JPS6020456B2 - High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools - Google Patents

High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Info

Publication number
JPS6020456B2
JPS6020456B2 JP56159192A JP15919281A JPS6020456B2 JP S6020456 B2 JPS6020456 B2 JP S6020456B2 JP 56159192 A JP56159192 A JP 56159192A JP 15919281 A JP15919281 A JP 15919281A JP S6020456 B2 JPS6020456 B2 JP S6020456B2
Authority
JP
Japan
Prior art keywords
boron nitride
weight
cutting
wear
cubic boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159192A
Other languages
Japanese (ja)
Other versions
JPS5861254A (en
Inventor
利基 石松
紀章 三輪
文洋 植田
和男 山本
薫 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56159192A priority Critical patent/JPS6020456B2/en
Publication of JPS5861254A publication Critical patent/JPS5861254A/en
Publication of JPS6020456B2 publication Critical patent/JPS6020456B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、特にすぐれた劉性と耐摩耗性を有し、かつ
高硬度と、すぐれた耐熱性および高温強度を備え、これ
らの特性が要求される高速度鋼や、Ni基あるいはCo
基スーパーアロィなどの被削材の切削工具として、さら
に軸受や線引きダイスなどの耐摩耗工具として使用する
のに通した室化棚素基超高圧焼結材料に関するものであ
る。
Detailed Description of the Invention The present invention has particularly excellent hardness and wear resistance, as well as high hardness, excellent heat resistance and high temperature strength, and is suitable for use in high speed steels and other steels that require these properties. , Ni group or Co
This invention relates to an ultra-high-pressure sintered material based on chamber-based shelmets, which can be used as a cutting tool for work materials such as super alloys, and as wear-resistant tools such as bearings and wire drawing dies.

近年、炭化タングステン基暁結材料に比して、きわめて
すぐれた耐摩耗性を有する立方晶窒化棚秦基超高圧嬢給
材料(以下CBN基競結材料という)を切削工具や耐摩
耗工具として使用することが提案されている。このCB
N基焼縞材料は、分散相を形成するCBN粒子の結合相
によって2種類に大別することができ、その1つが結合
相を鉄族金属あるいはNなどを主成分とする金属で構成
したものであり、もう1つが窒化チタン、炭化チタン、
窒化アルミニウム、または酸化アルミニウムなどを主成
分としたセラミック系化合物で結合相を構成したもので
ある。
In recent years, cubic nitride terrace-based ultra-high-pressure bonding materials (hereinafter referred to as CBN-based bonded materials), which have extremely superior wear resistance compared to tungsten carbide-based bonded materials, have been used as cutting tools and wear-resistant tools. It is proposed to do so. This CB
N-based burnt striped materials can be roughly divided into two types depending on the binder phase of the CBN particles that form the dispersed phase, one of which is one in which the binder phase is composed of an iron group metal or a metal whose main component is N or the like. The other is titanium nitride, titanium carbide,
The binder phase is made of a ceramic compound whose main component is aluminum nitride or aluminum oxide.

しかし、前者においては、前記のように結合相が金属で
あるために高温で軟化しやすく、したがって、これを例
えば切削工具として使用した場合には多大の熱発生を伴
う苛酷な切削条件下では耐摩耗性不足をきたして十分な
る切削性能の発揮は期待できず、熱発生の少ない条件、
すなわち負荷の少ない条件でしか使用することができな
いものである。また、後者においては、上記のように結
合相がセラミック系化合物で構成されているために、耐
熱性および耐摩耗性のすぐれたものになっているが、反
面鋤性不足を避けることができず、例えば高速度鋼のフ
ライス切削などの刃先に大きな衝撃力の加わる切削条件
下ではチッピングや欠損を起し易いものである。また、
上記の2種類の従来CBN基競鯖材料のもつそれぞれの
問題点を解消する目的で、結合相を金属とセラミックス
系化合物で構成したCBN基焼結材料も提案されたが、
このCBN基競縞材料においても十分満足する靭性を示
さず、同機に例えば高速度鋼のフライス切削のような刃
先に大きな衝撃力の加わる切削条件下で切削工具として
使用した場合刃先に欠損が発生し易いものである。
However, in the former, since the binder phase is metal as mentioned above, it easily softens at high temperatures, and therefore, when used as a cutting tool, for example, it can withstand severe cutting conditions that generate a large amount of heat. Due to insufficient abrasiveness, sufficient cutting performance cannot be expected, and under conditions with little heat generation,
In other words, it can only be used under light load conditions. In addition, in the latter case, as the binder phase is composed of a ceramic compound as mentioned above, it has excellent heat resistance and wear resistance, but on the other hand, lack of plowability cannot be avoided. For example, chipping and breakage are likely to occur under cutting conditions in which a large impact force is applied to the cutting edge, such as when milling high-speed steel. Also,
In order to solve the problems of the above two conventional CBN-based competitive materials, a CBN-based sintered material in which the binder phase is composed of a metal and a ceramic compound has been proposed.
Even this CBN-based textured material does not exhibit sufficient toughness, and when used as a cutting tool under conditions where the cutting edge is subjected to a large impact force, such as when milling high-speed steel, the cutting edge will break. It is easy to do.

これは、上記CBN基暁結材料におけるCBN粒子と結
合相(金属+セラミックス系化合物)との境界部を走査
型電子顕微鏡により詳細に観察した結果明らかになった
ものであるが、超高圧焼結時にCBN粒子の表面におけ
る微小な凹部への前記結合相のまわり込みが十分に行な
われないことに原因する微小な未結合部(ボィド)が前
記境界部に形成され、さらにCBN粒子と結合相との密
着性は、結合相の構成成分によって異なるが、特に炭化
物系のセラミックスの場合著しく低く、このためCBN
粒子と結合相との間に部分的に結合強度の弱い部分が形
成されることに原因するものと解される。そこで、本発
明者等は、上述のような観点から、特にすぐれた靭性と
耐摩耗性とを兼ね備えたCBN基鱗結材料を得べく研究
を行なった結果、CBN基暁緒材料を、結合強化金属と
してのSj:2〜1頚重量%、Siの窒化物、炭化物「
および棚化物のうちの1種または2種以上:5〜40
重量%を含有し、残りがCBN(立方晶窒化側素)と不
可避不純物からなる組成を有し、かつCBNが体積割合
で40〜90%を占めると共に、上記結合強化金属がC
BNを0.1〜1仏のの平均層厚で包囲した組織を有す
るものとすると、分散相を構成したCBN粒子を包囲し
た結合強化金属としてのSiは、CBN粒子とのぬれ性
がよく、かつCBN粒子表面に付着する徴量の酸素、水
、酸化物などの不純物と反応し、これを除去して清浄化
し、さらに原料調製時に予めCBN粒子表面に無電解〆
ッキ法、化学蒸着法(CVD法)、物理蒸着法(PVD
法)、およびプラズマ化学蒸着法(PCVD法)などの
方法により強固にして繊密に被覆されているので、CB
N粒子とSi包囲層との境界部に未結合部(ボィド)は
全く存在せず、一方結合相を構成するSiの窒化物(以
下Si3N4で示す)、炭化物(以下SICで示す)、
および棚化物(以下SiB2で示す)とは、その表面層
部分で相互拡散した状態になっているので、CBN粒子
と結合相とはSiを介して強固に結合しており、この結
果材料は轍性の著しく高いものとなり、また、すぐれた
耐摩耗性と高硬度がCBN粒子と前記のSi化合物によ
って確保されるばかりでなく、前記のSi化合物の含有
によって材料の耐溶着性および高温における化学的安定
性も向上し、さらにこのCBN基競絹材料に、Ni、A
I、Co、Si、およびCrのうちの1種または2種以
上の金属成分を0.5〜10重量%の範囲で含有させる
と、これらの成分には結合相同志の結合力が強化する作
用があることから、材料がより繊密となり、さらに、ま
た上記CBN基暁給材料におけるCBNの一部を、CB
Nより多くならない範囲、すなわち、〇.〇5<ウルッ
鉱型窒化側素(容量%)<ICBN(容量%)を満足す
る範囲でゥルッ鉱型窒化棚素(以下WBNで示す)で置
換すると、材料の靭性が一段と増大するようになるとい
う知見を得たのである。
This was revealed by detailed observation of the boundary between the CBN particles and the binder phase (metal + ceramic compound) in the CBN-based sintered material using a scanning electron microscope. Sometimes, minute unbonded parts (voids) are formed at the boundary part due to the binder phase not being sufficiently wrapped around the minute recesses on the surface of the CBN particles, and furthermore, the bonding phase between the CBN particles and the binder phase is The adhesion of CBN varies depending on the constituent components of the binder phase, but it is particularly low in the case of carbide ceramics.
It is understood that this is caused by the formation of regions with weak bonding strength between the particles and the binder phase. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a CBN-based scale material that has particularly excellent toughness and wear resistance. Sj as: 2 to 1% by weight, Si nitride, carbide
and one or more types of shelving: 5 to 40
% by weight, with the remainder consisting of CBN (cubic nitride) and unavoidable impurities, and CBN occupies 40 to 90% by volume, and the bond-strengthening metal is carbon
Assuming that the structure has a structure in which BN is surrounded by an average layer thickness of 0.1 to 1 French, Si as a bond-strengthening metal surrounding the CBN particles forming the dispersed phase has good wettability with the CBN particles. In addition, it reacts with impurities such as oxygen, water, oxides, etc. that adhere to the surface of the CBN particles, and removes and cleanses them. Furthermore, when preparing the raw material, the surface of the CBN particles is coated with an electroless coating method or a chemical vapor deposition method. (CVD method), physical vapor deposition method (PVD method)
CB method) and plasma chemical vapor deposition method (PCVD method).
There is no unbonded part (void) at the boundary between the N particles and the Si surrounding layer, and on the other hand, Si nitride (hereinafter referred to as Si3N4), carbide (hereinafter referred to as SIC), which constitutes the bonding phase,
Since the CBN particles and the shelving material (hereinafter referred to as SiB2) are mutually diffused in the surface layer portion, the CBN particles and the binder phase are strongly bonded through Si, and as a result, the material becomes rutted. Not only does the CBN particle and the Si compound ensure excellent wear resistance and high hardness, but the inclusion of the Si compound also improves the material's welding resistance and chemical resistance at high temperatures. Stability is also improved, and this CBN-based silk material is also coated with Ni and A.
When one or more metal components of I, Co, Si, and Cr are contained in a range of 0.5 to 10% by weight, these components have the effect of strengthening the bonding force between bonding phases. This makes the material more delicate, and furthermore, some of the CBN in the CBN-based material is
A range that does not exceed N, that is, 0. 〇5<Urutsuite type nitriding element (volume %) <ICBN (volume %) When replaced with urutite type nitriding element (hereinafter referred to as WBN), the toughness of the material will further increase. We obtained this knowledge.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成、CBNおよびWBNの体積割合、
並びに結合強化金属の平均層厚を上記の通りに限定した
理由を説明する。
This invention was made based on the above knowledge, and the following is the component composition, the volume ratio of CBN and WBN,
Also, the reason why the average layer thickness of the bond-strengthening metal is limited as described above will be explained.

A 成分組成 ‘a} Si Si成分には、上記の通りCBN粒子およびWBN粒子
、並びに上記のSi化合物(Si3N4、SIC、およ
びSi&)と強固に結合して材料の鞠性を著しく改善す
る作用があるが、その含有量が2重量%禾満では所望の
結合強化作用を確保することができず、一方1紅重量%
を越えて含有させると、特に高温硬さが低下するように
なることから、その含有量を2〜1母重量%と定めた。
A Component composition 'a} Si As described above, the Si component has the effect of strongly bonding with CBN particles and WBN particles and the above Si compounds (Si3N4, SIC, and Si&) to significantly improve the balling properties of the material. However, if the content is 2% by weight, the desired bond-strengthening effect cannot be secured, while if the content is 1% by weight,
If the content exceeds the above, the high-temperature hardness in particular decreases, so the content was set at 2 to 1% by weight.

‘b)Si3N4、SIC、およびSi&これらの成分
には、材料の耐摩耗性、耐落着性、および高温化学的安
定性を向上させる作用があるが、その含有量が5重量%
未満では前記作用に所望の効果が得られず、一方40重
量%を越えて含有させると靭性が低下するようになるこ
とから、その含有量を5〜4の重量%と定めた。
'b) Si3N4, SIC, and Si & These components have the effect of improving the wear resistance, anti-staining property, and high-temperature chemical stability of the material, but their content is 5% by weight.
If the content is less than 40% by weight, the desired effect cannot be obtained, while if the content exceeds 40% by weight, the toughness will decrease. Therefore, the content was set at 5 to 4% by weight.

‘c} Nj、N、Co、Si、およびCrこれら金属
成分には、上記の通り結合相を繊密化して、材料の強度
および耐衝撃性を一段と向上させる作用があるので、特
にこれらの特性が要求される場合に必要に応じて含有さ
れるが、その含有量が0.5重量%未満では前記作用に
所望の効果が得られず、一方1の重量%を越えて含有さ
せると硬さ低下が著しくなることから、その含有量を0
.5〜10重量%と定めた。
'c} Nj, N, Co, Si, and Cr These metal components have the effect of densifying the binder phase and further improving the strength and impact resistance of the material, so these properties are particularly important. However, if the content is less than 0.5% by weight, the desired effect cannot be obtained, while if the content exceeds 1% by weight, the hardness Since the decrease becomes significant, its content is reduced to 0.
.. The content was determined to be 5 to 10% by weight.

B CBNの体積割合 CBNの結合相に対する割合が4舷容量%未満では、相
対的に硬質のCBNの割合が少なすぎて所望の耐摩耗性
を確保することができず、一方CBNの割合が90容量
%を越えると、相対的に結合相の割合が少なくなりすぎ
て鋤性低下をきたすようになることから、その体積割合
を40〜9舷容量%と定めた。
B Volume ratio of CBN When the ratio of CBN to the binder phase is less than 4% by volume, the ratio of relatively hard CBN is too small to ensure the desired wear resistance, while on the other hand, when the ratio of CBN is 90 If it exceeds 40% to 9% by volume, the proportion of the binder phase becomes relatively too small and plowability deteriorates, so the volume proportion was set at 40 to 9% by volume.

C WBNの置換割合 WBWこは、材料の轍性を一段と向上させる作用がある
ので、特に高級性が要求される場合に必要に応じてCB
Nの一部を置換した形で含有させるが、その置換割合、
すなわちWBN(容量%)/CBN(容量%)が0.0
5禾満では所望の鞭性向上効果が得られず、一方1を越
えた置換割合、すなわち相対的にCBNに比してWBN
の方が多い状態にすると、材料の硬さが低下し、耐摩耗
性が低下するようになることから、CBNの一部をWB
Nで置換する場合には、。
C WBN substitution ratio WBW This has the effect of further improving the rutting resistance of the material, so if particularly high quality is required, CB
Although N is contained in a partially substituted form, the substitution ratio,
In other words, WBN (capacity%)/CBN (capacity%) is 0.0
If the substitution ratio exceeds 1, the desired whipping property improvement effect cannot be obtained, that is, if the substitution ratio exceeds 1,
If the amount of CBN is higher than that of WB, the hardness of the material will decrease and the wear resistance will decrease.
When replacing with N,.

‐〇5<溝苦く・の条件を満足させなければならない。-〇5<Mizo bitter・ must be satisfied.

○ Siの平均層厚 その平均層厚が0.1山川未満では、CBN粒子および
WBN粒子と結合相との間に十分な結合強度を確保する
ことができず、一方1仏のを越えた平均層厚にすると、
材料の硬さが低下するようになることから、その平均層
厚を0.1〜1仏のと定めた。
○ Average layer thickness of Si When the average layer thickness is less than 0.1 mm, sufficient bonding strength cannot be secured between the CBN particles and WBN particles and the binder phase, while on the other hand, when the average layer thickness exceeds 1 mm When the layer thickness is increased,
Since the hardness of the material decreases, the average layer thickness was set at 0.1 to 1 French.

なお、この発明の超高圧競結材料は、まず、CBN粉末
、さらに必要に応じてWBN粉末の表面に、無電解〆ッ
キ法、CVD法、PVD法、およびPCVD法などの方
法を用いて、Siを0.1〜1仏のの平均層厚で被覆し
、さらに必要に応じて前記Si被覆層の上にSj3N4
、SIC、およびSi&のうちの1種または2種以上を
複層被覆し、このように調製したSi被覆のCBN粉末
およびWBN粉末、並びにSiと、Si3N4、SIC
、およびSi鷲のうちの1種または2種以上を被覆した
CBN粒子およびWBN粉末、さらにSi3N4粉末、
SIC粉末、Si&粉末、Ni粉末、Co粉末、AI粉
末、Si粉末、Cr粉末、およびこれら金属の2種以上
の合金粉末を顔料粉末として用意し、これら原料粉末の
うちから適宜選択して所定の配合組成に配合し、この配
合粉末を通常の条件で混合した後、粉末状態あるし、は
圧粉体の形で金属容器に入れ、真空脱ガスして密封し、
ついでこの密封容器を、例えば特公昭36一234磯号
公報に記載されるような超高圧高温発生菱魔に装着し、
圧力および温度を上げ、最高圧力:40〜60kb、最
高温度:1200〜1600qoの範囲内の圧力と温度
に数分〜数10分保持した後、冷却し、最終的に圧力を
解放することからなる基本的工程によって製造すること
ができる。
The ultra-high pressure bonding material of the present invention is produced by first applying a method such as an electroless coating method, a CVD method, a PVD method, or a PCVD method to the surface of a CBN powder and, if necessary, a WBN powder. , Si is coated with an average layer thickness of 0.1 to 1 French, and if necessary, Sj3N4 is coated on the Si coating layer.
, SIC, and Si&, and Si-coated CBN powder and WBN powder prepared in this way, as well as Si, Si3N4, SIC
, and CBN particles and WBN powder coated with one or more of Si eagle, and Si3N4 powder,
SIC powder, Si&powder, Ni powder, Co powder, AI powder, Si powder, Cr powder, and alloy powder of two or more of these metals are prepared as pigment powders, and an appropriate selection is made from these raw material powders to form a predetermined powder. After mixing the blended powder under normal conditions, it is placed in a metal container in the form of powder or compacted powder, vacuum degassed, and sealed.
Next, this sealed container is attached to an ultra-high pressure and high temperature generator as described in, for example, Japanese Patent Publication No. 36-1234 Iso,
It consists of increasing the pressure and temperature, holding the pressure and temperature within the range of maximum pressure: 40 to 60 kb, maximum temperature: 1200 to 1600 qo for several minutes to several tens of minutes, cooling, and finally releasing the pressure. It can be manufactured by basic steps.

つぎに、この発明の超高圧暁結材料を実施例により具体
的に説明する。
Next, the ultra-high pressure lathered material of the present invention will be specifically explained using examples.

実施例 公知のPVD法およびCVD法を用いて、それぞれ第1
表に示される被覆CBN粉末および被覆WBN粉末を調
製し、これらの粉末、平均粒歪:2ム仇を有するSiぶ
〆粉末、同2山のを有するSIC粉末、同2一肌を有す
るSi&粉末、いずれも同2r机を有するNi粉末、N
粉末、Co粉末、Si粉末、およびCd扮末をそれぞれ
原料粉末として用意し、これら原料粉末を、それぞれ第
1表に示される配合組成に配合し、これら配合粉末をボ
ールミル中で約2時間緑式混合した後、乾燥し、ついで
この混合粉末を外蓬:12.5肋0の軟鋼製容器内に、
直径:12凧◇×厚さ:1.5肌の寸法をもった超藤合
金プレートと一諸に詰め込み装入し、真空中で脱気し、
密封した後、この密封容器を公知の超高圧高温発生装置
に袋入し、圧力:5球b、温度:1300℃、保持時間
:1び分の条件で暁結し、最終的に冷却して圧力を徐々
に下げることからなる基本的工程によって、実質的に配
合組成と同一の最終成分組成をもった本発明超高圧擬結
材料1〜12をそれぞれ製造した。
Example 1 Using the known PVD method and CVD method, the first
The coated CBN powder and coated WBN powder shown in the table were prepared, and these powders were Si powder with an average grain strain of 2 m, SIC powder with an average grain strain of 2 m, and Si&powder with an average grain strain of 2 m. , Ni powder, N
Powder, Co powder, Si powder, and Cd powder were prepared as raw material powders, and these raw material powders were blended into the compositions shown in Table 1, and these blended powders were milled in a ball mill for about 2 hours using a green method. After mixing and drying, the mixed powder was placed in a mild steel container with a diameter of 12.5 and 0.
Diameter: 12 kites ◇ x Thickness: 1.5 pieces of super rattan alloy plate and packed together and charged, degassed in a vacuum,
After sealing, this sealed container was placed in a known ultra-high pressure and high temperature generator, and was allowed to freeze under the conditions of pressure: 5 bulbs, temperature: 1300°C, holding time: 1 minute, and finally cooled. Ultra-high-pressure pseudo-brined materials 1 to 12 of the present invention, each having a final component composition substantially the same as the blended composition, were produced by a basic process consisting of gradually lowering the pressure.

雌 船 つぎに、この結果得られた本発明超高圧嬢結材料1〜1
2について、被削材:ダイス鋼(SKD−11、硬さ:
HRC61)、切削速度:100肌′min、送り:0
.1肋/rev.、切込み:0.5肋、切削油:なしの
条件で切削試験を行ない、刃先の逃げ面摩耗が0.2肋
に至るまでの切削時間を測定すると共に、さらに被削材
;長手方向にそつて中4仇舷×深さ40側の]溝を相互
対称位置に2本有する外径130風0のダイス鋼丸棒(
SKD−61、硬さ:HRC55)、切削速度:90の
/min、切込み:0.5胸、送り:0.05、0.1
、0.15〜 0.2、0.3、および0.4脚/re
vへ各送り毎の切削時間:3分、切削油:なしの条件で
の断続切削試験を行ない、刃先に欠け発生が見られた時
点の送り量をチェックした。
Next, the ultra-high pressure bonding materials 1 to 1 of the present invention obtained as a result
Regarding 2, work material: die steel (SKD-11, hardness:
HRC61), cutting speed: 100 min, feed: 0
.. 1 rib/rev. A cutting test was conducted under the conditions of , depth of cut: 0.5 ribs, and cutting oil: none, and the cutting time until the flank wear of the cutting edge reached 0.2 ribs was measured. A die steel round bar with an outer diameter of 130mm and 2 grooves in mutually symmetrical positions (4 sides x 40mm depth)
SKD-61, hardness: HRC55), cutting speed: 90/min, depth of cut: 0.5, feed: 0.05, 0.1
, 0.15 to 0.2, 0.3, and 0.4 leg/re
Cutting time for each feed: 3 minutes, cutting oil: An intermittent cutting test was conducted under the conditions of no cutting oil, and the feed rate at the time when chipping was observed on the cutting edge was checked.

この切削試験結果を第1表にビッカース硬さと共に示し
た。なお、第1表には、いずれも分散相がCBNで礎成
されているが、結合相の異る市販の超高圧焼縞材料、す
なわち結合相がAI−Coからなる金属で構成された材
料(以下従来超高圧暁結材料1という)、および結合相
がTICNのセラミック系化合物からなる材料(以下従
釆超高圧競結材料2という)の同一条件での切削試験結
果も示した。第1表に示されるように、本発明超高圧暁
結材料1〜12は、いずれもすぐれた耐摩耗性および靭
性を兼ね備えているので、いずれの切削試験においても
すぐれた切削性能を示すのに対して、耐摩耗性および籾
性のいずれかの特性が劣る従釆超高圧競結材料1、2に
おいては、両試験とも満足する結果を示さないことが明
らかである。上述のように、この発明の超高圧暁結材料
は、すぐれた耐摩耗性と級’性を有し、かつ高硬度をも
つほか、耐熱性および高温強度にもすぐれているので、
これらの特性が要求される切削工具は勿論のこと、軸受
や線引ダイスなどの耐摩耗工具として使用してもすぐれ
た性能を発揮するのである。
The cutting test results are shown in Table 1 along with the Vickers hardness. Table 1 shows commercially available ultra-high-pressure burnt striped materials in which the dispersed phase is made of CBN, but the binder phase is different, that is, the material in which the binder phase is made of a metal consisting of AI-Co. (hereinafter referred to as conventional ultra-high pressure bonded material 1) and a material whose binder phase is a ceramic compound of TICN (hereinafter referred to as conventional ultra-high pressure bonded material 2) under the same conditions are also shown. As shown in Table 1, the ultra-high pressure formed materials 1 to 12 of the present invention all have excellent wear resistance and toughness, so they show excellent cutting performance in all cutting tests. On the other hand, it is clear that the ultra-high pressure bonded materials 1 and 2, which are inferior in either abrasion resistance or rice grain properties, do not show satisfactory results in both tests. As mentioned above, the ultra-high pressure laminated material of the present invention has excellent wear resistance and grade properties, as well as high hardness, as well as excellent heat resistance and high temperature strength.
It exhibits excellent performance not only in cutting tools that require these characteristics, but also when used as wear-resistant tools such as bearings and wire drawing dies.

Claims (1)

【特許請求の範囲】 1 結合強化金属としてのSi:2〜18重量%、Si
の窒化物、炭化物、および硼化物のうちの1種または2
種以上:5〜40重量%を含有し、残りが立方晶窒化硼
素と不可避不純物からなる組成を有し、かつ立方晶窒化
硼素が体積割合で40〜90%を占めると共に、上記結
合強化金属が立方晶窒化硼素を0.1〜1μmの平均層
厚で包囲した組織を有することを特徴とする切削および
耐摩耗工具用高靭性窒化硼素基超高圧焼結材料。 2 結合強化金属としてのSi:2〜18重量%、Si
の窒化物、炭化物、および硼化物のうちの1種または2
種以上:5〜40重量%を含有し、さらにNi、Al、
Co、Si、およびCrのうちの1種または2種以上:
0.5〜10重量%を含有し、残りが立方晶窒化硼素と
不可避不純物からなる組成を有し、かつ立方晶窒化硼素
が体積割合で40〜90%を占めると共に、上記結合強
化金属が立方晶窒化硼素を0.1〜1μmの平均層厚で
包囲した組織を有することを特徴とする切削および耐摩
耗工具用高靱性窒化硼素基超高圧焼結材料。 3 結合強化金属としてのSi:2〜18重量%、Si
の窒化物、炭化物、および硼化物のうちの1種または2
種以上:5〜40重量%を含有し、残りが立方晶窒化硼
素およびウルツ鉱型窒化硼素と不可避不純物からなる組
成を有し、かつ立方晶窒化硼素とウルツ鉱型窒化硼素が
体積割合で40〜90%を占めると共に、0.05<(
ウルツ鉱型窒化硼素(容量%))/(立方晶窒化硼素(
容量%))<1を満足し、さらに上記結合強化金属が立
方晶窒化硼素およびウルツ鉱型窒化硼素を0.1〜1μ
mの平均層厚で包囲した組織を有することを特徴とする
切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材
料。 4 結合強化金属としてのSi:2〜18重量%、Si
の窒化物、炭化物、および硼化物のうちの1種または2
種以上:5〜40重量%を含有し、さらにNi、Al、
Co、Si、およびCrのうちの1種または2種以上:
0.5〜10重量%を含有し、残りが立方晶窒化硼素お
よびウルツ鉱型窒化硼素と不可避不純物からなる組成を
有し、かつ立方晶窒化硼素とウルツ鉱型窒化硼素が体積
割合で40〜90%を占めると共に、0.05<(ウル
ツ鉱型窒化硼素(容量%))/(立方晶窒化硼素(容量
%))<1を満足し、さらに上記結合強化金属が立方晶
窒化硼素およびウルツ鉱型窒化硼素を0.1〜1μmの
平均層厚で包囲した組織を有することを特徴とする切削
および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料。
[Claims] 1. Si as bond-strengthening metal: 2 to 18% by weight, Si
One or two of nitrides, carbides, and borides
Species or more: Contains 5 to 40% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and the cubic boron nitride accounts for 40 to 90% by volume, and the bond-strengthening metal is A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a structure in which cubic boron nitride is surrounded by an average layer thickness of 0.1 to 1 μm. 2 Si as bond-strengthening metal: 2 to 18% by weight, Si
One or two of nitrides, carbides, and borides
Species or more: Contains 5 to 40% by weight, and further contains Ni, Al,
One or more of Co, Si, and Cr:
0.5 to 10% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and the cubic boron nitride accounts for 40 to 90% by volume, and the bond strengthening metal contains cubic boron nitride. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a structure in which crystalline boron nitride is surrounded by an average layer thickness of 0.1 to 1 μm. 3 Si as bond-strengthening metal: 2 to 18% by weight, Si
One or two of nitrides, carbides, and borides
Species or more: Contains 5 to 40% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and cubic boron nitride and wurtzite boron nitride in a volume ratio of 40%. It accounts for ~90% and 0.05<(
Wurtzite boron nitride (volume %) / (cubic boron nitride (
Capacity %))
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of m. 4 Si as bond-strengthening metal: 2 to 18% by weight, Si
One or two of nitrides, carbides, and borides
Species or more: Contains 5 to 40% by weight, and further contains Ni, Al,
One or more of Co, Si, and Cr:
0.5 to 10% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and the volume ratio of cubic boron nitride and wurtzite boron nitride is 40 to 10% by weight. 90% and satisfies 0.05<(wurtzite boron nitride (volume %))/(cubic boron nitride (volume %))<1, and furthermore, the bond-strengthening metal is A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a structure in which ore-type boron nitride is surrounded by an average layer thickness of 0.1 to 1 μm.
JP56159192A 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools Expired JPS6020456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159192A JPS6020456B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159192A JPS6020456B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Publications (2)

Publication Number Publication Date
JPS5861254A JPS5861254A (en) 1983-04-12
JPS6020456B2 true JPS6020456B2 (en) 1985-05-22

Family

ID=15688320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159192A Expired JPS6020456B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Country Status (1)

Country Link
JP (1) JPS6020456B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647546A (en) * 1984-10-30 1987-03-03 Megadiamond Industries, Inc. Polycrystalline cubic boron nitride compact
US4650776A (en) * 1984-10-30 1987-03-17 Smith International, Inc. Cubic boron nitride compact and method of making
US4863881A (en) * 1988-09-15 1989-09-05 California Institute Of Technology Shock consolidation of cubic boron nitride with whiskers of silicon compounds
EP0879806B1 (en) * 1996-12-03 2004-10-13 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride base sinter
DE10130850C2 (en) * 2001-06-28 2003-04-30 Selbach Elmar Paul Using a stoichiometric connection as a high-temperature superconductor
CN102050633B (en) * 2010-11-14 2013-02-13 河南工业大学 Polycrystalline cubic boron nitride compact toughened by Ni-plated Si3N4 whisker and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS546759A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Semiconductor logic circuit
JPS5560014A (en) * 1978-10-24 1980-05-06 Gen Electric Polycrystalline diamond and or cubic boron nitride member
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS546759A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Semiconductor logic circuit
JPS5560014A (en) * 1978-10-24 1980-05-06 Gen Electric Polycrystalline diamond and or cubic boron nitride member
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy

Also Published As

Publication number Publication date
JPS5861254A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
WO2011002008A1 (en) Cermet and coated cermet
JP2710934B2 (en) Cermet alloy
WO2010104094A1 (en) Cermet and coated cermet
JPS6225631B2 (en)
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6245196B2 (en)
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5927303B2 (en) Sintered material for cutting tools with toughness and wear resistance
JPS6225630B2 (en)
JPS6033893B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JPS6031604B2 (en) Throw-away tip for milling made of super hard alloy
JPS6225632B2 (en)
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6020458B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JPS6245290B2 (en)
JPS6146429B2 (en)
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS5928542A (en) Manufacture of sintered hard material for cutting tool
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6143307B2 (en)
JPS621350B2 (en)
JP2020055050A (en) SURFACE-COATED TiN-BASED CERMET-MADE CUTTING TOOL HAVING HARD COATING LAYER EXERTING EXCELLENT CHIPPING RESISTANCE