化に対しては不適である。また、モータ極
数Pの多極化を行なうためには、従来より用いられる分
数スロット巻線でq=1/2の巻線方法も適用されるが
、巻線係数kwrの低下に加えて、巻線利用率の低下と
いう不具合がある。
■ If you use a fractional slot winding with the number of slots q > 1 for each pole and phase of the armature, you can obtain a good induced voltage waveform and reduce torque ripple, but compared to q = 1, it is obvious that the number of motor poles It is unsuitable for multipolarization. In addition, in order to increase the number of motor poles P, a winding method of q = 1/2 using conventionally used fractional slot winding is also applied, but in addition to reducing the winding coefficient kwr, the winding There is a problem with the decline in utilization rate.

(問題点を解決するための手段) 本発明は、 モータの極数をPとするとき、電機子のステータコア1
のスロット数Nが、 (3/2)P<N<3P の条件に適合する巻線、 すなわち、毎極毎相のスロット数qが (1/2)<(1<1 の範囲にあたる分数スロットの2層重ね巻の3相巻線を
IJ1!4 ブラシレスモータの巻線方法である。
(Means for Solving the Problems) The present invention provides the following advantages: When the number of poles of the motor is P, the stator core 1 of the armature
A winding in which the number of slots N satisfies the condition (3/2)P<N<3P, that is, the number of slots q for each pole and each phase is in the range of (1/2)<(1<1). This is the winding method for the IJ1!4 brushless motor.

(作 用) スロット数Nを有限とすれば、極数P−N/(3・q)
で求められるから、 たとえば、 P=8 N=15 とするとさ q=5/8 に設定する手段を用いることにより、従来の整数スロッ
ト巻線Q=1に比べ、著しく多いU−夕極数とし、多極
化が図れ、モータ定数M。を向上する。
(Function) If the number of slots N is finite, the number of poles P-N/(3・q)
For example, if P = 8 and N = 15, then by using a means of setting q = 5/8, the number of U-evening poles can be significantly increased compared to the conventional integer slot winding Q = 1. , multipolarization and motor constant M. improve.

(実施例) 本発明の一実流例における断面で表わした正面図を第1
図に示す。
(Example) A front view in cross section of an actual flow example of the present invention is shown in the first example.
As shown in the figure.

この分数スロット巻線を施したブラシレスモータは、相
数が3で極数Pが8tiであり、ステータ゛ コア1の
スロット内には次のような手順で電機子巻線が巻回され
る。
This brushless motor with fractional slot winding has three phases and eight poles P, and armature windings are wound in the slots of the stator core 1 in the following procedure.

ステータスロット数は15、毎極毎相のスロット数Q=
5/8の2層重ね巻きにしである。
The number of status slots is 15, the number of slots for each pole and each phase is Q=
It's a 5/8 double layer roll.

第1図かられかるように、#1から#15までのスロッ
トを順次、空隙円周に沿って等間隔に配置するとともに
、各スロットには上コイル辺と下コイル辺の2つのコイ
ル辺を収容させる。
As shown in Figure 1, slots #1 to #15 are sequentially arranged at equal intervals along the circumference of the air gap, and each slot has two coil sides, an upper coil side and a lower coil side. Contain.

u、w、v、u、w、の6相帯の各和書に属するコイル
のスロットへの配置を行なうには、第2図に表わすよう
に、複素平面を考え、原点の周りに単位半径の円(単位
円)を描き、その単位円周を6等分して、それら円弧を
順次U、W、V。
In order to arrange the coils belonging to the six-phase bands u, w, v, u, w into the slots, consider a complex plane as shown in Figure 2, and set a unit radius around the origin. Draw a circle (unit circle), divide the unit circumference into six equal parts, and divide the arcs into U, W, and V in sequence.

0、W、の6相帯に対応させる。It corresponds to six phase bands of 0 and W.

次いで、U相帯の円弧の中点を#1のスロットに対応さ
せ、この点を起点として単位円周上で角度Pπ/N (
rad )  (ここでは8/15π(rad))ずつ
隔てて割り出した点を順次、#2以降#15までの各ス
ロットに対応させる。
Next, the midpoint of the arc of the U-phase band is made to correspond to the #1 slot, and the angle Pπ/N (
rad) (Here, 8/15π (rad)) The points determined at intervals are sequentially made to correspond to each slot from #2 to #15.

そして、各スロットの下コイル辺は、そのスロットが単
位円周上で所属している和書に割付ける。
Then, the lower coil side of each slot is assigned to the Japanese book to which the slot belongs on the unit circumference.

以上の手順を追うと、6相帯の各和書に属する各コイル
の下コイル辺の15個のステータスロットへの配置が決
定される。
By following the above procedure, the arrangement of each coil belonging to each Japanese book in the six-phase band to the 15 stator slots on the lower coil side is determined.

スロット番号#1.#5.#12にはU相帯に属するコ
イルの下コイル辺が、スロット番号#9゜#13にはW
相帯に属するコイルの下コイル辺が、スロット番号#2
.#6.#10には■相帯に属するコイルの下コイル辺
が、ス[1ット番号#3゜#14にはU相帯に属する下
コイル辺が、スロット番号#7.#11.#15にはW
相帯に属するコイルの下コイル辺が、スロット番号#4
. #8には相帯に属するコイルの下コイル辺が、それ
ぞれ配置される。
Slot number #1. #5. #12 has the lower coil side of the coil belonging to the U phase band, slot number #9° and #13 have the W side.
The lower coil side of the coil belonging to the phase band is slot number #2
.. #6. #10 has the lower coil side of the coil belonging to the ■ phase band, slot number #3°, #14 has the lower coil side belonging to the U phase band, and slot number #7. #11. #15 has W
The lower coil side of the coil belonging to the phase band is slot number #4
.. The lower coil sides of the coils belonging to the phase band are arranged in #8.

次に、各和書に属する各コイルの上コイル辺のスロット
への配置を決める必要がある。
Next, it is necessary to determine the placement of each coil belonging to each Japanese book in the slot on the upper coil side.

まず、基準として#1のスロットをとり単位円周上にお
き、この#1のスロットに対して角度がほぼπ(rad
)ずれた位置、すなわらO相帯円弧の中点付近にあたる
スロットを1つだけとって、そのスロット番号n(ここ
ではn=#3)を選定する。
First, take #1 slot as a reference and place it on the unit circumference, and make an angle of approximately π (rad) with respect to this #1 slot.
) Take only one slot at a shifted position, that is, near the midpoint of the O-phase zone arc, and select its slot number n (here, n=#3).

そして、これを基に、各下コイル辺からそれと対をなす
上コイル辺までのコイル飛びtが、全てt=n−1(こ
こでは、t=3−1 )となる15個の要素コイルを使
って、2層重ね巻きの3相巻線を構成する。
Based on this, we created 15 element coils whose coil jumps t from each lower coil side to the paired upper coil side are all t=n-1 (here, t=3-1). This is used to construct a two-layer, overlapping, three-phase winding.

第3図は、各6相帯に属する各コイルの上コイル辺およ
び下コイル辺をスロット番号#1から#15までのスロ
ット中に配置した図である。
FIG. 3 is a diagram in which the upper coil side and lower coil side of each coil belonging to each six-phase band are arranged in slots with slot numbers #1 to #15.

U相、■相、W相の各相に属するコイルは、おのおの 極数PxtB141iJ相のスロット数q=8X5/8 =5個 で、その巻方向は第3図中の矢印の示す通りである。The coils belonging to each phase of U phase, ■ phase, and W phase are Number of poles PxtB141i Number of slots in J phase q = 8X5/8 =5 pieces The winding direction is as indicated by the arrow in FIG.

U相帯コイル4とO相帯コイル5は巻回数は同じで巻方
向は反対になっており、V相帯コイル8゜相帯コイル9
またはW4(1帯コイル7、W相帯コイル6についても
同じである。U相、■相、W相に属するコイル群は、そ
れぞれ機械的に(2/3)・π(rad)の位相差を持
ち配設される。
The U-phase band coil 4 and the O-phase band coil 5 have the same number of turns but the winding directions are opposite.
Or W4 (the same applies to the 1-band coil 7 and the W-phase band coil 6. The coil groups belonging to the U-phase, ■-phase, and W-phase have mechanical phase differences of (2/3) and π (rad), respectively. It is arranged with.

しかして、ロータヨーク3の外側表面には、第4図に表
ねり方向に着磁された永久磁石2をNで示し、これと逆
方向に着磁された永久磁石2をSで表わしている。永久
磁石2の外周面の円弧(外R)とロータヨーク3の外周
面の円弧(内R)の中心点は同一つまり同心円をなす。
On the outer surface of the rotor yoke 3, as shown in FIG. 4, the permanent magnets 2 magnetized in the forward direction are indicated by N, and the permanent magnets 2 magnetized in the opposite direction are indicated by S. The center points of the circular arc (outer R) of the outer circumferential surface of the permanent magnet 2 and the circular arc (inner R) of the outer circumferential surface of the rotor yoke 3 are the same, that is, form concentric circles.

以上のようにして、電機子およびロータが構成され、理
想とするブラシレスモータが得られる。
The armature and rotor are constructed in the manner described above, and an ideal brushless motor is obtained.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、以下に掲げる数多くの格段の
効果が得られ、当該分野に起用するところ大きい。
Thus, according to the present invention, many remarkable effects listed below can be obtained, and the present invention can be widely used in the field concerned.

1) 本発明における分数スロット巻線をステータスロ
ット数Nが(3/2)<N<3Pの条件下で電機子にi
tと、ステータスロット数Nが整数スロット巻線の毎極
毎相のスロット数q=1の場合と同数またはそれ以下に
あっても、モータの極数を従来例に比し著しく多くにで
き、従ってモータ定数MCは向上し、各スロットを形成
するステータティースの機械的強麿にも無理のない小形
、高出力のブラシレスモータが実現される。
1) The fractional slot winding according to the present invention is connected to the armature under the condition that the number of status slots N is (3/2)<N<3P.
Even if t and the number of stator slots N are the same as or less than the number of slots per pole per phase of the integer slot winding when q = 1, the number of poles of the motor can be significantly increased compared to the conventional example, Therefore, the motor constant MC is improved, and a small, high-output brushless motor can be realized that does not require excessive mechanical strength of the stator teeth forming each slot.

2) 本発明は上記の手段でモータの極数を多極にする
ので、界磁蟻石の永久磁石使用量が低減される。
2) Since the present invention uses the above-mentioned means to increase the number of poles of the motor, the amount of permanent magnets used in the field antite is reduced.

つまり、電機子巻線による減磁アンペアターンΔ ”w
ind’よ ・ ”wind”’ [(3/2 ) ・(4/π〉、に、
 ・W−fll ]/P ただし、kwは巻線係数、Wは1相のターン数、■は電
機子電流、Pは極数とし、かつ磁石のパーミアンス係数
は一定としている で表わされるから、モータの過負荷時に永久磁石を減磁
させないためには、永久f41石にこの減磁アンペアタ
ーン分の起磁力を持たゼればよい。過負荷耐力を同一に
して永久磁石の回転半径方向の厚みり、を減少するには
、モータの極数を多く極化して電機子巻線による減磁ア
ンペアターンを減せばよいことが上式よりわかるので、
モータの極数を多極にして行くと、過負荷耐力は同じに
して磁石の厚みLlが薄くなり、その分だけ永久磁石量
が低減される。従来例に比較し、30〜40%の磁石■
の低減が可能である。
In other words, the demagnetizing ampere turns Δ”w due to the armature winding
ind' ・ "wind"' [(3/2) ・(4/π〉, ni,
・W-fll ]/P However, kW is the winding coefficient, W is the number of turns per phase, ■ is the armature current, P is the number of poles, and the permeance coefficient of the magnet is constant, so the motor In order to prevent the permanent magnet from being demagnetized during overload, the permanent F41 stone should have a magnetomotive force equivalent to this demagnetizing ampere turn. In order to reduce the thickness of the permanent magnet in the rotation radius direction while keeping the overload resistance the same, the above formula shows that the number of poles of the motor can be increased to reduce the demagnetizing ampere turns caused by the armature winding. Because I understand more,
When the number of poles of the motor is increased, the thickness Ll of the magnet becomes thinner while keeping the overload resistance the same, and the amount of permanent magnets is reduced accordingly. Compared to conventional examples, 30-40% magnet ■
It is possible to reduce

3) 本発明による分数スロット巻線を用いることによ
り、この巻線方法の持つ巻線係数kWからギャップ磁束
密度分布中に含まれる各空間高調波成分が低減され、よ
って空間i!7I調波によるトルクリップルを低減でき
る。
3) By using the fractional slot winding according to the present invention, each spatial harmonic component contained in the gap magnetic flux density distribution is reduced from the winding coefficient kW of this winding method, so that the spatial i! Torque ripple due to 7I harmonics can be reduced.

従来の巻線係数kwr”’となる整数スロット巻線Q=
1の揚台では、ギせツブ磁束密麿分布が正弦波状になる
ように磁石形状を第9図の形状にする必要があったが、
本発明ではその必要がなく、第4図に表わJ内R9外R
の中心点が同じで外R=内R十磁石厚みLlとなる簡略
化された永久磁石で済み、磁石加工が簡単になり、磁石
コストが低減される。
Integer slot winding Q= with conventional winding coefficient kwr"'
In the lifting platform 1, it was necessary to make the magnet shape as shown in Figure 9 so that the magnetic flux density distribution was sinusoidal.
In the present invention, there is no need for this, and as shown in FIG.
A simplified permanent magnet with the same central point of the outer R=inner R+magnet thickness Ll is sufficient, which simplifies the magnet processing and reduces the magnet cost.

また、本発明では、磁石から見たスロットパーミアンス
が正弦波状に変化するため、第4図の磁石形状でもコギ
ングトルクを低減できる。
Furthermore, in the present invention, since the slot permeance seen from the magnet changes sinusoidally, cogging torque can be reduced even with the magnet shape shown in FIG.

仮に整数スロット巻線q=1で磁石形状を第4図のとき
に発生するトルクリップル、コギングトルクと比べ、本
発明による分数スロット巻線の場合は1/l0Fj度に
低減される。
Compared to the torque ripple and cogging torque that occur when the magnet shape is as shown in FIG. 4 with an integer slot winding q=1, the torque ripple and cogging torque are reduced to 1/10Fj degrees in the case of the fractional slot winding according to the present invention.

4〉従来は整数スロット巻1i1q=1で磁石形状を第
4図のようにした場合に発生するトルクリップル、コギ
ングトルクを低減する方策としてステータスロフトにス
キュー(SHEW)を施したり、磁石にスキューを施し
たりするが、いずれも巻線占有率(space Fac
tor)および磁石加工性が悪く好ましくないが、本発
明における分数スロット巻線では、これら対策を施す必
要がなく、巻線占有率も磁石加工性も向上する。
4> Conventionally, as a measure to reduce the torque ripple and cogging torque that occur when the integer slot winding 1i1q=1 and the magnet shape is as shown in Figure 4, the status loft is skewed (SHEW) or the magnet is skewed. However, in both cases, the winding occupancy (space fac)
tor) and magnet workability are undesirable, but with the fractional slot winding of the present invention, there is no need to take these measures, and both the winding occupancy and magnet workability are improved.

5) 以上により、従来技術に比べ、モータ定数Moが
向上するため小形高出力となり、かつ磁6コス1〜を低
減し、安価なブラシレスモータの実現が可能となる。
5) As a result of the above, the motor constant Mo is improved compared to the conventional technology, so it becomes small and has high output, and the magnetic 6 cos 1~ is reduced, making it possible to realize an inexpensive brushless motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正断面図、第2図は各ステ
ータスロットに配置する各相帯コイルの解析図、第3図
は6相帯の各コイルの上辺コイル辺と下コイル辺のスロ
ット中への配置図、第4図は磁石形状を表わすロータの
一部断面図、第5図はモータ定数と極数の特性図、第6
図ないし第9図は従来例の説明図である。 1・・・ステータコア、2・・・永久(界磁)11石、
3・・・〇−タヨーク、4・・・U和書コイル、5・・
・U和書コイル、6・・・W和書コイル、7・・・W和
書コイル、8・・・■相帯コイル、9・・・和書コイル
。 出願人代理人  佐  藤  −雄 第3図 「。 °1 嘉6図 jl(J  plJ 第7図 第8図
Fig. 1 is a front cross-sectional view of an embodiment of the present invention, Fig. 2 is an analysis diagram of each phase band coil arranged in each status slot, and Fig. 3 is an upper coil side and a lower coil of each coil in a 6-phase band. Figure 4 is a partial sectional view of the rotor showing the magnet shape, Figure 5 is a characteristic diagram of the motor constant and number of poles, Figure 6 is a diagram showing the arrangement of the sides in the slots.
9 through 9 are explanatory diagrams of conventional examples. 1... Stator core, 2... Permanent (field magnet) 11 stones,
3...〇-Tayoke, 4...U Japanese book coil, 5...
・U Japanese book coil, 6...W Japanese book coil, 7...W Japanese book coil, 8...■phase band coil, 9...Japanese book coil. Applicant's agent Mr. Sato Figure 3.

Claims (1)

【特許請求の範囲】[Claims] 1. 相数が3で極数がPの電機子巻線において、 ステータコアのスロット数Nを相数3の整数倍で 条件式(3/2)P<N<3P をみたす整数に決め、 1番目からN番目までのスロットを順次、空隙円周に沿
って等間隔に配置するとともに、 各スロットには電機子巻線の上コイル辺と下コイル辺の
2つのコイル辺を収容させ、 各スロットが形成する単位円周を6等分し、それらの円
弧を順次U,Wの逆相の■,V,Uの逆相の■,W,V
の逆相の■の6相帯に対応させ、U相帯円弧の中点を1
番目のスロットにし、この点を起点として単位円周上で
角度Pπ/Nラジアンずつ隔てて割り出し、これら割り
出した点を順次2番目以降N晩目までの各スロットに対
応させ、 各スロットに下コイル1辺はそのスロットが単位円周上
で所属している相帯に割り付け、 1番目のスロットに対しほゞπラジアンずれた位置のU
相帯円弧の中点付近にあたるスロット1つをとってその
スロット番号nを選定し、これを基に各下コイル辺から
それと対をなす上コイル辺までのコイル飛びtが、全て
t=n−1となるようなN個の要素コイルを以って2重
・重巻の3相巻線を構成し、 ロータコアの外周面にP個の永久磁石からなる界磁磁石
を等間隔に配設固着させた ことを特徴とするブラシレスモータの巻線方法。
1. For an armature winding with 3 phases and P poles, the number of slots in the stator core N is an integer multiple of the number of phases 3 and is an integer that satisfies the conditional expression (3/2) P<N<3P, and from the first Slots up to the Nth slot are sequentially arranged at equal intervals along the circumference of the air gap, and each slot accommodates the two coil sides of the armature winding, the upper coil side and the lower coil side. Divide the unit circumference of
The midpoint of the U-phase band arc corresponds to the 6-phase band of ■ with the opposite phase of 1.
Using this point as the starting point, calculate the angle Pπ/N radians apart on the unit circumference, and make these determined points correspond to each slot from the 2nd to the Nth slot, and place the lower coil in each slot. One side is assigned to the phase band to which the slot belongs on the unit circumference, and U is located approximately π radians shifted from the first slot.
Take one slot near the midpoint of the phase zone arc and select its slot number n. Based on this, the coil jump t from each lower coil side to the upper coil side that is paired with it is all t = n- A double/heavy-wound three-phase winding is constructed with N element coils such that A method of winding a brushless motor, which is characterized by:
JP7047886A 1986-03-28 1986-03-28 Brushless motor winding method Expired - Fee Related JPH0799923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7047886A JPH0799923B2 (en) 1986-03-28 1986-03-28 Brushless motor winding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7047886A JPH0799923B2 (en) 1986-03-28 1986-03-28 Brushless motor winding method

Publications (2)

Publication Number Publication Date
JPS62230346A true JPS62230346A (en) 1987-10-09
JPH0799923B2 JPH0799923B2 (en) 1995-10-25

Family

ID=13432669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7047886A Expired - Fee Related JPH0799923B2 (en) 1986-03-28 1986-03-28 Brushless motor winding method

Country Status (1)

Country Link
JP (1) JPH0799923B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1349261A2 (en) * 2002-03-25 2003-10-01 Nork 2, S.l. Compact lift motor
DE102008051047A1 (en) * 2008-10-09 2010-04-22 Feaam Gmbh Electric machine
US8987968B2 (en) 2010-08-10 2015-03-24 Kabushiki Kaisha Yaskawa Denki Power generator and wind power generation system
WO2020089994A1 (en) 2018-10-30 2020-05-07 三菱電機株式会社 Stator, electric motor, compressor, air conditioner, and stator manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917348B (en) * 2015-05-31 2018-04-20 河北弛神电机制造有限公司 The high-power odd number fractional-slot motor of electric car
KR102595183B1 (en) * 2015-07-21 2023-10-30 삼성전자주식회사 Motor for washing machine and Washing machine having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1349261A2 (en) * 2002-03-25 2003-10-01 Nork 2, S.l. Compact lift motor
EP1349261A3 (en) * 2002-03-25 2006-01-11 Nork 2, S.l. Compact lift motor
DE102008051047A1 (en) * 2008-10-09 2010-04-22 Feaam Gmbh Electric machine
US8536754B2 (en) 2008-10-09 2013-09-17 Feaam Gmbh Electric motor
DE102008051047B4 (en) * 2008-10-09 2015-07-30 Feaam Gmbh Electric machine
US8987968B2 (en) 2010-08-10 2015-03-24 Kabushiki Kaisha Yaskawa Denki Power generator and wind power generation system
WO2020089994A1 (en) 2018-10-30 2020-05-07 三菱電機株式会社 Stator, electric motor, compressor, air conditioner, and stator manufacturing method
KR20210046778A (en) 2018-10-30 2021-04-28 미쓰비시덴키 가부시키가이샤 Stator, electric motor, compressor, air conditioner and stator manufacturing method
US11888370B2 (en) 2018-10-30 2024-01-30 Mitsubishi Electric Corporation Stator, motor, compressor, air conditioner, and manufacturing method of stator

Also Published As

Publication number Publication date
JPH0799923B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
KR101730525B1 (en) Brushless synchronous motor
KR101011396B1 (en) Motor and motor system
EP0823771B1 (en) Motor
US6495941B1 (en) Dynamo-electric machine
KR101952040B1 (en) Rotary electric machine
JPH0614514A (en) Permanent magnet type stepping motor
JP2006050690A (en) Stator and brushless motor
US8901785B2 (en) Electric motor comprising iron core having primary teeth and secondary teeth
JPH0686527A (en) Hybrid stepping motor
KR101998508B1 (en) Rotary electric machine
US6833647B2 (en) Discoid machine
JP4284981B2 (en) Permanent magnet motor
US7638917B2 (en) Electrical rotating machine
JP3535485B2 (en) Three-phase hybrid type stepping motor
WO2021120680A1 (en) Motor rotor and alternating-pole motor
WO2014195999A1 (en) Synchronous motor
US20080290754A1 (en) AC Motor
US20100052460A1 (en) Electrical rotating machine
WO2017171037A1 (en) Rotor and method for designing rotor
JPS62230346A (en) Winding method of brushless motor
JPH07106046B2 (en) Permanent magnet synchronous machine type motor
JP6391828B2 (en) Stator core and permanent magnet synchronous motor
JPH09322455A (en) Permanent magnet type electric rotating machine having concentrated winding stator
JPH0670524A (en) Brushless motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees