JPS622276B2 - - Google Patents

Info

Publication number
JPS622276B2
JPS622276B2 JP56156470A JP15647081A JPS622276B2 JP S622276 B2 JPS622276 B2 JP S622276B2 JP 56156470 A JP56156470 A JP 56156470A JP 15647081 A JP15647081 A JP 15647081A JP S622276 B2 JPS622276 B2 JP S622276B2
Authority
JP
Japan
Prior art keywords
capacitor
detection
moving object
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56156470A
Other languages
Japanese (ja)
Other versions
JPS5858486A (en
Inventor
Tomio Fukushima
Toshio Takai
Mutsuo Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP56156470A priority Critical patent/JPS5858486A/en
Publication of JPS5858486A publication Critical patent/JPS5858486A/en
Publication of JPS622276B2 publication Critical patent/JPS622276B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は、移動物体が所定位置(自動開閉ドア
の出入口等)に接近したことを検出する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting when a moving object approaches a predetermined location (such as an entrance of an automatically opening/closing door).

例えば、自動開閉ドアにおいては、ドアの内外
に人が接近したことを自動的に検知してドア駆動
部に伝える必要がある。この種の検出装置として
は、発振回路の構成要素であるコンデンサに平行
平板コンデンサを用い、これを出入口付近の通路
に設置(例えば埋設)しておき、人がドアに接近
したときの容量変化(人または物体は対地間に漂
遊容量をもつているので、人の接近によつて平行
平板コンデンサの容量が変化する)を発振出力変
化として検出するようにしたものがある。その回
路構成を第1図に示す。
For example, in an automatically opening/closing door, it is necessary to automatically detect the approach of a person inside or outside the door and notify the door driving unit. This type of detection device uses a parallel plate capacitor, which is a component of the oscillation circuit, and installs (for example, buries it) in a passageway near the entrance/exit, and detects the change in capacitance when a person approaches the door. Since a person or an object has stray capacitance between the ground and the ground, there is a device that detects the change in capacitance of a parallel plate capacitor (as a person approaches) as a change in oscillation output. The circuit configuration is shown in FIG.

第1図において、1はコンデンサを発振出力に
関係する構成要素として具備した発振回路、2は
この発振回路1の出力を増幅する交流増幅器、3
は増幅器2の出力の値を絶対値化する絶対値回
路、4は絶対値回路3の出力を基準値と比較して
移動物のドアへの接近の有無を判別する比較回路
で、その出力はドア開閉駆動部に供給される。前
記発振回路1は、本体部1Aと、ドア付近の通路
に設置され、移動物の接近に伴つて静電容量が変
化する平行平板コンデンサとからなつており、図
示された一対の検出板1Bは平行平板コンデンサ
の平板電極である。
In FIG. 1, 1 is an oscillation circuit equipped with a capacitor as a component related to oscillation output, 2 is an AC amplifier that amplifies the output of this oscillation circuit 1, and 3
4 is an absolute value circuit that converts the output value of amplifier 2 into an absolute value, and 4 is a comparison circuit that compares the output of absolute value circuit 3 with a reference value to determine whether a moving object is approaching the door. Supplied to the door opening/closing drive unit. The oscillation circuit 1 consists of a main body 1A and a parallel plate capacitor that is installed in a passage near the door and whose capacitance changes as a moving object approaches.The illustrated pair of detection plates 1B are This is the flat plate electrode of a parallel plate capacitor.

上記構成の検出装置は、検出板1Bに人等の接
近がなければそのときの発振回路1の発振出力が
比較回路4に伝送されてもドア開閉駆動部へのド
ア駆動指令信号は発生せず、ドアの閉状態が維持
される。
In the detection device having the above configuration, if there is no person approaching the detection plate 1B, even if the oscillation output of the oscillation circuit 1 at that time is transmitted to the comparison circuit 4, a door drive command signal to the door opening/closing drive unit is not generated. , the door remains closed.

一方、検出板1Bに人等が接近すると、その対
地間の漂遊容量により検出板1Bを電極とするコ
ンデンサの静電容量が変化し、発振回路1の発振
出力に変化が生じる。この発振出力が増幅器2、
絶対値回路3を経て比較回路4に伝送され、基準
値と比較される。その結果、ドア開閉駆動部へド
ア駆動指令信号が出されてドアが自動的に開放さ
れる。
On the other hand, when a person or the like approaches the detection plate 1B, the stray capacitance between the detection plate 1B and the ground changes the capacitance of a capacitor with the detection plate 1B as an electrode, causing a change in the oscillation output of the oscillation circuit 1. This oscillation output is transmitted to amplifier 2,
The signal is transmitted to the comparison circuit 4 via the absolute value circuit 3 and compared with a reference value. As a result, a door drive command signal is output to the door opening/closing drive section, and the door is automatically opened.

このように検出板1B位置に人や物体が接近し
た場合にそれが自動的に検知されてドアの開閉制
御が自動的に行われるが、次のような問題点があ
る。
In this way, when a person or object approaches the position of the detection plate 1B, it is automatically detected and the door opening/closing control is automatically performed, but there are the following problems.

(イ) 静電容量変化を発振出力変化として間接的に
検出するので、感度が低い。
(a) Sensitivity is low because changes in capacitance are detected indirectly as changes in oscillation output.

(ロ) 発振出力変化は微小であり、誤検出を起こす
おそれがある。
(b) Changes in oscillation output are minute and may cause false detection.

(ハ) 検出板1Bと発振回路の本体部1A等とを接
続線(同軸ケーブル、撚線等)を用いて離して
設置すると、接続線の静電容量により人が接近
したときの静電容量の変化率が極めて小さくな
り、検出が略不可能となるので、能動素子を含
む検出回路を検出板1Bと一緒に埋設すること
になるが、移動物体の通過、水滴や塵埃の侵
入、大幅な温度変化等、悪環境となつて故障が
発生し易くなり、信頼性の低下を招くばかりで
なく、故障発生時には掘り出して修理または交
換する必要があり、復旧に長時間を要する。
(c) If the detection plate 1B and the main body 1A of the oscillation circuit are installed apart using a connecting wire (coaxial cable, twisted wire, etc.), the capacitance when a person approaches will increase due to the capacitance of the connecting wire. Since the rate of change in the current becomes extremely small and detection becomes almost impossible, the detection circuit including the active element will be buried together with the detection plate 1B. Failures are more likely to occur due to adverse environments such as temperature changes, which not only reduces reliability, but also requires digging out and repairing or replacing when failures occur, which requires a long time to recover.

如上の問題点を解消するものとして、移動物の
接近による静電容量の変化をコンデンサ充電電圧
の変化として捉えるようにしたものが本発明者等
によつて考案されている。その検出基本回路を第
2図に示す。図において、Viは交流電源、例え
ば高周波電源、Coは出力用コンデンサ、C1は比
較用コンデンサ、C2は検出用コンデンサで、一
対の平板電極1Bを用いた平行平板コンデンサで
あることは従来と同様であり、所定位置(例えば
自動開閉ドア付近の通路)に設置される。D1
D4はダイオード、Rf及びCfはローパスフイルタ
を構成する抵抗及びコンデンサである。前記出力
用コンデンサCoは、前記電源Viの電圧の一方の
極性、例えば電源電圧が正の半サイクルではダイ
オードD2及び検出用コンデンサC2を介して充電
され、他方の極性(負の半サイクル)ではダイオ
ードD1及び比較用コンデンサC1を介して逆方向
に充電されるように電源Viに接続されており、
このコンデンサCoの端子間電圧が出力として抵
抗Rf及びコンデンサCfを構成要素とする逆L形
回路(ローパスフイルタ)を介して抽出される。
In order to solve the above-mentioned problems, the present inventors have devised a system in which changes in capacitance due to the approach of a moving object are interpreted as changes in capacitor charging voltage. The basic detection circuit is shown in FIG. In the figure, Vi is an AC power supply, for example a high frequency power supply, Co is an output capacitor, C 1 is a comparison capacitor, and C 2 is a detection capacitor, which is conventionally a parallel plate capacitor using a pair of plate electrodes 1B. It is similar and is installed at a predetermined location (for example, in a passageway near an automatic opening/closing door). D1 ~
D4 is a diode, and Rf and Cf are resistors and capacitors that constitute a low-pass filter. The output capacitor Co is charged via the diode D 2 and the detection capacitor C 2 in one polarity of the voltage of the power supply Vi, for example, in a positive half cycle, and in the other polarity (negative half cycle). is connected to the power supply Vi so that it is charged in the opposite direction through the diode D 1 and the comparison capacitor C 1 ,
The voltage across the terminals of this capacitor Co is extracted as an output via an inverted L-shaped circuit (low-pass filter) whose components include a resistor Rf and a capacitor Cf.

即ち、比較用コンデンサC1と検出用コンデン
サC2の静電容量が等しければ充電電流は正負極
性で値が同じとなり、方向が反対となるから、出
力用コンデンサCoの端子間電圧は零となるが、
検出用コンデンサC2の静電容量に変化があつて
コンデンサC1,C2の静電容量が等しくなくなれ
ば出力用コンデンサCoに流れる充電電流は正負
で異なるため、コンデンサCoの端子間に電圧が
生じる。それも第3図に示すように充電特性上
C1=C2の前後で大きく変化する。この電圧がロ
ーパスフイルタによつて抽出され、移動物の接近
検出に利用されている。
In other words, if the capacitances of the comparison capacitor C1 and the detection capacitor C2 are equal, the charging current will have the same value in positive and negative polarities, but the direction will be opposite, so the voltage between the terminals of the output capacitor Co will be zero. but,
If the capacitance of the detection capacitor C 2 changes and the capacitances of the capacitors C 1 and C 2 are no longer equal, the charging current flowing to the output capacitor Co will be different between positive and negative, so the voltage will increase between the terminals of the capacitor Co. arise. This is also due to the charging characteristics as shown in Figure 3.
It changes significantly before and after C 1 = C 2 . This voltage is extracted by a low-pass filter and used to detect the approach of a moving object.

なお、前記ダイオードD3は前記電源Vi、比較
用コンデンサC1とで閉回路を構成するように、
ダイオードD4は電源Vi、検出用コンデンサC2
で閉回路を構成するようにそれぞれ接続されてい
る。また、第3図に示す2本の特性線Vi1,Vi2
電源Viの電圧値に応じて出力電圧V0が変化する
ことを示すためのものであり、Vi1>Vi2の関係に
ある。
Note that the diode D 3 is connected to the power supply Vi and the comparison capacitor C 1 to form a closed circuit.
The diode D4 is connected to the power supply Vi and the detection capacitor C2 so as to form a closed circuit. In addition, the two characteristic lines Vi 1 and Vi 2 shown in Fig. 3 are used to show that the output voltage V 0 changes according to the voltage value of the power supply Vi, and the relationship Vi 1 > Vi 2 holds. be.

このように移動物接近による静電容量変化をコ
ンデンサ充電電圧の変化として捉えれば高感度で
移動物の接近を検知でき、しかも検出部の電源入
力端間あるいはローパスフイルタが接続される出
力端間に漂遊容量が入つても影響を受けないの
で、同軸ケーブルの使用が可能となつて、受動素
子のみからなる検出部だけを検出点に設置すれば
よく、動作信頼性が著しく向上する。
In this way, if the capacitance change due to the approach of a moving object is interpreted as a change in the capacitor charging voltage, it is possible to detect the approach of a moving object with high sensitivity. Since it is not affected by stray capacitance, coaxial cables can be used, and only a detection section consisting of passive elements needs to be installed at the detection point, significantly improving operational reliability.

ところで、前にも述べたように検出部を埋設し
た場合、その周囲条件は厳しいものがあり、検出
点に埋設する部品点数はできるだけ少ない方が好
ましく、検出用コンデンサだけとなるのが最善で
ある。そのためには、同軸ケーブル等の使用が必
要になるが、検出部の端子間に接続する場合とは
異なつて、漂遊容量の影響を受けて検出感度が低
下することになる。
By the way, as mentioned before, when the detection part is buried, the surrounding conditions are harsh, so it is preferable to have as few parts buried as possible at the detection point, and it is best to have only the detection capacitor. . For this purpose, it is necessary to use a coaxial cable or the like, but unlike the case where the cable is connected between the terminals of the detection section, the detection sensitivity is lowered due to the influence of stray capacitance.

そこで、本発明では、リアクトルを用いて漂遊
容量の影響を軽減することにより、検出点には最
大限検出用コンデンサとリアクトルを埋設する構
成でありながら、高感度で、動作信頼性にすぐれ
た移動物体検出装置を提供しようとするものであ
る。
Therefore, in the present invention, by using a reactor to reduce the influence of stray capacitance, the detection point is configured to bury the detection capacitor and reactor as much as possible, while achieving high sensitivity and movement with excellent operational reliability. The present invention aims to provide an object detection device.

以下、本発明を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第4図は本発明の一実施例を示すもので、抵抗
Rf及びコンデンサCfからなるローパスフイルタ
11の後段には直流増幅器12、検出電圧を基準
値と比較して移動物の接近の有無を判別する比較
回路14が順次接続されている。また、3個のコ
ンデンサC0,C1,C2と4個のダイオードD1〜D4
を具備してなる検出部(コンデンサ充電回路)1
0はその電源入力端に電源Viが接続され、出力
端にはローパスフイルタ11が接続されている。
この検出部10はその構成要素である検出用コン
デンサC2のみが移動物検出点に設置され、同軸
ケーブルl1を介して検出部の所定点A,Bに接続
されている。この同軸ケーブルl1が接続される
A,B点間にはリアクトルLが接続されている。
リアクトルLは、検出用コンデンサC2の静電容
量をC2、同軸ケーブルl1の容量をCcとした場合、 ωL=1/ω(Cc+C) の関係式が成立するようにインダクタンスLの値
を選定する。
FIG. 4 shows an embodiment of the present invention, in which a resistor
A DC amplifier 12 and a comparison circuit 14 that compares the detected voltage with a reference value to determine whether a moving object is approaching are connected in sequence to the downstream of the low-pass filter 11 consisting of Rf and a capacitor Cf. Also, three capacitors C 0 , C 1 , C 2 and four diodes D 1 to D 4
Detection unit (capacitor charging circuit) 1 comprising:
0 has a power supply Vi connected to its power input terminal, and a low-pass filter 11 connected to its output terminal.
In this detection unit 10, only a detection capacitor C2, which is a component thereof, is installed at a moving object detection point, and is connected to predetermined points A and B of the detection unit via a coaxial cable l1 . A reactor L is connected between points A and B to which this coaxial cable l1 is connected.
The value of the inductance L of the reactor L is set so that the relational expression ωL=1/ω(Cc + C 2 ) holds, where C 2 is the capacitance of the detection capacitor C 2 and Cc is the capacitance of the coaxial cable l 1. Select.

なお、前記リアクトルLは同軸ケーブルl1の検
出用コンデンサC2側に接続してもよい。
Note that the reactor L may be connected to the detection capacitor C2 side of the coaxial cable l1 .

このように所定のインダクタンス値としたリア
クトルが検出用コンデンサC2と並列になるよう
に接続されると、検出部10のA,B点から見た
見掛け上の静電容量は大略ΔCs(人間接近によ
る容量変化分)になり、同軸ケーブルl1の接続に
よる漂遊容量の影響が大幅に軽減されて高感度
(検出用コンデンサC2を同軸ケーブルを用いずに
直接接続して検出部全体を検出点に設置したとき
の検出感度を1とすると0.5程度)での検出が可
能となる。
When a reactor with a predetermined inductance value is connected in parallel with the detection capacitor C2 , the apparent capacitance seen from points A and B of the detection unit 10 is approximately ΔCs (human approach The effect of stray capacitance caused by connecting the coaxial cable L1 is greatly reduced, resulting in high sensitivity (by directly connecting the detection capacitor C2 without using a coaxial cable, the entire detection section can be connected to the detection point). If the detection sensitivity is 1 when installed in

ちなみに、検出用コンデンサC2を同軸ケーブ
ルを介して接続した場合の検出感度は0.2程度で
あり、また同軸ケーブルを用い、かつリアクトル
を並列接続した場合、そのインダクタンスをωL
=1/ωCcが成立する値としたときにはやはり0.2程 度である。これは、A,B点から見た見掛け上の
静電容量は(C2+ΔCs)になるが、これ以外に
残留抵抗が存在するために感度が低下してしまう
ものと推測される。
By the way, when the detection capacitor C2 is connected via a coaxial cable, the detection sensitivity is about 0.2, and when a coaxial cable is used and reactors are connected in parallel, the inductance is ωL
When it is taken as a value that satisfies =1/ωCc, it is still about 0.2. This is because, although the apparent capacitance seen from points A and B is (C 2 +ΔCs), there is residual resistance in addition to this, which lowers the sensitivity.

以上のように本発明によれば、移動物接近によ
る静電容量変化をコンデンサ充電電圧の変化とし
て捉える際、検出点には検出用コンデンサを設置
し、これを同軸ケーブルにより別置の検出部本体
と接続するとともに、ωL=1/ω(Cc+C)の関
係が 成立つインダクタンス値のリアクトルを並列接続
したので、同軸ケーブル使用による漂遊容量の影
響を大幅に軽減することができ、高感度での移動
物検知が可能となる。しかも、検出点には検出用
コンデンサだけを設置するか、あるいはそれにリ
アクトルを付設するだけでよく、動作信頼性が著
しく向上するとともに保守が容易となる。また、
ωL=1/ω(Cc+C)としたことにより、電源か
ら見 たインピーダンスは大きくなり、電源(発振器)
の容量は小さくてよいといつた利点がある。
As described above, according to the present invention, when a change in capacitance due to the approach of a moving object is detected as a change in capacitor charging voltage, a detection capacitor is installed at the detection point, and this is connected via a coaxial cable to the separate detection unit body. In addition, a reactor with an inductance value satisfying the relationship ωL = 1/ω (Cc + C 2 ) is connected in parallel, so the influence of stray capacitance due to the use of coaxial cables can be significantly reduced, and high sensitivity can be achieved. It becomes possible to detect moving objects. Moreover, it is sufficient to install only a detection capacitor or attach a reactor to the detection point, which significantly improves operational reliability and facilitates maintenance. Also,
By setting ωL=1/ω(Cc+C 2 ), the impedance seen from the power supply increases, and the power supply (oscillator)
The advantage is that the capacity can be small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の移動物体検出装置の一例を示す
回路構成図、第2図は移動物接近による静電容量
の変化をコンデンサ充電電圧の変化として捉える
場合の検出基本回路図、第3図は同出力特性図、
第4図は本発明に係る移動物体検出装置の一実施
例を示す回路構成図である。 1B……検出板、10……検出部、10……ロ
ーパスフイルタ、12……直流増幅器、14……
比較回路、C0……出力用コンデンサ、C1……比
較用コンデンサ、C2……検出用コンデンサ、Vi
……交流電源、D1〜D4……ダイオード、l1……同
軸ケーブル、L……リアクトル。
Fig. 1 is a circuit configuration diagram showing an example of a conventional moving object detection device, Fig. 2 is a basic detection circuit diagram when a change in capacitance due to the approach of a moving object is interpreted as a change in capacitor charging voltage, and Fig. 3 is a circuit diagram showing an example of a conventional moving object detection device. Same output characteristic diagram,
FIG. 4 is a circuit diagram showing an embodiment of a moving object detection device according to the present invention. 1B...Detection plate, 10...Detection section, 10...Low pass filter, 12...DC amplifier, 14...
Comparison circuit, C 0 ... Output capacitor, C 1 ... Comparison capacitor, C 2 ... Detection capacitor, Vi
...AC power supply, D1 to D4 ...diode, l1 ... coaxial cable, L...reactor.

Claims (1)

【特許請求の範囲】 1 交流電源と、この電源の極性変化に応じて交
互に逆向きに充電される出力用コンデンサ、前記
電源の一方の極性のときの前記出力用コンデンサ
の充電路に挿入された比較用コンデンサ、この比
較用コンデンサと直列になるよう同じ充電路に挿
入された比較側のダイオード、移動物検出点に設
置され、同軸ケーブルを介して前記電源の他方の
極性のときの前記出力用コンデンサの充電路に挿
入された検出用コンデンサ、この検出用コンデン
サと直列になるよう同じ充電路に挿入された検出
側のダイオード、検出側の充電路に前記検出用コ
ンデンサと並列になるよう挿入された、ωL=
1/ω(Cc+C)の関係、(Ccは前記同軸ケーブル
の容 量、C2は前記検出用コンデンサの静電容量)が
成立するインダクタンスLを有するリアクトルを
含むコンデンサ充電回路と、前記出力用コンデン
サの端子間電圧を抽出するローパスフイルタと、
このフイルタにより抽出された直流電圧信号を増
幅し、基準値と比較して移動物の所定位置への接
近の有無を判別する回路とを備えてなる移動物体
検出装置。 2 リアクトルが同軸ケーブルの検出部本体側に
接続された特許請求の範囲第1項記載の移動物体
検出装置。
[Claims] 1. An AC power supply, an output capacitor that is alternately charged in opposite directions according to changes in the polarity of the power supply, and an output capacitor that is inserted into a charging path of the output capacitor when the power supply has one polarity. A comparison capacitor, a comparison diode inserted in the same charging path in series with this comparison capacitor, and a comparison diode installed at the moving object detection point and connected to the output at the other polarity of the power supply via a coaxial cable. A detection capacitor inserted in the charging path of the detection capacitor, a detection side diode inserted in the same charging path in series with this detection capacitor, and a detection side diode inserted in the detection side charging path in parallel with the detection capacitor. was done, ωL=
A capacitor charging circuit including a reactor having an inductance L that satisfies the relationship 1/ω(Cc+C 2 ), where Cc is the capacitance of the coaxial cable and C 2 is the capacitance of the detection capacitor, and the output capacitor. a low-pass filter that extracts the voltage between the terminals of
A moving object detection device comprising a circuit that amplifies the DC voltage signal extracted by the filter and compares it with a reference value to determine whether the moving object approaches a predetermined position. 2. The moving object detection device according to claim 1, wherein the reactor is connected to the detection unit main body side of the coaxial cable.
JP56156470A 1981-10-01 1981-10-01 Detector for moving object Granted JPS5858486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56156470A JPS5858486A (en) 1981-10-01 1981-10-01 Detector for moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156470A JPS5858486A (en) 1981-10-01 1981-10-01 Detector for moving object

Publications (2)

Publication Number Publication Date
JPS5858486A JPS5858486A (en) 1983-04-07
JPS622276B2 true JPS622276B2 (en) 1987-01-19

Family

ID=15628446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156470A Granted JPS5858486A (en) 1981-10-01 1981-10-01 Detector for moving object

Country Status (1)

Country Link
JP (1) JPS5858486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545768U (en) * 1991-11-18 1993-06-18 ジエコー株式会社 Display device
JP2015092452A (en) * 2013-10-02 2015-05-14 株式会社デンソー Switch device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612089A (en) * 1984-06-15 1986-01-08 Tsuuden:Kk Obstacle detecting sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545768U (en) * 1991-11-18 1993-06-18 ジエコー株式会社 Display device
JP2015092452A (en) * 2013-10-02 2015-05-14 株式会社デンソー Switch device

Also Published As

Publication number Publication date
JPS5858486A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US10790822B2 (en) Switching arrangement and method for a capacitive sensor
JPS622276B2 (en)
CN106786401B (en) The anti-interference detection circuit of LED drive chip feedback pin
US4692692A (en) Electronic apparatus for detecting stray variations in an electrical voltage as a function of time
JPS6244680B2 (en)
CN213024755U (en) Normally closed door alarm system
US4022990A (en) Technique and apparatus for measuring the value of a capacitance in an electrical circuit such as a telephone communication line
JPS6033412Y2 (en) Moving object detection device
CN201315471Y (en) High-voltage live displaying and locking device
CN1027928C (en) Thunder and lightning counter for lightning arrester
US4038975A (en) Method of and apparatus for the detector of neoplasms and other morphologic changes in mucous membrane samples
CN112782484A (en) Detection circuit and integrated circuit
US7808062B2 (en) Signal isolator linear receiver
CN216310114U (en) Display device for electrified double confirmation of high-voltage cabinet
CN109298277A (en) Zero curve, firewire detection circuit and method, electrical equipment
JP2512101Y2 (en) High frequency contact open / close state detection device
JPS6230594B2 (en)
JPS582919A (en) Connection detecting circuit for electronic apparatus
JPS6317395B2 (en)
JPS632067B2 (en)
CN104076278B (en) On off state isolated detection device
CN2611996Y (en) Antitheft warner
JPS583190Y2 (en) alarm receiver
JPS5823086Y2 (en) Flame detection device test circuit
CN110263683A (en) A kind of sensitivity improvement methods of capacitance sensor