JPS62227509A - Rolling method for seamless steel pipe - Google Patents

Rolling method for seamless steel pipe

Info

Publication number
JPS62227509A
JPS62227509A JP7142986A JP7142986A JPS62227509A JP S62227509 A JPS62227509 A JP S62227509A JP 7142986 A JP7142986 A JP 7142986A JP 7142986 A JP7142986 A JP 7142986A JP S62227509 A JPS62227509 A JP S62227509A
Authority
JP
Japan
Prior art keywords
shell
rolling
zone
temperature
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7142986A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakajima
一博 中島
Masaru Utakoji
宇多小路 勝
Koji Yoshioka
浩二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7142986A priority Critical patent/JPS62227509A/en
Publication of JPS62227509A publication Critical patent/JPS62227509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To equalize mechanical properties of products and to improve the production efficiency by inserting the low temp. zone part, containing a mandrel, of the rolling tail end side of a pipe stock into the high temp. heating zone of a reheating furnace, reheating the part, and reducing by which the part contracts or rolling by which the part has a constant diameter. CONSTITUTION:A sensor 7 measures a temp. distribution of a shell 9 carried onto an inlet conveyer 6 of a reheating furnace 1 and the low temp. part length LZ and the total length LMM of the shell 9 necessary to control a charging position are detected. The above signals are inputted to a control part which controls a charging position so that the boundary part A between the low temp. part 11 and high temp. part 12 of the shell 9 coincides with the boundary B between the high temp. zone 5 and standard zone 4 of the furnace 1. The shell 9 is heated, extracted, and drawn to have a contracted shape or rolled to have a constant diameter. In that method, high quality products are obtained and the production efficiency is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マンドレルミル圧延後再加熱を行ない次いで
絞り又は定径圧延する継目無鋼管の圧延方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for rolling a seamless steel pipe, which involves rolling the pipe in a mandrel mill, reheating it, and then drawing or rolling it to a fixed diameter.

従来の技術 上記のように行なう継目無鋼管の圧延において、従来は
、マンドレルミル圧延後の素管(以下シェルという)を
再加熱するに際し、加熱帯および均熱帯を有し該加熱帯
および均熱帯のいずれにおいても部分的に温度の高低差
のない再加熱炉を用い、最初加熱帯で次いで均熱帯で前
記シェルを再加熱する方法が行なわれていた。
Conventional technology In rolling seamless steel pipes as described above, conventionally, when reheating the raw pipe (hereinafter referred to as shell) after rolling on a mandrel mill, a heating zone and a soaking zone are provided. In all of these methods, a reheating furnace with no partial temperature difference was used, and the shell was reheated first in a heating zone and then in a soaking zone.

発明が解決しようとする問題点 しかしながら、上記従来の方法には以下に示す問題があ
った。
Problems to be Solved by the Invention However, the above conventional method has the following problems.

すなわち、マンドレルミル圧延において圧延条件によっ
てはマンドレルバ−を引抜いた後シェルの圧延尾端(以
下圧延ボトムという)側にマンドレル内在低温域長部(
以下低二部という)が生ずる。
That is, in mandrel mill rolling, depending on the rolling conditions, after the mandrel bar is pulled out, a low-temperature zone length part (internal to the mandrel) may be formed on the rolling tail end (hereinafter referred to as rolling bottom) side of the shell.
(hereinafter referred to as the low second part) occurs.

第2図はシェル軸方向に前記低温部が生ずる原因を示す
説明図で、マンドレルミル圧延においてシェル(9)と
マンドレルバ−(1a1の重なり合う、すなわちオーバ
ラップする部分とオーバラップしない部分とが生じ、マ
ンドレルミル圧延が終りマンドレルバ−〇〔を引抜いた
後前記マンドレルバー叫のオーバラップする部分は該マ
ンドレルバー叫に熱を奪われるためオーバラップしない
部分(以下高温部QZという)より温度が低く低温部(
IQとなる。次いで前記シェル(9)は再加熱炉で再加
熱され、ストレッチレデューサ又はサイプにより絞り又
は定径圧延されるが、前記のように生じたシェル軸方向
の温度の高低差が再加熱炉での短時間の加熱では均一化
されず、絞り又は定径圧延時に前記シェル軸方向の温度
の高低差が原因となって機械的性質や寸法のばらつきが
生じたり、あるいは前記シェル軸方向の温度の高低差を
なくするため長時間再加熱炉で加熱処理を行なうと生産
能率が低下する。
FIG. 2 is an explanatory diagram showing the cause of the formation of the low-temperature zone in the shell axial direction. In mandrel mill rolling, the shell (9) and the mandrel bar (1a1) overlap, that is, an overlapping part and a non-overlapping part occur, After the mandrel mill rolling is finished and the mandrel bar 〇 is pulled out, the overlapping portion of the mandrel bar is deprived of heat by the mandrel bar, so the temperature is lower than the non-overlapping portion (hereinafter referred to as high temperature zone QZ), resulting in a low temperature zone. (
It becomes IQ. Next, the shell (9) is reheated in a reheating furnace and is reduced or rolled to a fixed diameter using a stretch reducer or sipe, but the difference in temperature in the axial direction of the shell that occurs as described above causes shortening in the reheating furnace. Heating over time does not result in uniformity, and variations in mechanical properties and dimensions may occur due to differences in temperature in the axial direction of the shell during drawing or sizing rolling, or differences in temperature in the axial direction of the shell. If heat treatment is performed in a reheating furnace for a long time in order to eliminate this, production efficiency will decrease.

問題点を解決するための手段 本発明は上記従来の問題を解決するための手段を提供す
ることを目的とするものでマンドレルミル圧延後再加熱
を行ない次いで絞り又は定径圧延する継目無鋼管の圧延
において、マンドレルミル圧延素管の再加熱に際して該
素管の圧延尾端側のマノドレル内在低温域長部を前記再
加熱炉の加熱帯に設けた高温加熱帯域に臨むよう挿入し
て加熱抽出して後前記絞り又は定径圧延ミルに供するこ
とを要旨とする継目無鋼管の圧延方法に関する。
Means for Solving the Problems The purpose of the present invention is to provide means for solving the above-mentioned conventional problems.It is an object of the present invention to provide a means for solving the above-mentioned conventional problems. In rolling, when reheating a mandrel mill-rolled raw pipe, the mandrel internal low-temperature zone length part on the rolling tail end side of the raw pipe is inserted so as to face a high-temperature heating zone provided in the heating zone of the reheating furnace, and heat extraction is performed. The present invention relates to a method for rolling a seamless steel pipe, the gist of which is to subject the seamless steel pipe to the drawing or sizing mill.

以下、図に基づいて説明する。This will be explained below based on the figures.

第1図は本発明を実施するための装置の一例の構成を示
す説明図である。同図において、再加熱炉(盟)は加熱
帯(2)および均熱帯(3)を作し、加熱帯■は従来の
再加熱炉における加熱帯の温度条件と同一の条件で再加
熱を行なう標準加熱域(以下標準ゾーン(4)という)
と該標準ゾーン(4)よりも高温に保持された高温加熱
帯域(以下高温ゾーン5)という)とで構成される。前
記再加熱炉(1)入口側である加熱帯■側には再加熱炉
(1)の幅方向と平行に再加熱炉入口コンベア(6)が
設けられ、該再加熱炉入口コンベア(6)の高温ゾーン
■側の側部位置には再加熱炉(1)へ装入するマンドレ
ルミル圧延後のシェルの低温部の長さ、高二部の長さお
よび全長を検出する検出部(以下センサー■という)が
設けられ、該センサー(2)から入力される信号に基づ
き前記シェルの再加熱炉(1)への装入位置制御を行な
う制御部(図示せず)に接続される。均熱帯(3)の後
端には再加熱処理を施したシェルをストレッチレデュー
サ又はサイザヘ移送する再加熱炉出口コンベア(8)が
設けられる。
FIG. 1 is an explanatory diagram showing the configuration of an example of an apparatus for carrying out the present invention. In the figure, the reheating furnace (2) creates a heating zone (2) and a soaking zone (3), and the heating zone (■) performs reheating under the same temperature conditions as the heating zone in a conventional reheating furnace. Standard heating zone (hereinafter referred to as standard zone (4))
and a high-temperature heating zone (hereinafter referred to as high-temperature zone 5) maintained at a higher temperature than the standard zone (4). A reheating furnace inlet conveyor (6) is installed parallel to the width direction of the reheating furnace (1) on the heating zone (1) side which is the inlet side of the reheating furnace (1). At the side position on the high-temperature zone ■ side, there is a detection part (hereinafter referred to as sensor ■) that detects the length of the low-temperature part, the length of the second high part, and the total length of the shell after mandrel mill rolling to be charged into the reheating furnace (1). ) is connected to a control section (not shown) that controls the charging position of the shell into the reheating furnace (1) based on the signal input from the sensor (2). A reheating furnace exit conveyor (8) is provided at the rear end of the soaking zone (3) for transferring the reheated shells to a stretch reducer or sizer.

作         用 上記の構成を存する装置により本発明の圧延を行なうに
際し、前記マンドレルミル圧延で生じるシェル低温部の
長さはマンドレルミル圧延前のシェルの長さ、マンドレ
ルミル圧延時のシェル入口速度に対するマンドレルバ−
の速度の比等により変るので、再加熱を行なうすべての
シェルについて再加熱炉への装入位置の制御を行なうこ
とが必要である。
Function When performing the rolling of the present invention using the apparatus having the above-mentioned configuration, the length of the low-temperature part of the shell produced in the mandrel mill rolling is determined by the length of the shell before mandrel mill rolling and the mandrel bar relative to the shell entrance speed during mandrel mill rolling. −
It is necessary to control the charging position of all the shells to be reheated into the reheating furnace.

第3図は上記装入位置制御の概略説明図、第4図は装入
位置制御のロジック概要を示すフローチャートである。
FIG. 3 is a schematic explanatory diagram of the above-mentioned charging position control, and FIG. 4 is a flowchart showing an outline of the logic of the charging position control.

第3図において、再加熱炉人口コンベア(6)に転送さ
れたシェル(9)は前記再加熱炉入口コンベア(6)の
側部位置に設けられたセンサー■により装入位置の制御
に必要なシェル(9)の低温部長さくLZ)および全長
(LMM)が検出され、制御部(図示せず)へ入力され
る。シェル((ト)の高温部長さはLMM−LZとなる
。再加熱炉(1)の炉内有効幅(LWII)、高温ゾー
ン長さくLD)および標準ゾーン長さくり、U)はあら
かじめ制御部に入力される。
In Fig. 3, the shells (9) transferred to the reheating furnace artificial conveyor (6) are controlled by the sensor () installed on the side of the reheating furnace inlet conveyor (6), which is necessary for controlling the charging position. The low-temperature length LZ) and overall length (LMM) of the shell (9) are detected and input to a control unit (not shown). The length of the high-temperature section of the shell ((G) is LMM-LZ. The effective width within the furnace (LWII) of the reheating furnace (1), the high-temperature zone length LD) and the standard zone length, U) are set in advance by the control section. is input.

第4図において、まず、(り前記検出されたシェル(9
)の全長(LMM)と再加熱炉0)の炉内有効幅(LW
n)との比較がなされ、LMM≦LWI3であれば、■
シェル(9)の低温部長さくLZ)と再加熱炉(1)の
高温ゾーン長さくLD)との比較がなされ、LZ’1−
LDであれば、(3)シェル(9の高温部長さくLMM
−LZ) ト再加熱F (1) ノ標準/ −7長す(
LU)との比較がなされ、LMM−LZ≦LUであれば
、第3図において、シェル低温部θθの端部をC1再加
熱炉(!)の高温ゾーン■の端部をD1センサー(力位
はを通り再加熱炉入口コンベア(6)の移動方向に対し
直角にひいた直線が前記入口コンベア(6)と交わる点
および前記高温ゾーン■の端部りから前記入口コンベア
(6)に平行にひいたv:Lmと交わる点をそれぞれE
およびFとするときCとE間の距離をLCV、DとF間
f)互層’e P HS トt、 テ、LCV+LZ=
PH3+LDとなるようにシェル(9)の位置が制御さ
れる。すなわち、シェル(9)の低温taarrト高温
部q7Jとの境界部(A)が再加熱炉(1)の高温ゾー
ンら)と標準ゾーン(4)との境界部(n)と合致する
ように装入位置が制御される。前記(1)すなわち第4
図(1)において、LMM>LWI3であればシェル(
9)は再加熱炉(1)へ装入できず警報により知らされ
る。前記(2)すなわち第4図■において、 LZ>L
Dであればシェル(9)の低温部長さが再加熱炉(1)
の高温ゾーン長さよりも長く、シェル(9)の低温部O
Dと高温部025との境界部(A)を再加熱炉(1)の
高温ゾーン(2)と標準ゾーン(4)との境界部(B)
に合せると前記シェル(9)の低温部(IQの端部が前
記再加熱炉(1)の高温ゾーン(5)からはずれるので
、LCV=PH3すなわちシェル(9)の低温部Ql)
の端部(C)を再加熱炉(1)の高温ゾーン(5)の端
部(D)に合せる。前記(3)すなわち第4図(3J 
ニオイテ、LMM−LZ>LUであればシール(9)の
高温部00が再加熱炉(1)の標準ゾーン長さよリモ長
イノテ、LCV+LMM=PH3十LWSすナワチシェ
ル(9)の高温部0θの端部(G)を再加熱炉(1)の
標準ゾーン(4)の端部(H)に合せる。
In FIG. 4, first, the detected shell (9
) and the effective width (LW) of the reheating furnace (0).
n), and if LMM≦LWI3, ■
A comparison is made between the low temperature zone length LZ) of the shell (9) and the high temperature zone length LD) of the reheating furnace (1), and LZ'1-
If it is an LD, (3) shell (high temperature part length LMM of 9)
-LZ) Reheating F (1) Standard/-7 length (
LU), and if LMM-LZ≦LU, in Fig. 3, the end of the shell low temperature section θθ is connected to the end of the high temperature zone ■ of the C1 reheating furnace (!), and the end of the high temperature zone parallel to the inlet conveyor (6) from the point where a straight line drawn perpendicularly to the moving direction of the reheating furnace inlet conveyor (6) intersects with the inlet conveyor (6) and the end of the high temperature zone The points that intersect with v: Lm are E.
and F, the distance between C and E is LCV, and the distance between D and F is
The position of the shell (9) is controlled so that PH3+LD. That is, the boundary (A) between the low-temperature and high-temperature parts q7J of the shell (9) is aligned with the boundary (n) between the high-temperature zone (etc.) of the reheating furnace (1) and the standard zone (4). The charging position is controlled. Said (1), that is, the fourth
In figure (1), if LMM>LWI3, the shell (
9) cannot be charged to the reheating furnace (1) and is notified by an alarm. In the above (2), that is, in Figure 4 ■, LZ>L
If D, the low temperature part of the shell (9) is the reheating furnace (1)
is longer than the high temperature zone length of the shell (9), and the low temperature part O of the shell (9)
The boundary part (A) between D and high temperature section 025 is the boundary part (B) between the high temperature zone (2) and standard zone (4) of the reheating furnace (1).
When adjusted to
The end (C) of is aligned with the end (D) of the high temperature zone (5) of the reheating furnace (1). Above (3), that is, Fig. 4 (3J
If LMM-LZ>LU, the high-temperature part 00 of the seal (9) is longer than the standard zone length of the reheating furnace (1), LCV+LMM=PH30LWS, the high-temperature part 0θ end of the shell (9) Align the section (G) with the end (H) of the standard zone (4) of the reheating furnace (1).

実    施    例 以下実施例に基づいて説明する。Example The following will be explained based on examples.

実施例1 マンドレルミル圧延後のシェルに本発明方法を適用しシ
ェル全体が所定湯度になるまでの再加熱炉におけるシェ
ルの滞炉時間を測定した。比較のために従来方法を用い
た場合についても同様の測定を行なった。試験に用いた
シェルは外径1143■■、肉厚20龍の仕上り寸法を
有し、試験に供したシェル本数は本発明方法についても
、従来方法についても100本である。
Example 1 The method of the present invention was applied to a shell after mandrel mill rolling, and the residence time of the shell in a reheating furnace until the entire shell reached a predetermined hot water temperature was measured. For comparison, similar measurements were conducted using the conventional method. The shells used in the test had an outer diameter of 1143 mm and a wall thickness of 20 mm, and the number of shells tested was 100 for both the method of the present invention and the conventional method.

試験結果をm5図に示す。同図において、横軸はシェル
の滞炉時間、縦軸はシェルの温度を示し、又同図中の実
!(a)は本発明方法を適用した場合のシェルの低温部
の温度の平均値を、破線(b)は従来方法による場合で
同じ(シェル低温部の温度の平均値を、実線(C)はシ
ェルの高温部の温度の平均値をそれぞれ示す。第5図か
ら従来方法においてはシェルの低温部が高温部と同じ温
度に達するのは25分後であるのに対し、本発明方法を
適用した場合は15分で、従来方法に比べ短時間でシェ
ル温度を均一化できることがわかる。
The test results are shown in Figure m5. In the figure, the horizontal axis shows the residence time of the shell, and the vertical axis shows the temperature of the shell. (a) shows the average value of the temperature of the low temperature part of the shell when the method of the present invention is applied, and the broken line (b) shows the average value of the temperature of the low temperature part of the shell when using the conventional method (the solid line (C) shows the average value of the temperature of the low temperature part of the shell. The average temperature of the high-temperature part of the shell is shown in Figure 5.In the conventional method, the low-temperature part of the shell reaches the same temperature as the high-temperature part after 25 minutes, but when the method of the present invention is applied, In this case, it takes 15 minutes, which shows that the shell temperature can be made uniform in a shorter time than the conventional method.

実施例2 次工程の定径圧延による化上り寸法が外径60.5■層
、肉厚a9−■であるシェルに本発明方法を適用し、定
径圧延後の外径および偏肉率を測定した。
Example 2 The method of the present invention was applied to a shell whose dimensions after constant diameter rolling in the next step were an outer diameter of 60.5 layers and a wall thickness of a9-■, and the outer diameter and thickness unevenness after constant diameter rolling were It was measured.

ここに偏肉率とは所定の肉厚t0に対する、最大の偏肉
を示す部分の肉厚t+ (L >to )の増加割合の
百分比すなわち(tl −io ’) X100/lO
をいう。
Here, the thickness unevenness ratio is the percentage increase in the wall thickness t+ (L > to ) of the portion exhibiting the maximum thickness deviation with respect to a predetermined wall thickness t0, that is, (tl -io') X100/lO
means.

比較のために従来方法を用いた場合についても同様の測
定を行なった。測定は外径、偏肉のいずれについても、
又、本発明方法、従来方法のいずれについても低温部で
は10f2ir所、高温部では20箇所で実施した。な
お、外径については各箇所で直交する2方向で測定した
平均値をとり、偏肉率については各箇所でシェルを切断
し各切断片について圧延ボトム側の端面における偏肉の
最も著しい部分の偏肉率を求めた。
For comparison, similar measurements were conducted using the conventional method. Measurements are made for both outer diameter and uneven thickness.
Furthermore, both the method of the present invention and the conventional method were tested at 10 f2ir locations in the low temperature section and at 20 locations in the high temperature section. For the outer diameter, take the average value measured in two orthogonal directions at each location, and for the thickness deviation rate, cut the shell at each location and calculate the most significant thickness deviation on the end face on the bottom side of the roll for each cut piece. The thickness deviation rate was calculated.

測定結果を第6図および第7図に示す。The measurement results are shown in FIGS. 6 and 7.

第6図は外径の測定結果で、(イ)図は本発明方法を適
用した場合、(ロ)図は従来方法による場合で、いずれ
も横軸は定径圧延後の管の外径測定ゴ所を、縦軸は外径
を示す。21¥7図は偏肉率の測定結果で、(イ)図は
本発明方法を適用した場合、(ロ)図は従来方法による
場合で、いずれも横軸は定径圧延後の管の偏肉率測定箇
所を、縦軸は偏肉率を示す。
Figure 6 shows the measurement results of the outer diameter, (a) shows the result when the method of the present invention is applied, and (b) shows the result when the conventional method is used. The vertical axis shows the outer diameter. Figure 21¥7 shows the measurement results of the wall thickness deviation ratio, (a) is when the method of the present invention is applied, and (b) is when the conventional method is used. In both cases, the horizontal axis is the deviation of the tube after diameter rolling. The vertical axis shows the wall thickness unevenness ratio.

前記1¥6図および117図において縦軸に平行な破線
で区切った左側(10はマンドレルミル圧延後低温部で
あった部分、又右側025は同じく高温部であった部分
を示す。
In the above-mentioned Figures 1.6 and 117, the left side (10 indicates the part that was the low-temperature part after mandrel mill rolling, and the part 025 on the right side is the part that was also the high-temperature part) separated by the broken line parallel to the vertical axis.

第6図から、外径は従来方法により圧延した場合低温部
ODで平均(io、71mm、高温部0δで平均GO,
53−■と差があるのに対し、本発明方法を適用した場
合は低温部θDで平均00.52酎、高温部0りで平均
60.51−m と差がなく、シかも仕上り寸法80.
5++nに対する誤差が僅少であることがわかる。又第
7図から、偏肉率は従来方法により圧延した場合低温部
QDで平均9.57%、高温部Q25で平均5.88%
と差が大きいのに対し、本発明方法を適用した場合は低
温部(II)、高温部025いずれも平均5.53%と
差はな(かっ偏肉率が小さいことがわかる。
From Fig. 6, when rolled by the conventional method, the average outer diameter is (io, 71 mm at the low temperature part OD, and the average GO, 71 mm at the high temperature part 0δ).
53-■, whereas when the method of the present invention is applied, there is no difference with an average of 00.52 m in the low temperature part θD and 60.51 m in the high temperature part, and the finished dimension is 80 m. ..
It can be seen that the error for 5++n is very small. Also, from Fig. 7, when rolling by the conventional method, the average thickness unevenness rate is 9.57% in the low temperature part QD and 5.88% in the high temperature part Q25.
On the other hand, when the method of the present invention is applied, there is no difference with an average of 5.53% in both the low-temperature part (II) and the high-temperature part 025 (k), which shows that the thickness unevenness is small.

実施例3 次工程の定径圧延による仕上り寸法が外径101、6 
+m+* 、肉厚9.5■■であるC O,12%程度
の低炭素鋼製シェルに本発明方法を適用して圧延を行な
い、規定された試験片を切り出して降伏点および引張り
強さを測定した。比較のため従来方法を用いた場合につ
いても同様の測定を行なった。測定箇所は本発明方法、
従来方法のいずれにおいても低温部で2箇所、高温部で
5tM所である。
Example 3 The finished dimensions in the next step of constant diameter rolling are outer diameters of 101 and 6.
+m+*, a low carbon steel shell with a wall thickness of 9.5■■ and about 12% CO was rolled by applying the method of the present invention, and specified test pieces were cut out to determine the yield point and tensile strength. was measured. For comparison, similar measurements were performed using the conventional method. The measurement points are the method of the present invention,
In any of the conventional methods, there are two locations in the low temperature section and 5 tM locations in the high temperature section.

測定結果を第8図に示す。同図において、(4)図は本
発明法を適用した場合、(ロ)図は従来方法による場合
で、いずれも横軸は定径圧延後の管の降伏点および引張
強さの測定箇所を、縦軸は降伏点および引張強さを示し
、同図中の実1!YPおよび破1i1Tsはそれぞれ降
伏点および引張強さの測定結果を示す。又、縦軸に平行
な破線で区切った左側Cl1lはマンドレルミル圧延後
低温部であった部分、又右側07Jは同じ(高温部であ
った部分を示す。
The measurement results are shown in FIG. In the figure, (4) shows the case when the method of the present invention is applied, and (b) shows the case when the conventional method is used. In both cases, the horizontal axis shows the measurement points of the yield point and tensile strength of the pipe after diameter rolling. , the vertical axis shows the yield point and tensile strength, and the actual 1! in the figure shows the yield point and tensile strength. YP and 1i1Ts indicate the measurement results of yield point and tensile strength, respectively. In addition, Cl1l on the left side, separated by a broken line parallel to the vertical axis, indicates a portion that was a low temperature section after mandrel mill rolling, and 07J on the right side indicates a section that was the same (high temperature section).

第8図から、降伏点、引張強さのいずれについても従来
方法で圧延した場合各側定値のばらつきが大きく特にシ
ェルの低ぬ部ODと高温部qzにおける測定値に差があ
り、機械的性質がシェル軸方向で異るのに対し、本発明
方法を適用した場合は各測定値のばらつきは少なくかつ
シェル軸方向で機械的性質に差がないことがわかる。
From Fig. 8, it can be seen that when both yield point and tensile strength are rolled by the conventional method, there is a large variation in the fixed values on each side, and there is a particular difference in the measured values at the low temperature part OD and high temperature part qz of the shell, and the mechanical properties differs in the shell axis direction, whereas when the method of the present invention is applied, there is little variation in each measured value and there is no difference in mechanical properties in the shell axis direction.

発明の詳細 な説明したように、マンドレルミル圧延シェルの再加熱
に際し該シェルの圧延ボトム側に生ずる低温部を前記再
加熱炉の加熱帯に設けた高温ゾーンに挿入して加熱抽出
し、次いで絞り又は定径圧延する本発明方法を適用する
ことにより、マンドレルミル圧延で生ずるシェル軸方向
の温度の高低差をなくシ、製品管軸方向の外径、肉厚な
らびに機械的性質を均一化することができる。又、再加
熱炉でのシェルの滞炉時間の短縮により生産能率の向上
をはかることができる。
As described in the detailed description of the invention, when a mandrel mill rolled shell is reheated, a low-temperature portion generated on the rolling bottom side of the shell is inserted into a high-temperature zone provided in the heating zone of the reheating furnace, and then extracted by heating. Alternatively, by applying the method of the present invention for constant diameter rolling, it is possible to eliminate the difference in temperature in the axial direction of the shell that occurs during mandrel mill rolling, and to make the outer diameter, wall thickness, and mechanical properties of the product tube in the axial direction uniform. I can do it. Furthermore, production efficiency can be improved by shortening the residence time of the shell in the reheating furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのHnの一例の措成
を示す説明図、第2図はマンドレルミル圧延後のシェル
の圧延ボトム側に低温部が生ずる原因を示す説明図、第
3図および第4図はシェルの再加熱炉への装入位置制御
の説明図およびフローチャート、第5図は再加熱炉にお
けるシェルの滞炉時間とシェル温度との関係を示す線図
、第8図ないし第8図は定径圧延後の管の測定箇所別の
寸法および機械的性質の測定結果を示す線図で、第6図
は外径、第7図は偏肉率、fiB図は降伏点および引張
強さについての結果である。 1・・・再加熱炉   2・・・加熱帯3・・・均熱帯
    4・・・標準ゾーン5・・・高温ゾーン  6
・・・再加熱炉人口コンベア7・・・センサー   8
・・・再加熱炉出口コンベア9・・・シェル    1
0・・・マンドレルバ−11・・・低温部    12
・・・高温部第4図 第1図 第2図 第3図 シ1卜  突す  11午  rll(分)第8図 (ロ) シ斐ツ   丸    −5〉−「 第6 (イン シ髪り     貞L     Pii    A望1
第7 、     (イ) 測良相析 (p) 図 (ロ) 瀘1 九 菌 析
Fig. 1 is an explanatory diagram showing an example of Hn composition for carrying out the method of the present invention, Fig. 2 is an explanatory diagram showing the cause of the formation of a low temperature part on the rolling bottom side of the shell after mandrel mill rolling, and Fig. 3 4 and 4 are explanatory diagrams and flowcharts for controlling the charging position of the shell into the reheating furnace, FIG. 5 is a diagram showing the relationship between the residence time of the shell in the reheating furnace and the shell temperature, and FIG. 8 Figures 8 to 8 are diagrams showing the measurement results of the dimensions and mechanical properties of the tube after sizing rolling at different measurement points, where Figure 6 shows the outer diameter, Figure 7 shows the thickness unevenness, and the fiB diagram shows the yield point. and tensile strength results. 1... Reheating furnace 2... Heating zone 3... Soaking zone 4... Standard zone 5... High temperature zone 6
...Reheating furnace artificial conveyor 7...Sensor 8
...Reheating furnace outlet conveyor 9...Shell 1
0... Mandrel bar 11... Low temperature section 12
...High temperature section Figure 4 Figure 1 Figure 2 Figure 3 Figure 3 L Pii A hope 1
7. (a) Phase analysis (p) Figure (b) Bacterial analysis

Claims (1)

【特許請求の範囲】[Claims] マンドレルミル圧延後再加熱を行ない次いで絞り又は定
径圧延する継目無鋼管の圧延において、マンドレルミル
圧延素管の再加熱に際して該素管の圧延尾端側のマンド
レル内在低温域長部を前記再加熱炉の加熱帯に設けた高
温加熱帯域に臨むよう挿入して加熱抽出して後、前記絞
り又は定径圧延ミルに供することを特徴とする継目無鋼
管の圧延方法。
In the rolling of a seamless steel pipe in which reheating is performed after mandrel mill rolling and then drawing or sizing rolling, when reheating the mandrel mill rolled raw pipe, the mandrel internal low temperature region length part on the rolling tail end side of the raw pipe is reheated. A method for rolling a seamless steel pipe, which comprises inserting the pipe so as to face a high-temperature heating zone provided in a heating zone of a furnace, heating and extracting the pipe, and then subjecting it to the drawing or sizing mill.
JP7142986A 1986-03-28 1986-03-28 Rolling method for seamless steel pipe Pending JPS62227509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7142986A JPS62227509A (en) 1986-03-28 1986-03-28 Rolling method for seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7142986A JPS62227509A (en) 1986-03-28 1986-03-28 Rolling method for seamless steel pipe

Publications (1)

Publication Number Publication Date
JPS62227509A true JPS62227509A (en) 1987-10-06

Family

ID=13460264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7142986A Pending JPS62227509A (en) 1986-03-28 1986-03-28 Rolling method for seamless steel pipe

Country Status (1)

Country Link
JP (1) JPS62227509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954377A (en) * 2010-09-13 2011-01-26 胡顺珍 Full-floating mandrel tandem-rolling seamless steel pipe production process
CN102009069A (en) * 2010-09-13 2011-04-13 胡顺珍 Manufacturing process of small-caliber hot rolling seamless steel tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954377A (en) * 2010-09-13 2011-01-26 胡顺珍 Full-floating mandrel tandem-rolling seamless steel pipe production process
CN102009069A (en) * 2010-09-13 2011-04-13 胡顺珍 Manufacturing process of small-caliber hot rolling seamless steel tubes

Similar Documents

Publication Publication Date Title
AU716746B2 (en) A method of preparing a steel pipe, an apparatus thereof and a steel pipe
US4060428A (en) Process for forming ferrous billets into finished product
JPS62227509A (en) Rolling method for seamless steel pipe
JPH05317941A (en) Method for controlling water cooling for barsteel and wire rod
US5305624A (en) Sizing-stand group
JPH0566209B2 (en)
JPH0871616A (en) Device for rolling seamless tube and method for controlling rolling
CA1179170A (en) Method of manufacturing seamless steel pipes
JP3081729B2 (en) Temperature control method in thermomechanical treatment of seamless steel pipe
JPH0256964B2 (en)
JPH08117814A (en) Manufacture of seamless steel pipe and manufacturing equipment train for executing the same method
JP2004202573A (en) Manufacturing method and apparatus for seamless steel pipe
JPS58110106A (en) Stretch reducer for seamless pipe and controlling method
Hunger Use of a Process Computer for the Control of the Thickened Tube Ends on Stretch Reducing
JPS5846364B2 (en) Pipe rolling method in reeling mill
RU2009739C1 (en) Method of cross-screw piercing
JP2748852B2 (en) How to control the extension length of a seamless tube
JP2663830B2 (en) Descaling method
JP3624235B2 (en) Method for controlling the drawing and rolling of steel pipes
JP3888073B2 (en) Manufacturing method and manufacturing apparatus for seamless steel pipe
JPS58110108A (en) Stretch reducing method for seamless pipe
JPS6111128B2 (en)
GB2099346A (en) Tube rolling mill
JPS59104207A (en) Method for controlling elongation length of steel pipe in mandrel mill
JPH0586286B2 (en)