JPS62228403A - High hardness sintered body for tool and its production - Google Patents

High hardness sintered body for tool and its production

Info

Publication number
JPS62228403A
JPS62228403A JP62066874A JP6687487A JPS62228403A JP S62228403 A JPS62228403 A JP S62228403A JP 62066874 A JP62066874 A JP 62066874A JP 6687487 A JP6687487 A JP 6687487A JP S62228403 A JPS62228403 A JP S62228403A
Authority
JP
Japan
Prior art keywords
sintered body
powder
less
boron nitride
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62066874A
Other languages
Japanese (ja)
Inventor
Akio Hara
昭夫 原
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3178680A external-priority patent/JPS56127746A/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62066874A priority Critical patent/JPS62228403A/en
Publication of JPS62228403A publication Critical patent/JPS62228403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop a high-hardness sintered body for cutting tools having excellent strength and heat resistance by forming a sintered CBN layer which contains Al and Cu and in which the carbide, nitride, etc., are used as a binder via a CBN-contg. intermediate layer on the surface of a base sintered hard alloy material. CONSTITUTION:The powder raw material of the intermediate layer contg. <=70% high-hardness cubic type boron nitride (CBN), at least one kind of the carbride, nitride, and carbonitride of Ti, Zr, Hf, V, Nb, Ta, etc., and >=0.1% Al or Si is coated on the surface of the sintered hard alloy body of WC-6% Co. The powder of the mixture or mutual solid soln. composed of 80-95% CBN having <=10 average grain size, >=1 kinds of the carbride, nitride, and carbonitride of Ti, Zr, Hf, V, Nb, and Ta and 5-20% of the bond phase forming raw material contg. 5-30% compd. of Al and Ti, etc., and 1-50% Cu is further sintered thereon under >20b pressure and >900 deg.C temp. The high-hardness sintered body for the cutting tools having the excellent cutting power and high strength is thus obtd.

Description

【発明の詳細な説明】 立方晶型窒化硼素(Cubic  BN、以下CBNと
略す)はダイヤモンドに次ぐ高硬度の物質であり、超高
圧高温下で合成される。現在数に研削用砥粒として使用
されており、また切削用途にはCBNを金属Coなどで
結合した焼結体が一部に使用されている。このCBNを
金属で結合した焼結体は切削工具として使用した場合、
結合金属の高温での軟化による耐摩耗性の低下や、被削
材金属が溶着し易い為に工具が損傷するといった欠点が
ある。本発明は、このような金属で結合した焼結体でな
く、高強度で耐熱性に優れた硬質金属化合物を結合相と
した切削工具等の工具用途に適した新しいCBS焼結体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Cubic boron nitride (Cubic BN, hereinafter abbreviated as CBN) is a material with the second highest hardness next to diamond, and is synthesized under ultra-high pressure and high temperature. Currently, it is used as abrasive grains for grinding, and sintered bodies made of CBN bonded with metal Co or the like are also used in some cutting applications. When this sintered body of CBN bonded with metal is used as a cutting tool,
There are disadvantages such as a decrease in wear resistance due to the softening of the bonding metal at high temperatures, and damage to the tool because the workpiece metal tends to adhere. The present invention relates to a new CBS sintered body suitable for tool applications such as cutting tools, which uses a hard metal compound as a binder phase that has high strength and excellent heat resistance, rather than a sintered body bonded with such metals. be.

CBNは前記した如く、高硬度であり、耐熱性、耐摩耗
性に優れた物質である。このCBNのみを焼結する試み
は種々なされているが、これには例えば特公昭39−8
948に記載されている如く、約70Kb以上、190
0℃以上の超高圧、高温下で焼結する必要がある。現状
の超高圧・高温装置ではこのような高圧・高温条件を発
生させることはできるが、工業的規模に装置を大型化し
た場合、高圧高温発生部の耐用回数が制約され、実用的
でない。またCBNのみの焼結体は硬度は高いが、工具
として使用した場合の靭性が劣る。
As mentioned above, CBN is a material that has high hardness and excellent heat resistance and wear resistance. Various attempts have been made to sinter only this CBN.
948, approximately 70 Kb or more, 190
It is necessary to sinter at ultra-high pressure and high temperature above 0°C. Current ultra-high pressure and high temperature equipment can generate such high pressure and high temperature conditions, but if the equipment is scaled up on an industrial scale, the number of service life of the high pressure and high temperature generation part will be limited, making it impractical. Furthermore, although a sintered body made only of CBN has high hardness, it has poor toughness when used as a tool.

発明者等は、CBNの結合材として周期率表第4a族、
第58族の遷移金属の炭化物、窒化物、炭窒化物とAI
を含む化合物を主体としたものにCu元素を含有したも
のを用い、更に適切な製造条件を見出すことによって、
従来にない耐摩性、靭性を有するCBNの含有量が体積
で80%を越える高硬度の焼結体を得ることができた。
The inventors used group 4a of the periodic table as a binder for CBN.
Group 58 transition metal carbides, nitrides, carbonitrides and AI
By using a compound mainly containing Cu element and finding more suitable manufacturing conditions,
It was possible to obtain a highly hard sintered body with a CBN content exceeding 80% by volume, which has unprecedented wear resistance and toughness.

また高圧相型窒化硼素の別の形態であるウルツ鉱型窒化
硼素についても同様の検討を行ない、CBNを用いた場
合と類似した結果を得た。
Further, similar studies were conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained using CBN were obtained.

以下、CBNを硬質耐摩耗成分として使用した焼結体に
ついて詳細を述べるが、ウルツ鉱型もしくはCBNとウ
ルツ鉱型窒化硼素の混合物を用いた場合も同様のことが
言える。
A sintered body using CBN as a hard wear-resistant component will be described in detail below, but the same can be said when using a wurtzite type or a mixture of CBN and wurtzite type boron nitride.

本発明の目的とするところは、CBNの含有量の多い高
硬度の工具用焼結体を得ることである。
An object of the present invention is to obtain a highly hard sintered body for tools with a high CBN content.

これによりCBNの特徴を最大限に生かして、例えばW
CC超超硬合金如く高硬度の材料を切削加工する工具材
や、また線引きダイス等へ応用することができる。
This allows us to take full advantage of the characteristics of CBN and, for example,
It can be applied to tool materials for cutting highly hard materials such as CC cemented carbide, wire drawing dies, etc.

CBNのみからなる焼結体は前記した如く製造上の困難
さと、焼結体そのものの強度不足といった欠点を有して
いる。この為にCBNに適当な結合材を加えることによ
ってこのような欠点を改良することが考えられる。
As described above, a sintered body made only of CBN has drawbacks such as difficulty in manufacturing and insufficient strength of the sintered body itself. For this reason, it is possible to improve these drawbacks by adding a suitable binder to CBN.

公知の方法に一つは金属結合材を用いる方法であり、市
販のCBNを金属COなどで結合した焼結体がその例で
ある。またCBHに金属以外の化合物例えば八2□0.
やB4C等を混合してこれを焼結する試みもなされてい
る。前者の方法は焼結時にCOなとの金属結合材が溶融
する温度で行なうもので、高圧下における液相焼結であ
る。後者の場合は結合は、溶解せず固相状態で焼結され
る。発明者等は、先に周期率表第43.5a、6a族金
属の炭化物、窒化物、硼化物、硅化物を結合材として、
これ等の結合材化合物が焼結体組織中で連続した結合相
をなすCBNを体積%で40〜80%含有した高硬度工
具用焼結体を発明し、特許出願している(特開昭53−
7781))。この場合も固相状態で焼結するものであ
るが、結合材含有量が比較的に多いためにCBNのみの
焼結に比較して緻密な焼結体を得るに必要な圧力、温度
条件が緩和される。
One of the known methods is a method using a metal bonding material, and an example is a sintered body in which commercially available CBN is bonded with metal CO or the like. In addition, compounds other than metals may be added to CBH, such as 82□0.
Attempts have also been made to mix and sinter the mixture with B4C, B4C, and the like. The former method is a liquid phase sintering under high pressure in which sintering is carried out at a temperature at which a metal bonding material such as CO melts. In the latter case, the bond is not melted but is sintered in a solid state. The inventors previously used carbides, nitrides, borides, and silicides of group 43.5a and 6a metals in the periodic table as binders.
These binder compounds have invented a sintered body for high-hardness tools containing 40 to 80% by volume of CBN, which forms a continuous binder phase in the structure of the sintered body, and has filed a patent application (Japanese Patent Application Laid-Open No. 53-
7781)). In this case as well, sintering is performed in a solid state, but because the binder content is relatively high, the pressure and temperature conditions required to obtain a dense sintered body are required compared to sintering only CBN. eased.

発明者等は、更にCBHの含有量を多くしたものについ
て検討を行なった。CBNの含有量が体積%で80%を
越えるとCBNと前記の周期率表第4a、5a、6a族
金属の化合物粉末を充分均一に混合して超高圧、高温下
で焼結しても高強度の焼結体は得られなかった。この焼
結体の破面を調べてみるとCBN粒子間及びCBNと結
合材化合物粒子間で破壊していることが多く、CBN粒
子相互又はCBNと結合材結晶粒子間の結合強度が低い
と考えられる。CBNの含有量が多い場合はこのように
焼結性が低下し、高強度の焼結体が得られない。これを
改善する為に、更に広範囲の実験を行なった結果、結合
材として周期率表第4a族、第5a族の炭化物、窒化物
、炭窒化物、特に第4a族、第5a族の遷移金属をMで
表したとき、MCx、MNx、M (CN)xのXの(
直があるイ直以下の粉末に、AlとCuを含む混合粉末
を用いた場合、CBNの含有量が80%を越える組成で
あっても高強度の焼結体が得られることを見出した。
The inventors conducted a study on a product with a further increased content of CBH. If the content of CBN exceeds 80% by volume, even if the CBN and the compound powder of metals from Groups 4a, 5a, and 6a of the periodic table are sufficiently uniformly mixed and sintered under ultra-high pressure and high temperature, high A strong sintered body was not obtained. When we examined the fracture surface of this sintered body, we found that there were many fractures between CBN particles and between CBN and binder compound particles, which suggests that the bond strength between CBN particles or between CBN and binder crystal particles is low. It will be done. When the content of CBN is large, the sinterability deteriorates as described above, and a high-strength sintered body cannot be obtained. In order to improve this, we conducted more extensive experiments and found that carbides, nitrides, and carbonitrides of Groups 4a and 5a of the periodic table, especially transition metals of groups 4a and 5a, were used as binders. When is expressed as M, MCx, MNx, M (CN)x of X (
It has been found that when a mixed powder containing Al and Cu is used as a powder with straightness or less, a high-strength sintered body can be obtained even if the CBN content exceeds 80%.

周期率表第4a族、第53族の炭化物、窒化物、炭窒化
物は、第1図のT i Nの状態図に代表される如く、
NaC1型構造を存する相がM−C,、M−N、M−C
,Hの広い組成範囲において存在する。このXの値が1
以下の場合、即ち、相対的にC,Nの原子空孔濃度の高
いものを用いることにより焼結性が改善された。また結
合材として、MCx、MNx、M (C,N)xのみを
用いた場合よりも、これにAlの化合物を加えた場合焼
結性は改善されることが確認された。さらにこれに小量
のCuが含有された場合はより一層焼結性は改善され、
焼結体の強度も向上することがわかった。
Carbides, nitrides, and carbonitrides of Groups 4a and 53 of the periodic table are represented by the phase diagram of T i N in FIG.
Phases with NaC1 type structure are M-C, MN, M-C
, H exists in a wide range of compositions. The value of this X is 1
In the following cases, sinterability was improved by using a material with a relatively high concentration of C and N atomic vacancies. It was also confirmed that the sinterability was improved when an Al compound was added to the binder, compared to when only MCx, MNx, and M (C,N)x were used. Furthermore, when a small amount of Cu is contained in this, the sinterability is further improved,
It was found that the strength of the sintered body was also improved.

結合材原料として使用するMCx、MNx、M(C,N
)xのXの値の好ましい範囲は0.95以下である。ま
たAlは結合材中にA1元素として5%以上、Cuは1
%以上存在すると高強度の焼結体が得られる。焼結体中
のCBN含存含金量積で85%とし、MCx、MNx、
、M (C,N)xのXの値と添加AlあるいはCuの
含有量を種々変えて焼結体を試作し、切削工具としての
性能を評価した結果、特に高強度で工具としての性能が
優れたのはXの値が0.50〜0.95でAl添加量が
結合材中の重そで5〜30%の範囲であり、さらにCu
は結合材中の重量で1〜50%の範囲のものであった。
MCx, MNx, M(C,N
) The preferred range of the value of x is 0.95 or less. In addition, Al is 5% or more as the A1 element in the binder, and Cu is 1% or more as the A1 element.
% or more, a high-strength sintered body can be obtained. The product of CBN content in the sintered body is 85%, and MCx, MNx,
, M (C, N) x, and the content of added Al or Cu, and evaluated their performance as cutting tools. Excellent values are those in which the value of
ranged from 1 to 50% by weight in the binder.

本発明−8の焼結体では高圧相型窒化硼素は焼結体中の
体積%で80%を越え95%以下である。この組成範囲
内では、充分緻密な焼結体ではCBNの含有〒が多いほ
ど焼結体の硬度は高い。95%を越えると焼結体の工具
として必要な靭性の低下が見られる。また80%以下の
含有量では焼結体の結合相が組成中で連続した相をなし
、硬度が低下する。
In the sintered body of the present invention-8, high-pressure phase boron nitride is present in a volume percentage of more than 80% and less than 95% in the sintered body. Within this composition range, in a sufficiently dense sintered body, the higher the CBN content, the higher the hardness of the sintered body. If it exceeds 95%, a decrease in the toughness required for the sintered body as a tool is observed. Further, if the content is less than 80%, the binder phase of the sintered body forms a continuous phase in the composition, and the hardness decreases.

本発明による結合材を用いた場合、何故高圧相型窒化硼
素の焼結性が改善されるか考察しでみる。
Let us consider why the sinterability of high-pressure phase boron nitride is improved when the binder according to the present invention is used.

たとえばTiNxを例にとるとTiNxのみの焼結体の
常温における硬度はXの値が約0,7の場合、最大とな
る。しかし、高温ではXの値が低いものほど硬度低下の
度合が大きい。CBNとTiNxを混合して超高圧高温
下で焼結する場合、CBS結晶は変形し難いがT i 
N x粒子は容易に変形を起こし得る。前述した理由で
この場合、窒素原子の欠陥濃度の高いχの値が低いTi
Nxはど変形し易く、CBN結晶粒子間に浸入して緻密
化が進行し易い。他のMCx、MNx、M (C。
For example, taking TiNx as an example, the hardness of a sintered body of only TiNx at room temperature is maximum when the value of X is about 0.7. However, at high temperatures, the lower the value of X, the greater the degree of decrease in hardness. When CBN and TiNx are mixed and sintered under ultra-high pressure and high temperature, CBS crystals are difficult to deform, but Ti
N x particles can easily undergo deformation. For the reasons mentioned above, in this case, Ti has a high defect concentration of nitrogen atoms and a low value of χ.
Nx is easily deformed, penetrates between CBN crystal grains, and tends to become densified. Other MCx, MNx, M (C.

N)xについても同様のことがいえる。しかしこれのみ
ではCBN粒子間の結合強度が充分ではない。例えばW
C−Co超硬合金の液相焼結の如く硬質粒子の結合相へ
の溶解と再析出現象があれば結合相と硬質粒子、又は硬
質粒子相互の結合強度の高いものが得られよう。
N) The same can be said for x. However, this alone does not provide sufficient bonding strength between CBN particles. For example, W
If there is a phenomenon of dissolution of hard particles into a binder phase and re-precipitation, such as in liquid phase sintering of C--Co cemented carbide, a product with high bonding strength between the binder phase and the hard particles, or between the hard particles can be obtained.

本発明焼結体では結合材中にAl化合物を存在させるこ
とによって、これと類似した現象が生じることを見出し
たものである。結合材としてMCX、、MNx、、M 
(C,N)xにAl化合物を添加していくと、その量が
増すに従って焼結性が改善され、低温で焼結しても高硬
度の焼結体が得られる。焼結体をダイヤモンド砥石で研
磨して、更にラップ仕上げして観察するとCBN粒子の
脱落が添加へ1里が結合材中の重量で5%以上の場合は
殆んど見られない。しかし焼結体の破面を観察するとC
,BN粒子はその殆んどが粒内破壊しているものの一部
粒界破壊している箇所も認められた。
In the sintered body of the present invention, it has been found that a phenomenon similar to this occurs when an Al compound is present in the binder. MCX,,MNx,,M as a binding material
When an Al compound is added to (C,N)x, the sinterability improves as the amount increases, and a sintered body with high hardness can be obtained even when sintered at a low temperature. When the sintered body is polished with a diamond whetstone and then subjected to lapping, it is observed that CBN particles are hardly dropped when the weight of the CBN particles in the binder is 5% or more by weight. However, when observing the fracture surface of the sintered body, C
Although most of the BN particles had intragranular fracture, some areas with intergranular fracture were also observed.

このCBN焼結体の組成にCuを添加した焼結体を作成
し、その破面を観察したところ、粒内破壊の生じている
ところは認められなかった。この理由は次の如く推測さ
れる。Cuは、Al及び焼結体中のMCx、、MNx、
M (C,N) xの余剰の第4a族遷移金属のMと反
応し、低融点の液相が生じ、CBNとMCx、MNx、
M (C1N)x等の結合材との界面に均一に浸入する
。この界面に浸入したM−Alf−Cuは、CBNや結
合相であるMC,MN、M (C,N)との親和性が良
好なため、CBN  CBNあるいはCBN−MC。
When a sintered body was prepared by adding Cu to the composition of this CBN sintered body and its fracture surface was observed, no intragranular fracture was observed. The reason for this is assumed to be as follows. Cu is Al and MCx, MNx, in the sintered body
M (C,N) x reacts with the excess M of the Group 4a transition metal, producing a low melting point liquid phase, and CBN and MCx, MNx,
It penetrates uniformly into the interface with the binder such as M (C1N)x. M-Alf-Cu that has entered this interface has good affinity with CBN and the binder phase MC, MN, and M (C,N), so it forms CBN-CBN or CBN-MC.

MN、M (C,N)の接合強度を高めるためと考えら
れる。
This is thought to be to increase the bonding strength of MN and M (C, N).

またC 1】を含有していない焼結体は、CBN粒子と
結合材であるMC,MN、M (C,N)の界面にMB
、などのポライドが多量に形成される。
In addition, the sintered body that does not contain C1] has MB at the interface between the CBN particles and the binder MC, MN, and M (C,N).
, etc., are formed in large quantities.

通常このMB、等のポライドは脆く、多量に存在すると
破壊の起因になる。一方Cuを含をした焼結体において
は、MB、等の形成が抑制されており、このためCuを
含有した焼結体は、CBN粒子と結合相が強固に結合し
たものと考えられる。
Normally, polide such as MB is brittle, and if present in large quantities, it may cause breakage. On the other hand, in the sintered body containing Cu, the formation of MB, etc. is suppressed, and it is therefore considered that the sintered body containing Cu is a structure in which the CBN particles and the binder phase are firmly bonded.

また、本発明焼結体は、前述した如く焼結時に低融点の
液相が出現するため低温焼結が可能である。
Furthermore, the sintered body of the present invention can be sintered at low temperatures because a liquid phase with a low melting point appears during sintering, as described above.

本発明焼結体においては、Cuは純金属として存在する
ものでなく、MC,MN、M (C,N)等の結合相中
に固溶したり、あるいはMCx、MN x、 M (C
,N) xの余剰のMやAPと反応し金属間化合物の形
で存在するため高温での強度低下は生じない。しかしC
uの含有量が結合材中の重量で50%を越えると、Cu
がMC,MN、M(C,N)の結合相中に固溶したり余
剰のMやAlと反応して金属間化合物を形成したりしき
れず、純金属の状態で焼結体中に存在するため、焼結体
の硬度は低下し工具性能は悪くなる。
In the sintered body of the present invention, Cu does not exist as a pure metal but as a solid solution in a binder phase such as MC, MN, M (C,N), or as a solid solution in a binder phase such as MCx, MNx, M(C
, N) Reacts with excess M and AP of x and exists in the form of an intermetallic compound, so there is no decrease in strength at high temperatures. But C
If the content of u exceeds 50% by weight in the binder, Cu
is dissolved in the binder phase of MC, MN, and M(C,N), or reacts with excess M and Al to form intermetallic compounds, and exists in the sintered body as a pure metal. As a result, the hardness of the sintered body decreases and tool performance deteriorates.

APあるいはCuを添加する方法は、種々考えられる。Various methods can be considered for adding AP or Cu.

焼結前のCBNとの混合粉末中にAlあるいはCuの粉
末を添加する方法は、最もftJlであるが、これらの
金属の1μ以下の微粉末は得難く、粗い粒子では焼結体
の組繊が不均一になり易い。最も好ましい方法は、Al
の場合、結合材のMCx、MNx、M (C,N)xの
過剰なMと予め金属Δpを反応せしめておき、M−AI
V、の金属間化合物を形成させて、これを粉砕使用する
方法である。この場合は、M Cx 、M N x 、
 M (C。
The method of adding Al or Cu powder to the mixed powder with CBN before sintering is the most ftJl, but it is difficult to obtain fine powder of these metals with a size of 1μ or less, and coarse particles may cause the fibers of the sintered body to deteriorate. tends to become uneven. The most preferred method is Al
In the case of MCx, MNx, M (C, N)
This is a method in which an intermetallic compound of V is formed and then used by pulverization. In this case, MCx, MNx,
M (C.

N)xとAlの金属間化合物からなる極めて微細な1μ
以下の結合材粉末が容易に得られる。この他、予め金属
Mと金属Anを反応せしめて合成したM−Aiの金属間
化合物(例えばTiAj!:+、TiAlf、Tiz 
Alfi、ZrAl3 、ZrAlf等)の粉砕し易い
粉末を用いても良い。また別の形のAl化合物であるA
lN、Ti2A42N、ZrzAlfN等の窒素を含む
化合物の形で加えても良い。
N) Extremely fine 1μ made of an intermetallic compound of x and Al
The following binder powders are easily obtained. In addition, M-Ai intermetallic compounds synthesized by reacting metal M and metal An in advance (for example, TiAj!:+, TiAlf, Tiz
Easily pulverized powders such as Alfi, ZrAl3, ZrAlf, etc.) may also be used. Another form of Al compound A
It may be added in the form of a nitrogen-containing compound such as IN, Ti2A42N, ZrzAlfN, or the like.

またCuの場合、最も好ましい方法は、焼結時に焼結体
外部から拡散により浸入させたりあるいは、ウルツ鉱型
Alを添加する場合と同様に結合材と反応させて添加す
ることである。
Further, in the case of Cu, the most preferable method is to infiltrate Cu from the outside of the sintered body by diffusion during sintering, or add it by reacting with a binder as in the case of adding wurtzite Al.

本発明で用いるCBN結晶の粒度は、焼結体の工具とし
ての性能からみて10μ以下とする必要がある。結晶粒
子が粗いと焼結体の強度が低下し、また特に切削工具と
しして使用する場合は結晶粒子の細かいものが良い加工
面が得られる。
The grain size of the CBN crystal used in the present invention needs to be 10 μm or less in view of the performance of the sintered body as a tool. If the crystal grains are coarse, the strength of the sintered body will be reduced, and especially when used as a cutting tool, a finer crystal grain will provide a better machined surface.

本発明のもう一つの特徴である結合相の粒度は1μ以下
の極めて微細な結晶粒子からなる。このことにより焼結
体はCBNの含有量が多いが、結合相が均一にCBN粒
子間に分散した組繊となり高強度の焼結体が得られる。
Another feature of the present invention is that the particle size of the binder phase consists of extremely fine crystal grains of 1 μm or less. As a result, although the sintered body has a high content of CBN, it becomes a composite fiber in which the binder phase is uniformly dispersed between the CBN particles, and a high-strength sintered body can be obtained.

焼結体の製造に当ってはダイヤモンド合成に用いられる
超高圧高温装置を使用して圧力20Kb以上、温度90
0℃以上で行なう。特に好ましい焼結圧力、温度条件は
圧力30Kb〜70Kb、温度1)00°c−1500
℃である。この圧力、温度条件の上限はいずれも工業的
規模の超高圧、高温装置の実用的な運転条件の範囲内で
ある。更に圧力、温度条件は第2図に示した高圧相型窒
化硼素の安定域内で行なう必要がある。
In manufacturing the sintered body, we use an ultra-high pressure and high temperature equipment used for diamond synthesis, at a pressure of 20Kb or more and a temperature of 90Kb.
Perform at 0°C or higher. Particularly preferable sintering pressure and temperature conditions are pressure 30Kb to 70Kb, temperature 1) 00°C-1500
It is ℃. The upper limits of these pressure and temperature conditions are all within the range of practical operating conditions for industrial scale ultra-high pressure, high temperature equipment. Further, the pressure and temperature conditions must be within the stable range of high-pressure phase type boron nitride shown in FIG.

このような優れた焼結体を切削工具として使用する場合
、高硬度焼結体は切れ刃となる部分にのみあれば良く、
この高硬度焼結体を強度、靭性、熱伝導に優れた超硬合
金に接合して使用すればその性能を十分発揮することが
できる。しかし本発明の焼結体を超硬合金に直接接合す
ると接合が弱(断続切削の場合など使用できない。十分
な接合強度を得るにはCBNを容積で70%未満含有し
、残部がTi、Zr、Hfの炭化物、窒化物あるいは炭
窒化物の1種もしくはこれらの混合物や相互固体化合物
を生体としたものと、これにAlまたはSiを0.1重
量%以上含有する厚み2画以下の中間層を用いて接合す
れば良い。
When using such an excellent sintered body as a cutting tool, the high hardness sintered body only needs to be used in the part that will become the cutting edge.
If this high-hardness sintered body is used by bonding it to a cemented carbide that has excellent strength, toughness, and thermal conductivity, its performance can be fully demonstrated. However, when the sintered body of the present invention is directly bonded to cemented carbide, the bond is weak (unusable for interrupted cutting, etc.).To obtain sufficient bonding strength, the CBN content must be less than 70% by volume, with the remainder being Ti or Zr. , Hf carbide, nitride, or carbonitride, or a mixture thereof, or a mutual solid compound as a living body, and an intermediate layer having a thickness of 2 strokes or less containing 0.1% by weight or more of Al or Si. It is sufficient to join using .

以下実施例により更に具体的に説明する。This will be explained in more detail below with reference to Examples.

〔実施例1] 平均粒度3μのCBN粒子を体積%で90%と結合材粉
末からなる混合粉末を作成した。結合材粉末は、T1N
o、e+粉末とAl扮末を重量%各々80%、20%の
割合に混合したものを真空炉中で1000°0230分
間加熱后扮砕して平均粒度0.3μの微粉末としたもの
である。この結合材粉末をX線回折によって調べたとこ
ろ、TiN以外にT12AlN、、TiAn3、TiA
lfi等のTiNとA1の反応によって生した化合物が
検出され、金属Alは検出されなかった。これはT i
 N o、 asのNに対して相対的に過剰なTiが加
えたAlfiと反応して生したものである。
[Example 1] A mixed powder consisting of 90% by volume of CBN particles having an average particle size of 3 μm and binder powder was prepared. The binder powder is T1N
A mixture of o, e+ powder and Al powder at weight percentages of 80% and 20%, respectively, was heated in a vacuum furnace at 1000° for 0230 minutes and then crushed to obtain a fine powder with an average particle size of 0.3μ. be. When this binder powder was examined by X-ray diffraction, it was found that in addition to TiN, there were also T12AlN, TiAn3, and TiA.
Compounds produced by the reaction of TiN and A1, such as lfi, were detected, but metallic Al was not detected. This is T i
It is produced by the reaction of a relatively excessive amount of Ti with respect to the N in No, as, and the added Alfi.

このCBNと結合材の混合粉末を、外径14a++内径
10mmのMo製の容器に、CBNを容積で60%含有
し残部がTiNとAlを重量ですこし含む混合粉末を塗
布したWC−6%Co&)i成の超硬合金(外径10薗
、高さ2.2=)を置いた後、0.30g充填した。こ
の上に厚さ2μのCuを茎着した超硬合金(外径10m
m、高さ2mm)を置き、Mo製の栓をしてこの容器全
体をダイヤモンド合成に用いる超高圧装置に入れた。圧
力50Kbに加圧し、次いで温度1250’cまで加熱
し、20分間保持した。取り出した焼結体をダイヤモン
ド砥石を用いて超硬度焼結体が現れるまで研削加工し更
にダイヤモンドペーストを用いて研摩した。光学顕微鏡
で観察したところ気孔もなく緻密な焼結体であった。こ
の焼結体はCBS含有の接合層を介して超硬合金に強固
に接合していた。ピンカース硬度計を用いて荷重5kg
で硬度を測定した結果約4800の値を示した。またX
線マイクロアナライザを用いて焼結体中の含有元素を調
べたところCuが均一に含まれており、その量は結合材
中の重量の約3%であった。さらにこの焼結体の生成物
をX線回折により調査した結果CBN、、T i N、
、A12N等があったがTi82等のポライドはごくわ
ずかしか検出されなかった。なおCuを含有しない焼結
体を同様にして製造し、生成物をX線回折により調べた
が、この生成物はCBN、TiN、AlNの他に多量の
TiBzが存在していた。これら2種類の焼結体を用い
て、切削加工用のチップを作成した。
This mixed powder of CBN and binder was coated in a Mo container with an outer diameter of 14a++ and an inner diameter of 10 mm, and a mixed powder containing 60% CBN by volume and the balance of TiN and Al by weight was coated with WC-6%Co& ) I-sized cemented carbide (outer diameter: 10 mm, height: 2.2 mm) was placed, and then 0.30 g of the cemented carbide was placed. Cemented carbide with 2μ thick Cu layered on top of this (outer diameter 10m)
m, height 2 mm), a stopper made of Mo was placed, and the entire container was placed in an ultra-high pressure apparatus used for diamond synthesis. It was pressurized to a pressure of 50 Kb, then heated to a temperature of 1250'C and held for 20 minutes. The taken out sintered body was ground using a diamond grindstone until a super hard sintered body appeared, and further polished using diamond paste. When observed under an optical microscope, it was found to be a dense sintered body with no pores. This sintered body was firmly bonded to the cemented carbide via the CBS-containing bonding layer. Load 5kg using Pinkers hardness tester
The hardness was measured and showed a value of about 4,800. Also X
When the elements contained in the sintered body were examined using a line microanalyzer, it was found that Cu was uniformly contained, and the amount thereof was about 3% of the weight of the binder. Furthermore, the product of this sintered body was investigated by X-ray diffraction, and the results showed that CBN, , T i N,
, A12N, etc., but only a small amount of polides such as Ti82 were detected. A sintered body containing no Cu was produced in the same manner, and the product was examined by X-ray diffraction, and it was found that in addition to CBN, TiN, and AlN, a large amount of TiBz was present in the product. Chips for cutting were created using these two types of sintered bodies.

被削材としては、ビッカース硬度1200のWC−15
%Coの超硬合金の塑性加工用のパンチを選び、切削速
度18m/分、切込み0.2+!+I1)、送り0.1
aw/回転で20分間切削した。比較の為市販の体積%
で約90%のCBSを含有しCoを主成分とする金属で
結合した焼結体で作成したチップを用いて、同一条件で
テストした。切削後のチップの摩耗を観察したところ、
本発明の焼結体の逃げ面最大摩耗中が0.08Mであっ
たのに対し、Cuを含有しない焼結体のそれは0.15
m+++、市販のCBNを主体とする金属で結合した焼
結体は0.25m5であった。
The work material is WC-15 with a Vickers hardness of 1200.
%Co selected a punch for plastic working of cemented carbide, cutting speed 18 m/min, depth of cut 0.2+! +I1), feed 0.1
Cutting was performed for 20 minutes at aw/revolution. For comparison, commercially available volume%
A chip made of a sintered body containing about 90% CBS and bonded with a metal mainly composed of Co was tested under the same conditions. When observing the wear of the tip after cutting, we found that
The maximum wear on the flank face of the sintered body of the present invention was 0.08M, while that of the sintered body not containing Cu was 0.15M.
m+++, the sintered body bonded with a commercially available CBN-based metal was 0.25 m5.

〔実施例2〕 第1表に示した結合材粉末を作成した。[Example 2] The binder powder shown in Table 1 was prepared.

第    1    表 (重量%) 窒素含有量の異なるTiNx粉末は金属チタンの微粉末
を純粋な窒素気流中で加熱して窒化させ、加熱温度を変
えることにより、結合窒素量をコントロールして作成し
たものである。
Table 1 (wt%) TiNx powders with different nitrogen contents were created by heating fine powder of titanium metal in a pure nitrogen stream to nitride it and controlling the amount of bound nitrogen by changing the heating temperature. It is.

第1表の組成の結合材粉末を実施例1と同様にして加熱
処理を施し、粉砕した。この結合材粉末と平均粒度3μ
のCBN粉末とを混合して第2表の組成の混合粉末を作
成した。
The binder powder having the composition shown in Table 1 was heat treated and pulverized in the same manner as in Example 1. This binder powder and average particle size 3μ
A mixed powder having the composition shown in Table 2 was prepared by mixing with CBN powder.

実施例1と同様にして、MO製容器にCBNを容積で5
0%含有し、残部がTi (C,N)とHfNとAlを
重量で5:31含む混合粉末を塗布したW C−6%C
o組成の超硬合金を置き、その上に完粉と種々の厚みの
銅箔を置き更に超硬合金を置いてMO製の栓をし、超高
圧高温装置を用いて、50 k b 、 1280”C
で20分間保持した、各々の硬度測定結果も第2表に示
す。またこれらの焼結体はCBNを含有する中間接合層
を介して超硬合金母材に強固に接合していた。
In the same manner as in Example 1, 5 volumes of CBN were added to an MO container.
W C-6%C coated with a mixed powder containing 0% Ti (C, N), HfN and Al in a ratio of 5:31 by weight.
Place a cemented carbide with a composition o, place the finished powder and copper foil of various thicknesses on top of it, place the cemented carbide, plug it with an MO stopper, and use an ultra-high pressure and high temperature device to produce 50 kb, 1280 kb. "C.
Table 2 also shows the results of hardness measurements held for 20 minutes. Further, these sintered bodies were firmly bonded to the cemented carbide base material via an intermediate bonding layer containing CBN.

第   2   表 A、  B、  Cの焼結体で比較すると、Cuの含有
量が55%となると硬度は低下する。次にCBHの含有
量についてみると、CBSの含有量の増加に伴って硬度
は上界するものの97%と多くなりすぎるとかえって硬
度は3000と低下している。この場合、焼結体中の結
合材含有量が不足しており、このような圧力温度条件下
では完全に緻密な焼結体が得られないためである。次に
結合材中のへ2含ffflの異なるC、H2■を比較す
るとAlの含有量が多い程硬度は高い。
Comparing the sintered bodies of Table 2 A, B, and C, the hardness decreases when the Cu content becomes 55%. Next, looking at the CBH content, as the CBS content increases, the hardness reaches an upper limit, but when it becomes too high (97%), the hardness actually decreases to 3000. In this case, the binder content in the sintered body is insufficient, and a completely dense sintered body cannot be obtained under such pressure and temperature conditions. Next, comparing C and H2■ with different H2 fffl contents in the binder, the higher the Al content, the higher the hardness.

[実施例3〕 第3表の組成の結合材粉末を作成し、加熱処理を施した
。これらの結合材粉末と平均粒度3μのCB N jA
末を体積%でそれぞれ13%、87%となるように配合
し、混合した。次に実施例1と同様にしてMo製の容器
に上記混合粉を充填し、その上に銅箔を入れ、さらにW
C−1,0%Co超硬合金を置き、MO製の栓をしてこ
の容器全体を超高圧装置に入れ焼結した。焼結体のCu
の含量をX線マイクロアナライザで調べたところ、結合
材中のCuの含有里は、合計重量で約7%であった。ま
たX線回折により、ポライドの生成を調査したがポライ
ドは認められなかった。さらにこれらの焼結体の硬度を
測定した結果、いずれもビ・ンカース硬度4000以上
であった。
[Example 3] A binder powder having the composition shown in Table 3 was prepared and subjected to heat treatment. These binder powders and CB N jA with an average particle size of 3μ
The powders were blended and mixed in a volume percentage of 13% and 87%, respectively. Next, in the same manner as in Example 1, a container made of Mo was filled with the mixed powder, a copper foil was placed on top of the container, and a W container was filled with the mixed powder.
A C-1,0% Co cemented carbide was placed, an MO stopper was placed, and the entire container was placed in an ultra-high pressure device and sintered. Cu of sintered body
When the content of Cu was examined using an X-ray microanalyzer, the total Cu content in the binder was approximately 7% by weight. Further, the formation of polide was investigated by X-ray diffraction, but no polide was observed. Furthermore, as a result of measuring the hardness of these sintered bodies, they all had a Vinker's hardness of 4000 or more.

第  3  表 (重量%) 〔実施例4〕 平均粒度2μのCBN粒子を体積%で92%と結合材粉
末から成る混合粉末を作成した。結合材粉末はT i 
N o、 as!53末、Al粉末、Cu扮末をそれぞ
れ重量で70%、26%、4%の割合に混合したものを
真空炉で+000℃130分間加熱後、粉砕して平均粒
度0.5μの微粉末としたものである。この完粉を実施
例1と同様にして焼結した。
Table 3 (% by weight) [Example 4] A mixed powder consisting of 92% by volume of CBN particles with an average particle size of 2 μm and binder powder was prepared. The binder powder is Ti
No, as! A mixture of 53 powder, Al powder, and Cu powder in weight ratios of 70%, 26%, and 4%, respectively, was heated in a vacuum furnace at +000°C for 130 minutes, and then ground to form a fine powder with an average particle size of 0.5μ. This is what I did. This finished powder was sintered in the same manner as in Example 1.

焼結体を取り出してX線回折により調べた結果、ポライ
ドは少し観察されたものの金属Cuは全(観察されなか
った。この焼結体を用いて切削用のチップを作成し、イ
ンコネル718を切削速度100m/min、切込み0
.2+n+a、送り0.051)Im / revの切
削を湿式で行った。比較の為、市販の体積%で約90%
のCBNをCoを主成分とする金属で結合した焼結体で
作成したチップを用いて同一条件でテストした。切削後
のチップの摩耗を観察したところ本発明の焼結体のiル
げ面最大IY耗1)Jが0.25mmに対し、市販のC
BNを主体とする金属で結合した焼結体は0.45mm
であった。
As a result of taking out the sintered body and examining it by X-ray diffraction, a small amount of polide was observed, but no metal Cu was observed at all. This sintered body was used to create a cutting tip, and it was used to cut Inconel 718. Speed 100m/min, depth of cut 0
.. 2+n+a, feed 0.051) Im/rev cutting was performed wet. For comparison, commercially available volume% is approximately 90%.
A chip made of a sintered body of CBN bonded with a metal mainly composed of Co was tested under the same conditions. Observing the wear of the tip after cutting, the maximum IY wear on the sintered surface of the sintered body of the present invention was 1) J was 0.25 mm, whereas the commercially available C
The sintered body bonded with a metal mainly composed of BN is 0.45 mm.
Met.

〔実施例5〕 粒度1μ以下の衝〒8波法によって合成されたウルツ鉱
型窒化硼素粉末を用い、実施例4で使用した結合材粉末
とをウルツ鉱型窒化硼素↓η未85体積%、結合材粉末
15体積%の割合に混合した。M。
[Example 5] Wurtzite boron nitride powder synthesized by the 8-wave bombardment method with a particle size of 1 μ or less was used, and the binder powder used in Example 4 was mixed with wurtzite boron nitride ↓η 85% by volume. The binder powder was mixed at a ratio of 15% by volume. M.

製の容器にこの粉末を実施例1と同じ構成で充填した後
、超高圧高温装置を用いて焼結した。焼結体の硬度はピ
ンカース硬度は4800であった。
This powder was filled in a container made of aluminum with the same configuration as in Example 1, and then sintered using an ultra-high pressure and high temperature device. The hardness of the sintered body was 4800 on the Pinkers hardness.

(実施例6) 第4表に示した如(結合材粉末を配合した。(Example 6) The binder powder was blended as shown in Table 4.

第  4  表 この混合粉末を真空炉中で1000°6130分間加熱
后粉砕して平均粒度0.3μの微粉末とした。平均粒度
3μのCBN粉末を体積で90%とウルツ鉱型結合材粉
末を体積で10%の割合に配合、混合した。
Table 4 This mixed powder was heated in a vacuum furnace at 1000° for 6130 minutes and then ground to obtain a fine powder with an average particle size of 0.3μ. CBN powder with an average particle size of 3 μm was mixed in a proportion of 90% by volume and wurtzite binder powder in a proportion of 10% by volume.

この混合粉末を実施例1と同様にしてMO製容器に入れ
、これを超高圧高温装置を用いて圧力50kb、7μ4
度1250℃で20分間保持して焼結した。焼結体を研
削しビンカーズ硬度計を用いて荷重5kgで硬度を測定
したところ第5表の値を示した。
This mixed powder was placed in an MO container in the same manner as in Example 1, and was heated to 7μ4 at a pressure of 50 kb using an ultra-high pressure and high temperature device.
It was sintered by holding at 1250°C for 20 minutes. When the sintered body was ground and its hardness was measured using a Binkers hardness meter under a load of 5 kg, the values shown in Table 5 were obtained.

第   5   表Table 5

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明焼結体の製法の特徴を説明する為のもの
で、Ti−N系の状態図である。 第2図は本発明焼結体の製造条件を説明する為のもので
高圧相型窒化硼素の圧力一温度相図上における熱力学的
な安定領域を示したものである。 同 代理人   鎌   1)  文   二第1図 窒素の今、子色分幸− 弔2図 二叉(0C)
FIG. 1 is a phase diagram of a Ti--N system for explaining the characteristics of the method for manufacturing the sintered body of the present invention. FIG. 2 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamically stable region on the pressure-temperature phase diagram of high-pressure phase type boron nitride. Same proxy sickle 1) Letter 2 Figure 1 Nitrogen now, Shishiki Bunyuki - Funeral figure 2 fork (0C)

Claims (9)

【特許請求の範囲】[Claims] (1)平均粒度が10μ以下の高圧相型窒化硼素を体積
で80%を越え95%以下含有し、残部の結合相が周期
率表第4a族のTi、Zr、Hf、第5a族V、Nb、
Taの炭化物、窒化物、炭窒化物の1種もしくは混合物
或は相互固溶体化合物及びAlの化合物より成り、結合
相中のAlの含有量が重量で5〜30%で、且つ結合材
の結合粒子の大部分が1μ以下の微細粒子より成り、さ
らに該結合相中にCuを1〜50重量%含有する焼結体
と、高圧相型窒化硼素の含有率が70容積%未満で残部
が周期率表第4a族のTi、Zr、Hfの炭化物、窒化
物、炭窒化物の1種もしくはこれらの混合物または相互
固溶体を主体としたものとこれにAlまたはSiを0.
1重量%以上含有する厚み2mm以下の中間接合層を介
して、超硬合金母材に接合した工具用高硬度焼結体。
(1) Contains more than 80% and less than 95% by volume of high-pressure phase type boron nitride with an average particle size of 10 μ or less, and the remaining binder phase is Ti, Zr, Hf from group 4a of the periodic table, V from group 5a, Nb,
Consisting of one or a mixture of Ta carbide, nitride, carbonitride, or a mutual solid solution compound and a compound of Al, the content of Al in the binder phase is 5 to 30% by weight, and the binder particles of the binder A sintered body, most of which is composed of fine particles of 1μ or less and further contains 1 to 50% by weight of Cu in the binder phase, and a sintered body in which the content of high-pressure phase boron nitride is less than 70% by volume and the remainder is a periodic body. One type of carbide, nitride, or carbonitride of Ti, Zr, or Hf in Group 4a of Table 1, or a mixture or mutual solid solution of these, and 0.5% of Al or Si.
A high-hardness sintered body for tools bonded to a cemented carbide base material via an intermediate bonding layer with a thickness of 2 mm or less containing 1% by weight or more.
(2)上記結合相がTiN、ZrN及びAlの化合物よ
り成り、結合相中のAlの含有量が5〜30%、且つ結
合材の結合粒子の大部分が1μ以下の微細粒子より成り
、さらに該結合相中にCuを1〜50重量%含有するこ
とを特徴とする特許請求の範囲第(1)項記載の工具用
高硬度焼結体。
(2) The binder phase is made of a compound of TiN, ZrN and Al, the content of Al in the binder phase is 5 to 30%, and most of the binder particles of the binder are fine particles of 1μ or less, and The high hardness sintered body for tools according to claim 1, wherein the binder phase contains 1 to 50% by weight of Cu.
(3)上記高圧相型窒化硼素が立方晶型窒化硼素である
ことを特徴とする特許請求の範囲第(1)項記載の工具
用高硬度焼結体。
(3) The high-hardness sintered body for tools according to claim (1), wherein the high-pressure phase type boron nitride is cubic boron nitride.
(4)超硬合金母材上に高圧相型窒化硼素の含有率が7
0容積%未満で残部が周期率表第4a族のTi、Zr、
Hfの炭化物、窒化物、炭窒化物の1種もしくはこれら
の混合物または相互固溶体を主体としたものと、これに
AlまたはSiを0.1重量%以上含有する中間接合層
としての粉末を型押成型して、もしくは粉末状で載置す
るか、または該超硬合金母材上に予め塗布しておき、さ
らにその粉末の上に平均粒度が10μ以下の高圧相型窒
化硼素粉末と周期率表第4a族、第5a族の遷移金属の
炭化物、窒化物、炭窒化物をそれぞれMCx、MNx、
M(CN)xで表わしたときxの値が0.95以下の化
合物粉末と、5〜30重量%のAlまたはAlを含む合
金又は化合物で粒径1μ以下の粉末を混合し、これを粉
末状もしくは型押成型して載置したのち、超高圧高温装
置を用いて圧力20Kb以上、温度900℃以上にして
焼結体外部よりCuあるいはCuを含む合金または化合
物を結合相中の重量で1〜50%硬質層内に浸入させて
焼結するとともに該硬質層と中間接合層と母材との接合
を行わせることを特徴とする高圧相型窒化硼素の含有量
が焼結体中の体積で80%を越え95%以下である工具
用高硬度焼結体の製造方法。
(4) The content of high-pressure phase boron nitride on the cemented carbide base material is 7.
Less than 0 volume % with the remainder being Ti, Zr, which belongs to Group 4a of the periodic table;
Embossing powder as an intermediate bonding layer containing one type of Hf carbide, nitride, carbonitride, or a mixture or mutual solid solution of these, and 0.1% by weight or more of Al or Si. Molded or placed in powder form, or coated on the cemented carbide base material in advance, and further on the powder, high pressure phase type boron nitride powder with an average particle size of 10 μ or less and the periodicity table. MCx, MNx, carbides, nitrides, and carbonitrides of transition metals of group 4a and group 5a
A compound powder with a value of x of 0.95 or less when expressed as M(CN) After the sintered body is molded or pressed and placed, Cu or an alloy or compound containing Cu is added to the binder phase from the outside at a pressure of 20 Kb or higher and a temperature of 900°C or higher using an ultra-high pressure and high temperature device. The content of high-pressure phase type boron nitride, which is characterized by infiltrating ~50% into the hard layer and sintering it, as well as bonding the hard layer, intermediate bonding layer, and base material, is the same as the volume in the sintered body. A method for producing a high hardness sintered body for tools having a hardness of more than 80% and less than 95%.
(5)前記周期率表第4a族の窒化物がTiNx、Zr
Nxであることを特徴とする特許請求の範囲第(4)項
記載の工具用高硬度焼結体の製造方法。
(5) The nitride of Group 4a of the periodic table is TiNx, Zr
A method for manufacturing a high-hardness sintered body for a tool according to claim (4), wherein the material is Nx.
(6)高圧相型窒化硼素粉末として立方晶型窒化硼素を
用いることを特徴とする特許請求の範囲第(4)項記載
の工具用高硬度焼結体の製造方法。
(6) A method for manufacturing a high-hardness sintered body for tools according to claim (4), characterized in that cubic boron nitride is used as the high-pressure phase boron nitride powder.
(7)超硬合金母材上に高圧相型窒化硼素の含有率が7
0容積%未満で残部が周期率表第4a族のTi、Zr、
Hfの炭化物、窒化物、炭窒化物の1種もしくはこれら
の混合物または相互固溶体を主体としたものと、これに
AlまたはSiを0.1重量%以上含有する中間接合層
としての粉末を型押成型して、もしくは粉末状で載置す
るか、または該超硬合金母材上に予め塗布しておきさら
にその粉末上に平均粒度が10μ以下の高圧相型窒化硼
素粉末と周期率表第4a族、第5a族の遷移金属の炭化
物、窒化物、炭窒化物をそれぞれMCx、MNx、M(
CN)xで表わしたときxの値が0.95以下の化合物
粉末と、5〜30重量%のAlまたはAlを含む合金と
1〜50重量%のCu又はCuを含む合金、又は化合物
で粒径1μ以下の粉末を混合しこれを粉末状もしくは型
押成型して載置したのち超高圧装置を用いて圧力20K
b以上、温度900℃以上で硬質層を焼結するとともに
該硬質層と中間接合層と母材との接合を行わせることを
特徴とする高圧相型窒化硼素の含有量が焼結体中の体積
で80%を越え95%以下である工具用高硬度焼結体の
製造方法。
(7) The content of high-pressure phase boron nitride on the cemented carbide base material is 7
Less than 0 volume % with the remainder being Ti, Zr, which belongs to Group 4a of the periodic table;
Embossing powder as an intermediate bonding layer containing one type of Hf carbide, nitride, carbonitride, or a mixture or mutual solid solution of these, and 0.1% by weight or more of Al or Si. Molded or placed in powder form, or coated on the cemented carbide base material in advance and further coated on the powder with high pressure phase type boron nitride powder having an average particle size of 10 μ or less and periodic table 4a. MCx, MNx, M(
CN) Compound powder with a value of x of 0.95 or less when expressed as x, 5 to 30% by weight of Al or an alloy containing Al, and 1 to 50% by weight of Cu or an alloy or compound containing After mixing powders with a diameter of 1μ or less and placing them in powder form or molded by molding, a pressure of 20K is applied using an ultra-high pressure device.
The content of high-pressure phase type boron nitride in the sintered body is characterized by sintering the hard layer at a temperature of 900° C. or higher and bonding the hard layer, intermediate bonding layer, and base material. A method for manufacturing a high hardness sintered body for tools having a volume of more than 80% and less than 95%.
(8)上記周期率表第4a族の窒化物がTiNx、Zr
Nxであることを特徴とする特許請求の範囲第(7)項
記載の工具用高硬度焼結体の製造方法。
(8) The nitride of Group 4a of the periodic table is TiNx, Zr
A method for manufacturing a high-hardness sintered body for a tool according to claim (7), characterized in that the material is Nx.
(9)高圧相型窒化硼素粉末として立方晶型窒化硼素を
用いることを特徴とする特許請求の範囲第(7)項記載
の工具用高硬度焼結体の製造方法。
(9) A method for producing a high-hardness sintered body for tools according to claim (7), characterized in that cubic boron nitride is used as the high-pressure phase boron nitride powder.
JP62066874A 1980-03-10 1987-03-19 High hardness sintered body for tool and its production Pending JPS62228403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066874A JPS62228403A (en) 1980-03-10 1987-03-19 High hardness sintered body for tool and its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3178680A JPS56127746A (en) 1980-03-10 1980-03-10 High hardness sintered material for tool and preparation thereof
JP62066874A JPS62228403A (en) 1980-03-10 1987-03-19 High hardness sintered body for tool and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3178680A Division JPS56127746A (en) 1979-03-29 1980-03-10 High hardness sintered material for tool and preparation thereof

Publications (1)

Publication Number Publication Date
JPS62228403A true JPS62228403A (en) 1987-10-07

Family

ID=26370302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066874A Pending JPS62228403A (en) 1980-03-10 1987-03-19 High hardness sintered body for tool and its production

Country Status (1)

Country Link
JP (1) JPS62228403A (en)

Similar Documents

Publication Publication Date Title
US4343651A (en) Sintered compact for use in a tool
US4647546A (en) Polycrystalline cubic boron nitride compact
EP3109220B1 (en) Use of sintered body and cutting tool
JPS63145726A (en) Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool
JPS6132275B2 (en)
JPS6246510B2 (en)
JPH0215515B2 (en)
JPS62228403A (en) High hardness sintered body for tool and its production
JPS644989B2 (en)
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPS6137221B2 (en)
JPS6335591B2 (en)
JPS5861253A (en) High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6241306B2 (en)
JPS62983B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS5855111B2 (en) High hardness sintered body for tools and its manufacturing method
JPS6141873B2 (en)
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPS6247940B2 (en)
KR860002131B1 (en) Sintered compact for use in a tool
JPH0138841B2 (en)
JPS6330983B2 (en)