JPS62226568A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS62226568A
JPS62226568A JP61069880A JP6988086A JPS62226568A JP S62226568 A JPS62226568 A JP S62226568A JP 61069880 A JP61069880 A JP 61069880A JP 6988086 A JP6988086 A JP 6988086A JP S62226568 A JPS62226568 A JP S62226568A
Authority
JP
Japan
Prior art keywords
group
battery
oxidizing agent
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61069880A
Other languages
Japanese (ja)
Other versions
JPH0722025B2 (en
Inventor
Tetsuyoshi Suzuki
鈴木 哲身
Kazumi Hasegawa
和美 長谷川
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Masahisa Fujimoto
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP61069880A priority Critical patent/JPH0722025B2/en
Publication of JPS62226568A publication Critical patent/JPS62226568A/en
Publication of JPH0722025B2 publication Critical patent/JPH0722025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent deterioration in the performance of a battery by using a specific ferric compound as an oxidizing agent in a secondary battery in which an organic semiconductor obtained by the reaction of a pyrrole compound and the oxidizing agent is used in a positive electrode and/or a negative electrode. CONSTITUTION:An organic semiconductor obtained by the reaction of a pyrrole compound and an oxidizing agent is used in a positive electrode and/or a negative electrode in a secondary battery. As the oxidizing agent, a ferric compound indicated in FemXn (X is ClO<->4, BF<->4, AsF<->6, PF<->6, SbF<->6, CH3C6H4SO3, CF3SO<->3, ZrF<-->6, TiF<-->6, or SiF<-->6. m and n are the integer of 1-3) is used. Deterioration in the performance of the battery caused by the ununiformity of charge-discharge reaction in each part of the electrodes is minimized without any restriction in charge-discharge capacity, and the charge-discharge efficiency and cycle life are increased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は二次電池に関し、詳しくは、有機材料よりな
る導電体を電極材料として用いた非水系の二次電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a secondary battery, and more particularly to a non-aqueous secondary battery using a conductor made of an organic material as an electrode material.

〈従来の技術〉 近年、各種有機材料からなる導電性ポリマーを電極材料
とした二次電池が提案されている。
<Prior Art> In recent years, secondary batteries using conductive polymers made of various organic materials as electrode materials have been proposed.

この種の二次電池の電極材料となる導電性ポリマーは、
通常は導電性はわずかであるが、各種アニオンやカチオ
ンの如きドーパントをドーピング並びにアンド−ピング
処理することが可能でおり、ドーピングにより導電性が
飛躍的に上昇する。そして、アニオンがドーピングされ
る導電性ポリマーを正極材料として、またカチオンがド
ーピングされる導電性ポリマーを負極材料として各々使
用すると共に上記ドーパントを含有する溶液を電解液と
して用い、ドーピング及びアンド−ピングを電気化学的
に可逆的に行なうことにより充放電可能な電池が構成さ
れる。
The conductive polymer that serves as the electrode material for this type of secondary battery is
Normally, the conductivity is slight, but it is possible to perform doping and undoping treatment with dopants such as various anions and cations, and doping dramatically increases the conductivity. Then, a conductive polymer doped with anions is used as a positive electrode material, a conductive polymer doped with cations is used as a negative electrode material, and a solution containing the dopant is used as an electrolytic solution to perform doping and undoping. A battery that can be charged and discharged is constructed by electrochemically performing the process reversibly.

このような導電性ポリマーとしては従来よりポリアセチ
レン、ポリチオフェン、ポリピロールなどが知られてお
り、ポリアセチレンを例に採れば、ポリアセチレンを正
極または負極の少なくとも一方の電極材料として用い、
BF4−1CλO’−1SbF  −1PF6−等のア
ニ第ン、またはLl  、Na  、R4N  (Rは
アルキル基を表わす)等のカチオンを電気化学的に可逆
的にドーピング、アンド−ピングする構成が採られてい
る。
Polyacetylene, polythiophene, polypyrrole, etc. are conventionally known as such conductive polymers. Taking polyacetylene as an example, polyacetylene is used as an electrode material for at least one of the positive electrode and the negative electrode,
A configuration is adopted in which electrochemically reversible doping and doping is performed with ananidine such as BF4-1CλO'-1SbF-1PF6-, or cations such as Ll, Na, R4N (R represents an alkyl group). ing.

ところで、この種の導電性ポリマー、例えばポリアセチ
レンは、ドーピング及びアンド−ピング状態において空
気中の酸素によって非常にたやすく酸化され易いという
欠点をもつ。このため、これを電極材料とした場合、電
極作製環境の管理が重大となり、電極作製作業が困難且
つ煩雑化し、また電極自身の保存性が悪い等という不都
合がある。更に、電池内に組込んだ場合、微量の酸素や
水分が存在するだけで変成あるいは分解を起こして電池
特性劣化を引き起す他、過充電を行なうとポリマーが変
成2分解する可能性が必る等の欠点がおり、充電電圧の
急上昇、充放電効率の低下や電池サイクル寿命の減少等
を招くことから、電極材料としてはあまり好ましくない
However, this type of conductive polymer, such as polyacetylene, has the disadvantage that it is very easily oxidized by oxygen in the air in doped and undoped conditions. For this reason, when this is used as an electrode material, it becomes important to control the electrode manufacturing environment, making the electrode manufacturing work difficult and complicated, and there are disadvantages such as poor storage stability of the electrode itself. Furthermore, when incorporated into a battery, even the presence of trace amounts of oxygen or moisture can cause denaturation or decomposition, leading to deterioration of battery characteristics, and overcharging can also cause the polymer to undergo denaturation and decomposition. It is not very desirable as an electrode material because it causes a sudden increase in charging voltage, a decrease in charging and discharging efficiency, and a shortened battery cycle life.

一方、上記の各種導電性ポリマーのうちポリピロールは
、ポリアセチレンに較べて、空気中での安定性が良好で
酸化劣化が極めて少なくて取扱い易いという特徴がある
。従ってポリピロールを電池の電極材料として用いた時
には、ポリアセチレンの場合のような欠点がなく、作製
容易で保存性のよい電極を得ることができる。
On the other hand, among the above-mentioned various conductive polymers, polypyrrole has better stability in air than polyacetylene, has extremely little oxidative deterioration, and is easy to handle. Therefore, when polypyrrole is used as a battery electrode material, it does not have the disadvantages of polyacetylene, and it is possible to obtain an electrode that is easy to produce and has good storage stability.

このようなポリピロールとしては、従来、■ピロールを
電気化学的に酸化重合(電解重合)したもの、■酸化剤
を使用してピロールを化学的に酸化重合したもの、等が
知られている。そして、■の場合は電解陽極上にポリピ
ロールがフィルム状に析出し、析出後に同極上から剥離
することによりフィルム状のポリピロールが得られる。
Conventionally known examples of such polypyrrole include (1) pyrrole produced by electrochemical oxidative polymerization (electrolytic polymerization), and (2) pyrrole produced by chemical oxidative polymerization of pyrrole using an oxidizing agent. In the case of (2), polypyrrole is deposited in the form of a film on the electrolytic anode, and after the deposition is peeled off from the anode, polypyrrole in the form of a film is obtained.

また■の場合、酸化剤として過硫酸カリウムや過硫酸ア
ンモニウムなどの過酸化物、硝酸や硫Vおるいはクロム
酸などの酸、塩化第二鉄や塩化ルテニウムや塩化タング
ステンあるいは塩化モリブデンなどのルイス酸などを使
用して酸化重合したり、あるいは、有@溶媒中で過塩素
酸第二鉄を酸化剤に使用してピロールの酸化重合を行な
い(Mol、 Cryst、 LiQ。
In the case of Alternatively, oxidative polymerization of pyrrole is carried out using ferric perchlorate as an oxidizing agent in a solvent (Mol, Cryst, LiQ, etc.).

CrySt、誌 1985年 vol 11Bの第14
9〜153頁)、粉末状のポリピロールが得られている
CrySt, magazine 1985 vol 11B no. 14
9-153), powdered polypyrrole was obtained.

〈発明が解決しようとする問題点〉 しかしながら、上記従来のポリピロールのうち■のもの
は、製造方法が煩雑で、電池コスト高の原因となるばか
りか、ポリピロールが電解陽極面上で生成するので得ら
れるポリピロールの形状や大きさがその電極板の寸法に
規制され、このため電池品種に応じた自由な寸法に成形
するのが難しいという問題がある。更に、均一な厚さで
膜厚のものが再現性よく得にくいので、工業用の電池用
材料としては膜厚の薄いものしか利用できず、このため
電池電極自体並びに電池の充放電容量が制限を受けて容
量増大が極めて困難でおるという問題もある。
<Problems to be Solved by the Invention> However, among the conventional polypyrroles mentioned above, the method of manufacturing method (2) is complicated, which not only causes high battery costs, but also makes it difficult to obtain benefits because the polypyrrole is generated on the surface of the electrolytic anode. The shape and size of the polypyrrole to be used are restricted by the dimensions of the electrode plate, and this poses a problem in that it is difficult to mold the polypyrrole into a size that suits the type of battery. Furthermore, it is difficult to obtain a film with a uniform thickness with good reproducibility, so only thin films can be used as materials for industrial batteries, which limits the battery electrode itself and the charge/discharge capacity of the battery. Another problem is that it is extremely difficult to increase capacity.

一方、上記■で得られたポリピロールを用いた場合は上
記のような問題はない。しかしながら、■のポリピロー
ルはその電気伝導度が極めて小さいので、これを電極材
料として二次電池を作製した場合、電池の内部抵抗が増
大すると共に充放電反応が電極各部で不均一になってし
まう。このため、充放電サイクルを繰返すと充電電圧が
上昇し易く、充電電圧の上昇に伴って電解液の分解が起
こって電池特性の著しい劣化を招き易いという問題があ
る。
On the other hand, when the polypyrrole obtained in the above (1) is used, the above-mentioned problem does not occur. However, the electrical conductivity of the polypyrrole (3) is extremely low, so when a secondary battery is manufactured using it as an electrode material, the internal resistance of the battery increases and the charging/discharging reaction becomes non-uniform in each part of the electrode. Therefore, when charging and discharging cycles are repeated, the charging voltage tends to increase, and as the charging voltage increases, the electrolytic solution tends to decompose, resulting in a problem that the battery characteristics tend to deteriorate significantly.

〈問題点を解決するための手段〉 本発明者は、上記従来のピロール系ポリマーの如き欠点
のないピロール系の導電性ポリマーを電極材料として用
いることで上記問題点を解決せんと研究し、特定の第二
鉄化合物とピロール系化合物とを反応させて得られる有
機半導体を用いた場合には所期の目的を達成できること
を知得してこの発明を完成した。即ち、この発明の二次
電池は、ピロール系化合物と酸化剤とを反応させて得ら
れる有機半導体を正極または負極の少なくとも一方の電
極として用いてなる二次電池であって、該酸化剤が、一
般式%式%) (式中、XはClO4’−1ASF   −、PF6−.5bF6−1CH3C6H4503−
1 CR3SO3−、Z r R6−1 T r R6−またはs r R6−を表わし、m及び
nは1〜3の整数を表わす。) で示される第二鉄化合物でおることを要旨とする二次電
池に存する。
<Means for Solving the Problems> The present inventor has conducted research to solve the above problems by using a pyrrole-based conductive polymer, which does not have the drawbacks of the conventional pyrrole-based polymers, as an electrode material, and has identified This invention was completed after learning that the intended purpose could be achieved by using an organic semiconductor obtained by reacting a ferric compound with a pyrrole compound. That is, the secondary battery of the present invention is a secondary battery that uses an organic semiconductor obtained by reacting a pyrrole compound and an oxidizing agent as at least one of the positive electrode and the negative electrode, wherein the oxidizing agent is General formula % formula %) (wherein, X is ClO4'-1ASF -, PF6-.5bF6-1CH3C6H4503-
1 CR3SO3-, Z r R6-1 T r R6- or s r R6-, and m and n represent integers of 1 to 3. ) The secondary battery consists of a ferric compound shown in the following.

上記のような有機半導体は、単一または異なる二種類以
上の後述する如きピロール系化合物を出発物質に用い、
これと、単一または異なる二種類以上の後述する第二鉄
化合物とを反応させて1qることができる。
The above organic semiconductor uses a single or two or more different pyrrole compounds as described below as a starting material,
1q can be produced by reacting this with a single or two or more different ferric compounds described below.

本発明で使用される上記ピロール系化合物と゛しては、
例えば、一般式 (式中、R及びR2は水素原子、アルキル基、アルコキ
シ基、アリール基、アリロキシ基、アルキルチオ基、ア
ミン基、ハロゲン原子、シアノ基またはニトロ基を表わ
し、R3は水素原子、アルキル基またはアリール基を表
わす。) で示される化合物でが挙げられる。
The above-mentioned pyrrole compounds used in the present invention include:
For example, the general formula (where R and R2 represent a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an allyloxy group, an alkylthio group, an amine group, a halogen atom, a cyano group, or a nitro group, and R3 represents a hydrogen atom, an alkyl group or aryl group).

上記一般式(2)で示されるピロール系化合物において
、ピロール環骨格構造の2,5位置に置換基をもたない
ピロール系化合物が好ましい。
Among the pyrrole compounds represented by the general formula (2) above, pyrrole compounds having no substituents at the 2 and 5 positions of the pyrrole ring skeleton structure are preferred.

また、詳しくは、R1−R2は水素原子、メチル基、エ
チル基、n−プロピル基、イソプロピル基、n−ブチル
基、イソブチル基、sec −ブチル基、tert−ブ
チル基、メトキシ基、エトキシ基、n−プロポキシ基、
イソプロポキシ基、n−ブトキシ基、フェニル基、トル
イル基、ナフチル基、フェノキシ基、メチルフェノキシ
基、ナフトキシ基、メチルチオ基、エチルチオ基、アミ
ノ基、フッ素原子、塩素原子、臭素原子、沃素原子、シ
アノ基、ニトロ基を表わし、R3は水素原子、メチル基
、エチル基、n−プロピル基、イソプロピル基、n−ブ
チル基、イソブチル基、5ec−ブ≠ル基、tert−
ブチル基、フェニル基、1−ルイル基、ナフチル基を表
わす。
In addition, in detail, R1-R2 are hydrogen atoms, methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups, methoxy groups, ethoxy groups, n-propoxy group,
Isopropoxy group, n-butoxy group, phenyl group, tolyl group, naphthyl group, phenoxy group, methylphenoxy group, naphthoxy group, methylthio group, ethylthio group, amino group, fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group, R3 represents a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 5ec-butyl group, tert-
Represents a butyl group, a phenyl group, a 1-ruyl group, and a naphthyl group.

このようなピロール系化合物としては、具体的にはピロ
ール、N−メチルピロール、N−エチルピロール、N−
フェニルピロール、3−メチルピロール、N−メチル−
3−メチルピロール、3−クロルピロール、3.4−ジ
クロルピロール、3−ブロムピロール、N−メチル−3
−ブロムピロール、3−メトキシピロール、3−フェノ
キシピロール、3−フェニルピロール、3−メチルチオ
ピロール、3−エチルチオピロール、3−アミノピロー
ル、3−ニトロピロール、N−フェニル−3−メチルピ
ロール、N−ナフチル−3−メチルピロールなどが挙げ
られる。
Specific examples of such pyrrole compounds include pyrrole, N-methylpyrrole, N-ethylpyrrole, and N-
Phenylpyrrole, 3-methylpyrrole, N-methyl-
3-methylpyrrole, 3-chloropyrrole, 3.4-dichloropyrrole, 3-bromopyrrole, N-methyl-3
-bromopyrrole, 3-methoxypyrrole, 3-phenoxypyrrole, 3-phenylpyrrole, 3-methylthiopyrrole, 3-ethylthiopyrrole, 3-aminopyrrole, 3-nitropyrrole, N-phenyl-3-methylpyrrole, N -naphthyl-3-methylpyrrole and the like.

前記一般式(1)で示される第二鉄化合物は、具体的に
は、Fe (Cf、4)3、 Fe (BF4 )3 、Fe (AsF6 )3.1
”e (PF6 )3 、Fe (SbF6 )3、F
e (CH3C6H4303>3、 Fe(CF3S03)3、 Fe2  (Zr F6 )3 、Fe2 (Tt F
6 )3、Fe2 (SiF6)3であり、これらは通
常結晶水をもつ化合物もしくは水溶液として使用される
Specifically, the ferric compound represented by the general formula (1) is Fe (Cf,4)3, Fe (BF4)3, Fe (AsF6)3.1
”e (PF6)3, Fe (SbF6)3, F
e (CH3C6H4303>3, Fe(CF3S03)3, Fe2 (Zr F6 )3, Fe2 (Tt F
6)3, Fe2 (SiF6)3, and these are usually used as compounds with water of crystallization or as aqueous solutions.

使用量はピロール系化合物1モルに対してo、 oi〜
100ミル100倍モルましくは0.1〜50倍モルで
ある。
The amount used is o, oi~ per mole of pyrrole compound.
100 mils is 100 times the mole or 0.1 to 50 times the mole.

前記一般式(1)で示される第二鉄化合物と例えば前記
一般式(2)で示されるピロール系化合物との反応は固
相、液相、気相の任意の相で実施することができるが、
両者が溶解する任意の溶媒の存在下、液相で反応させる
のが好ましい。このような溶媒としては、上記第二鉄化
合物並びに上記ピロール系化合物と直接反応しないもの
なら適宜選択できる。両者を溶解する溶媒として、水、
メタノール、エタノール等のアルコール類、極性有機系
溶媒、具体的にはアセトニトリル、テトラヒドロフラン
、ジオキサン、ニトロメタン、酢酸、プロピレンカーボ
ネートなどが使用される。
The reaction between the ferric compound represented by the general formula (1) and the pyrrole compound represented by the general formula (2), for example, can be carried out in any phase including solid phase, liquid phase, and gas phase. ,
Preferably, the reaction is carried out in a liquid phase in the presence of any solvent in which both are soluble. Such a solvent can be appropriately selected as long as it does not directly react with the ferric compound and the pyrrole compound. As a solvent for dissolving both, water,
Alcohols such as methanol and ethanol, polar organic solvents, and specifically acetonitrile, tetrahydrofuran, dioxane, nitromethane, acetic acid, propylene carbonate, and the like are used.

尚、上記溶媒として上記の極性有機系溶媒を用いた場合
、これら極性有機系溶媒は前記酸化剤、例えば過塩素酸
第二鉄の溶解度が水溶液中に較へて非常に小さいため、
有機半導体の伍産性の面で製造上制約を受けて不利であ
り電池コスト高を招く原因となると共に、溶解度の減少
分だけ溶媒中における前記ドーピング剤の濃度が低下す
るため、生成するポリピロールの電気伝導度が小さくな
り易く、電池特性劣化の度合が大きい等という欠点があ
る。また、上記アルコール類を用いた場合もこの傾向が
ある。よって、上記溶媒としてはこのような欠点のない
水を用いることが好ましい。
In addition, when the above-mentioned polar organic solvent is used as the above-mentioned solvent, the solubility of the oxidizing agent, such as ferric perchlorate, in these polar organic solvents is very low compared to that in an aqueous solution.
This is disadvantageous due to manufacturing constraints due to the low productivity of organic semiconductors, which causes high battery costs, and the concentration of the doping agent in the solvent decreases by the amount of decreased solubility, so that the resulting polypyrrole There are drawbacks such as the electrical conductivity tends to be low and the degree of deterioration of battery characteristics is high. This tendency also exists when the above-mentioned alcohols are used. Therefore, it is preferable to use water, which does not have such drawbacks, as the solvent.

また、反応温度は一50°C〜150℃であり、好まし
くは一20℃〜100℃である。反応時間は反応温度と
関連するが通常0.5〜200時間、好ましくは1.0
〜100時間でおる。
Further, the reaction temperature is -50°C to 150°C, preferably -20°C to 100°C. The reaction time is related to the reaction temperature, but is usually 0.5 to 200 hours, preferably 1.0 hours.
~100 hours.

反応生成物は暗褐色〜黒色の粉末状物質であり、上記溶
媒存在下での反応では反応終了後溶媒を通常の方法で除
去するか、水、アルコール中などに移し生成物を枦取す
ることができる。
The reaction product is a dark brown to black powdery substance, and in the case of the reaction in the presence of the above solvent, after the reaction is completed, the solvent must be removed in the usual manner, or the product can be collected by transferring it to water, alcohol, etc. I can do it.

この反応生成物は実施例において述べる如く導電性を有
する。本発明では、かかる反応生成物を加圧成形の如き
公知の方法で所要形状に成形加工し、二次電池の電極と
して使用する。この際、かかる反応生成物を単独で使用
することも可能であるが、電極の機械的強度を高めると
共に、導電性を上昇させて電池特性向上を図るために熱
可塑性樹脂や適宜な導電性部材等を添加するのが好まし
い。このような熱可塑性樹脂としては、電池の電解液に
対して実質的に不溶のものであれば特に制限なく用いる
ことができる。通常、分子箔1万以上のものが用いられ
、具体例としては、ポリエチレン、ポリプロピレン、エ
チレン−プロピレン共重合体、エチレンーテl〜ラフル
オロエチレン共重合体、ポリテトラフルオロエチレン、
ポリトリフルオロエチレン、ポリジフルオロエチレン、
四フッ化エチレンーパーフルオロアルキルビニルエーテ
ル共重合体、四フッ化エチレンー六フッ化プロピレン共
重合体、ポリ三フッ化塩化エチレン、ポリフッ化ごニリ
デン、四フッ化エチレンーエチレン共重合体、クロロト
リフルオロエチレン−エチレン共重合体、ポリアミド、
ポリエステル、ポリカーボネート、及び、変成ポリオレ
フィン等が挙げられる。
This reaction product has electrical conductivity as described in the Examples. In the present invention, the reaction product is molded into a desired shape by a known method such as pressure molding, and used as an electrode for a secondary battery. At this time, it is possible to use such a reaction product alone, but in order to increase the mechanical strength of the electrode and increase the conductivity to improve battery characteristics, thermoplastic resin or an appropriate conductive material may be used. It is preferable to add the like. As such a thermoplastic resin, any thermoplastic resin can be used without particular limitation as long as it is substantially insoluble in the electrolyte of the battery. Usually, molecular foils of 10,000 or more are used, and specific examples include polyethylene, polypropylene, ethylene-propylene copolymer, ethylenetetrafluoroethylene copolymer, polytetrafluoroethylene,
polytrifluoroethylene, polydifluoroethylene,
Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytrifluorochloroethylene, polynylidene fluoride, tetrafluoroethylene-ethylene copolymer, chlorotrifluoro Ethylene-ethylene copolymer, polyamide,
Examples include polyester, polycarbonate, and modified polyolefin.

また、導電性部材としては充放電を繰り返しても溶解し
ない材質のもの、例えばステンレス鋼、金、白金、ニッ
ケル、銅、モリブデン、チタン等の金属、カーボン、炭
素繊維等の部材からなるものならば特に制限はないが、
特に、軽量且つ高導電性のものが好ましい。具体的には
、そのような金属からできた金属網、あるいは、金属メ
ッキ繊維、金属蒸着繊維、金属含有合成繊維、更には炭
素繊維、炭素複合繊維等からなる網や織布および不織布
が挙げられる。
In addition, the conductive member may be made of a material that does not dissolve even after repeated charging and discharging, such as stainless steel, metals such as gold, platinum, nickel, copper, molybdenum, titanium, carbon, carbon fiber, etc. There are no particular restrictions, but
In particular, those that are lightweight and highly conductive are preferred. Specifically, examples include metal nets made of such metals, metal-plated fibers, metal-deposited fibers, metal-containing synthetic fibers, and nets, woven fabrics, and non-woven fabrics made of carbon fibers, carbon composite fibers, etc. .

このような熱可塑性樹脂及び導電性部材の添加伍は反応
生成物(有機半導体)  100重田部に対して熱可塑
性樹脂0.02〜i ooo重伍部、導電性部材2〜1
00重量部使用することが好ましい。
The addition of such a thermoplastic resin and a conductive member is a reaction product (organic semiconductor), and the thermoplastic resin is 0.02 to 100 parts.
It is preferable to use 00 parts by weight.

本発明の二次電池には、かかる反応生成物を電極材料と
して用いてなる電極を正負両極に使用する場合と、一方
の電極のみにこの電極を使用し、他の電極には、金属や
金属酸化物あるいは他の無機化合物更には本発明の反応
生成物以外の公知の導電性重合体や有機化合物および有
機金属化合物等を電極材料として使用する場合とがある
。正極にのみこの反応生成物を用いた電極を使用し、負
極の電極材料として金属を使用する場合を例にとれば、
負極を構成する金属として電気陰性度が1.6以下のも
のを用いるのが好ましく、このような金属の例としては
Ll。
In the secondary battery of the present invention, there are cases in which electrodes made of such reaction products as electrode materials are used for both positive and negative electrodes, and cases in which this electrode is used only for one electrode and metals or metals are used for the other electrodes. Oxides or other inorganic compounds, as well as known conductive polymers, organic compounds, and organometallic compounds other than the reaction products of the present invention may be used as electrode materials. For example, if an electrode using this reaction product is used only for the positive electrode, and a metal is used as the negative electrode material,
It is preferable to use a metal having an electronegativity of 1.6 or less as the metal constituting the negative electrode, and an example of such a metal is Ll.

Na、に、Mg、A、Cあるいはそれらの合金等が挙げ
られ、liおよびli金合金好ましい。
Examples of Na include Mg, A, C, and alloys thereof, with Li and Li gold alloys being preferred.

一方、本発明の二次電池に用いられる電解液としては、
例えば、電解質を有機溶剤に溶解した溶液が使用される
。かかる電解質としては、電気陰性度が1.6以下の金
属の陽イオンや有機カチオン等の陽イオン及び陰イオン
との塩を挙げることができる。オニウムイオンの例とし
て、4級アンモニウムイオン、カルボニウムイオン、オ
キソニウムイオン等が挙げられる。また、陰イオンとし
ては、BF  −1Cλ04−1PF6−、BF46−
1CF  so  +、I−1Br−1C,12” 、
F−等が挙げられる。そして、このような電解質の具体
例としては、テトラフルオロホウ酸リチウム(LiBF
4)、過塩素酸リチウム(LiCλ04.)、ヘキサフ
ルオロリン酸リチウム(LiPF6)、テトラクロロア
ルミン酸リチウム(L i AJ! CJ!4 ) 、
テトラフルオロホウ酸テトラエチルアンモニウム(Et
4NBF4 >、過塩素酸テトラn−7チルアンモニウ
ム(nBu4NCぶ04)、トリフルオロメタンスルホ
ン酸リチウム (L ! CF3303 ) 、ヨウ化リチウム(Li
I)、臭化リチウム(LiBr)等が挙げることかでき
るが、これらに限定されるものではない。そして、正負
両極に本発明の有機半導体を用い、LiBF4を電解質
として溶解しでなる電解液を用いて構成される電池を例
にとれば、充電時には、正極内の有機半導体に電解液中
のBF4−が、また負極内の有機半導体には電解液中の
11 が夫々ドーピングされる。
On the other hand, the electrolyte used in the secondary battery of the present invention is as follows:
For example, a solution in which an electrolyte is dissolved in an organic solvent is used. Examples of such electrolytes include salts with cations and anions such as metal cations and organic cations having an electronegativity of 1.6 or less. Examples of onium ions include quaternary ammonium ions, carbonium ions, oxonium ions, and the like. In addition, as anions, BF -1Cλ04-1PF6-, BF46-
1CF so +, I-1Br-1C, 12",
F- etc. are mentioned. A specific example of such an electrolyte is lithium tetrafluoroborate (LiBF).
4), lithium perchlorate (LiCλ04.), lithium hexafluorophosphate (LiPF6), lithium tetrachloroaluminate (L i AJ! CJ!4),
Tetraethylammonium tetrafluoroborate (Et
4NBF4>, tetra n-7 tylammonium perchlorate (nBu4NC 04), lithium trifluoromethanesulfonate (L! CF3303), lithium iodide (Li
I), lithium bromide (LiBr), etc., but are not limited to these. For example, if a battery is constructed using the organic semiconductor of the present invention in both the positive and negative electrodes and an electrolytic solution containing LiBF4 dissolved as an electrolyte, during charging, the organic semiconductor in the positive electrode is mixed with BF4 in the electrolytic solution. - is doped, and the organic semiconductor in the negative electrode is doped with 11 in the electrolyte.

一方、放電時には、正、負極にドーピングされたBF 
 ”、Ll  が夫々電解液中に放出される。
On the other hand, during discharge, BF doped into the positive and negative electrodes
”, Ll are released into the electrolyte, respectively.

また、電解質を溶解する有機溶剤としては、高誘電率で
非プロトン性のものが好ましく、ニトリル、カーボネー
ト、エーテル、ニトロ化合物、アミド、含硫黄化合物、
塩素化炭化水素、ケトン、エステル等を用いることがで
きる。また、このような溶剤は二種以上を混合して用い
ることもできる。これらの代表例として、アセトニトリ
ル、プロピオニトリル、ブチロニトリル、ベンゾニトリ
ル、プロピレンカーボネート、エチレンカーボネート、
テトラヒドロフラン、ジオキソラン、1,4−ジオキサ
ン、ニトロメタン、N、N−ジメチルホルムアミド、ジ
メチルスルホキシド、スルホラン、1,2−ジクロロエ
タン、γ−ブチロラクトン、1,2−ジメトキシエタン
、リン酸メチル、リン酸エチル等を挙げることができる
が、これらに限定されるものではない。
In addition, as the organic solvent for dissolving the electrolyte, it is preferable to use an aprotic one with a high dielectric constant, such as nitrile, carbonate, ether, nitro compound, amide, sulfur-containing compound,
Chlorinated hydrocarbons, ketones, esters, etc. can be used. Moreover, two or more kinds of such solvents can also be used in combination. Representative examples of these include acetonitrile, propionitrile, butyronitrile, benzonitrile, propylene carbonate, ethylene carbonate,
Tetrahydrofuran, dioxolane, 1,4-dioxane, nitromethane, N,N-dimethylformamide, dimethylsulfoxide, sulfolane, 1,2-dichloroethane, γ-butyrolactone, 1,2-dimethoxyethane, methyl phosphate, ethyl phosphate, etc. These include, but are not limited to.

そして、本発明の電解液の濃度は、通常o、ooi〜1
0モル/J2.で用いられ、好ましくは0.1〜3モル
/ぶで用いられる。
The concentration of the electrolytic solution of the present invention is usually o, ooi~1
0 mol/J2. It is preferably used in an amount of 0.1 to 3 mol/bu.

このような電解液は注液の他、予め本発明の有機半導体
を用いた電極に含液させて用いることもできる。
In addition to being injected, such an electrolytic solution can also be used by impregnating an electrode using the organic semiconductor of the present invention in advance.

また、以上では有機半導体にドーピング処理をすること
なくそのまま電極に成形加工する方法について説明した
が、ドーパントを予め有機半導体にドーピングせしめ、
しかる後、単独あるいはこれと上記した如き導電性材料
及び又は熱可塑性樹脂を用いて、電極に成形加工して使
用することもできる。
In addition, although the method for forming an electrode as it is without doping the organic semiconductor has been described above, it is also possible to dope the organic semiconductor with a dopant in advance.
Thereafter, it can be used alone or together with the conductive material and/or thermoplastic resin described above to form an electrode.

更に、本発明に於て、電解質中で電極を固定するために
、スノコ状または孔を有するガラス、テフロン、ポリエ
チレン、板等を用いて電極を被覆する構成としてもよい
Further, in the present invention, in order to fix the electrode in the electrolyte, the electrode may be covered with a slat-like or holed glass, Teflon, polyethylene, plate, or the like.

また、本発明の電池においては、ガラスフィルター濾紙
、テフロン、ポリエチレン、ポリプロピレン、ナイロン
等の多孔質膜をセパレータとして用いてもよい。
Further, in the battery of the present invention, a porous membrane such as glass filter paper, Teflon, polyethylene, polypropylene, nylon, etc. may be used as the separator.

く作 用〉 上記の如き有職半導体は、耐酸化性が優れていることは
勿論、前記従来のポリピロールの如き問題なく、製造容
易で電気伝導度が大きい。
Effects> The above-mentioned skilled semiconductors not only have excellent oxidation resistance, but also have no problems like the conventional polypyrrole, are easy to manufacture, and have high electrical conductivity.

このため、この有機半導体を電極材料とした場合、電極
作製環境の管理が非常に容易化し、また電極自身の保存
性が向上する等のことは勿論、電池電極並びに電池の充
放電容量が制限をうけることもなく、また電極各部の充
放電反応の不均一などに起因する電池の特性劣化の度合
も非常に小ざく、電池のサイクル特性が大幅に改善され
る。
For this reason, when this organic semiconductor is used as an electrode material, it is extremely easy to manage the electrode manufacturing environment, and the storage stability of the electrode itself is improved. Furthermore, the degree of deterioration in battery characteristics due to non-uniform charging and discharging reactions at various electrode parts is extremely small, and the cycle characteristics of the battery are greatly improved.

〈実施例〉 以下に実施例を挙げて本発明を具体的に説明する。<Example> The present invention will be specifically described below with reference to Examples.

五町土豆狭り翌童■ユ 1βの丸底フラスコにFe ((do4)3・8H20
を74.9g  (0,15mol)採り、脱塩水60
0mNを加えて窒素雰囲気下で攪拌しながら溶解させる
。この水溶液に、室温(25℃)、窒素気流下でピロー
ル10.1gを滴下した。滴下とともに反応液は黒色に
変化し、2時間攪拌を継続した後、室温で一夜放置した
ところ、黒色の粉末状沈澱が反応液の下部に認められた
。濾過後、枦残をメタノール200mNで3回洗浄を繰
返した後、更に水200mρで2回、トルエン2()O
m[で2回、メタノール200m1lで2回ずつ洗浄を
繰返した。洗浄後60’C減圧下で乾燥すると、6.0
(lの黒色粉末状物質が得られた。得られた黒色物の元
素分析は C50,65%、)(2,83%、N  1
4.45%、(,29,29%であり、炭素を4.0と
仮定すると、C4,0、H2,7、N1.O1Cλ。、
25に相当するものを得た。また別途、鉄の含有量を分
析した結果、炭素4.0に対して鉄0.001であった
。これはピロールに対してFe (C,1204)3が
反応したものであり、殊にそのアニオン部分が付加した
ものであることを示している。
Fe in the round bottom flask of Gomachi Tozu Narrow Dou ■ Yu 1β ((do4) 3・8H20
Take 74.9g (0.15mol) of
Add 0 mN and dissolve while stirring under nitrogen atmosphere. To this aqueous solution, 10.1 g of pyrrole was added dropwise at room temperature (25° C.) under a nitrogen stream. The reaction solution turned black as it was added dropwise, and after continued stirring for 2 hours, it was left to stand overnight at room temperature, and a black powdery precipitate was observed at the bottom of the reaction solution. After filtration, the residue was washed three times with 200 mN of methanol, and then washed twice with 200 mN of water and washed with toluene 2()O.
Washing was repeated twice with 200 ml of methanol and twice with 200 ml of methanol. After washing and drying at 60'C under reduced pressure, the result is 6.0
(l of black powdery substance was obtained. The elemental analysis of the black material obtained was C50,65%,) (2,83%, N1
4.45%, (,29,29%, assuming carbon is 4.0, C4,0, H2,7, N1.O1Cλ.,
The equivalent of 25 was obtained. Separately, the iron content was analyzed and found to be 4.0 carbon and 0.001 iron. This shows that Fe (C, 1204) 3 reacts with pyrrole, and in particular, the anion portion thereof is added.

この反応生成物について2端子法による電気伝導度の測
定を行なった結果、7.6x 1Q−23cm−1を得
、半導体領域の伝導度をもつ有機半導体であることがわ
かった。
As a result of measuring the electrical conductivity of this reaction product by a two-probe method, it was found to be 7.6x 1Q-23cm-1, indicating that it is an organic semiconductor with conductivity in the semiconductor region.

有機半導体の製造例2 ピロールの代りにN−メチルピロール12.2(Jを使
用したほかは実施例1と同様にして実験を行なった結果
、7.3gの黒色粉末状物質を得た。
Production Example 2 of Organic Semiconductor An experiment was conducted in the same manner as in Example 1 except that N-methylpyrrole 12.2 (J) was used instead of pyrrole, and as a result, 7.3 g of a black powdery substance was obtained.

得られた黒色物の元素分析はC59,58%、H4,7
7%、N  13.90%、C,ffi 7.75%で
あり、炭素を5.0と仮定すると、C5,O、H4,8
、N1.o、Cλo、22に相当するものを得た。
Elemental analysis of the black substance obtained was C59.58%, H4.7
7%, N 13.90%, C,ffi 7.75%, and assuming carbon is 5.0, C5, O, H4,8
, N1. o, Cλo, equivalent to 22 was obtained.

これはN−メチルピロールに対して Fe (C2O4)3が反応したものでめり、殊にその
アニオン部分が付加したものであることを示している。
This indicates that Fe (C2O4)3 reacts with N-methylpyrrole, and in particular, the anion portion thereof is added.

この黒色物の電気伝導度は3.5×10−10−38C
であった。
The electrical conductivity of this black object is 3.5×10-10-38C
Met.

有機半導体の製造例3〜14 各種のピロール系化合物を使用し、これらと各種第二鉄
化合物との反応を実施例1と同様に行なった。1qられ
た暗褐色〜黒色粉末の検討結果を第1表に示した。
Production Examples 3 to 14 of Organic Semiconductors Various pyrrole compounds were used, and reactions between these and various ferric compounds were performed in the same manner as in Example 1. Table 1 shows the results of the investigation of the dark brown to black powder obtained by 1q.

電池の実施例 上記製造例1て1dだ有機半導体を正極材料として用い
、・これとアセチレンブラック(導電剤)、並びにポリ
テトラフルオロエチレン(結着剤)とを重量比85:1
0:5の割合で混合した後、ディスク状に加圧成形した
ものを正極とした。
Example of a battery The above production example 1 1d organic semiconductor was used as a positive electrode material, and acetylene black (conducting agent) and polytetrafluoroethylene (binder) were mixed in a weight ratio of 85:1.
After mixing at a ratio of 0:5, the mixture was press-molded into a disk shape and used as a positive electrode.

また、リチウムを所定寸法に打ち後いたものを負極とし
た。
In addition, a negative electrode was prepared by punching lithium into a predetermined size.

次いで、第1図に示すように、上記の負極2を負極集電
体8を介して負極化7の底面に圧着させてなる負極部分
と、上記の正極1を正極集電体6を介して正極缶5の底
面に密着させてなる正極部分とを、ポリプロピレン不織
布からできたセパレータ3を介して組合せ、また、過塩
素酸リチウム(電解質)をプロピレンカーボネー1〜(
溶媒)に溶解してなる電解液を用いて、本発明に係る電
池(本発明品△)を作製した。
Next, as shown in FIG. 1, a negative electrode part formed by pressing the negative electrode 2 onto the bottom surface of the negative electrode 7 via a negative electrode current collector 8, and a negative electrode part formed by pressing the above negative electrode 2 onto the bottom surface of the negative electrode 7 through a negative electrode current collector 6, and a negative electrode part formed by pressing the above negative electrode 2 onto the bottom surface of the negative electrode 7 through a negative electrode current collector 6, The positive electrode part that is in close contact with the bottom surface of the positive electrode can 5 is combined with the separator 3 made of polypropylene nonwoven fabric, and lithium perchlorate (electrolyte) is mixed with propylene carbonate 1 to (
A battery according to the present invention (product of the present invention △) was produced using an electrolytic solution dissolved in a solvent).

尚、第1図において4は絶縁ガスケットでおる。In addition, in FIG. 1, 4 is an insulating gasket.

また、上記製造例2で得た有機半導体を正極材料として
用い、これとアセチレンブラック、並びにポリテトラフ
ルオロエチレンとを重量比85:10:5の割合で混合
しディスク状に加圧成形したものを正極とした他は本発
明品△と同様にして、本発明に係る電池(本発明品B)
を作製した。
In addition, the organic semiconductor obtained in Production Example 2 above was used as a positive electrode material, and this was mixed with acetylene black and polytetrafluoroethylene at a weight ratio of 85:10:5, and the mixture was pressure-molded into a disk shape. A battery according to the present invention (present invention product B) was prepared in the same manner as the present invention product △ except that the positive electrode was used.
was created.

一方、正極材料としてポリアセチレン粉末を用い、これ
とアセチレンブラック、並びにポリテトラフルオロエチ
レンとを重量比85:10:5の割合で混合しディスク
状に加圧成形したものを正極とし、他は本発明品Aと同
様にして比較用の電池(比較量C)を作製した。
On the other hand, polyacetylene powder was used as the positive electrode material, and the positive electrode was prepared by mixing this with acetylene black and polytetrafluoroethylene at a weight ratio of 85:10:5 and press-molding it into a disk shape. A comparative battery (comparative quantity C) was produced in the same manner as Product A.

更に以下の手順で比較用の電池(比較量D)を作製した
Furthermore, a comparative battery (comparative quantity D) was produced according to the following procedure.

500mJ2の丸底フラスコにFeCl3−61−(2
0を40.6(1(0,15mol)採り、脱塩水30
0mI!を加えて窒素雰囲気下で滑拌しながら溶解させ
る。この水溶液に室温(25°C)窒素気流下でピロー
ルio、igを滴下した。次いで、6時間攪拌を継続し
た後、室温で一日放置したところ、黒色の粉末状沈澱が
反応液の下部に認められた。濾過後、枦残をメタノール
200mf!で3回洗浄を繰返した後、更に水2001
で2回、トルエン200m1lで2回、メタノール20
0mNで2回洗浄を繰返した。洗浄後60℃減圧下で乾
燥すると黒色粉末状物質が得られた。
FeCl3-61-(2
Take 40.6 (1 (0.15 mol)) of 0 and add 30 mol of demineralized water.
0mI! Add and dissolve while stirring under a nitrogen atmosphere. Pyrrole io and ig were added dropwise to this aqueous solution at room temperature (25°C) under a nitrogen stream. Next, after stirring was continued for 6 hours, a black powdery precipitate was observed at the bottom of the reaction solution when it was left to stand at room temperature for one day. After filtration, methanol 200mf to remove the residue! After washing 3 times with water, add water 2001
2 times with 200ml of toluene, 200ml of methanol
Washing was repeated twice at 0 mN. After washing, a black powdery substance was obtained by drying at 60° C. under reduced pressure.

このようにして、上記塩化鉄を酸化剤としてピロールを
化学的に重合させて作製した有機半導体(ポリピロール
)を正極材料として用い、これとアセチレンブラック、
並びにポリテトラフルオロエチレンとを重量比85:1
0:5の割合で混合し、ディスク状に加圧成形したもの
を正極とした他は本発明品Aと同様にして、比較用の電
池(比較量D)を作製した。
In this way, an organic semiconductor (polypyrrole) prepared by chemically polymerizing pyrrole using iron chloride as an oxidizing agent was used as a positive electrode material, and this and acetylene black,
and polytetrafluoroethylene in a weight ratio of 85:1.
A comparative battery (comparative quantity D) was prepared in the same manner as inventive product A, except that the positive electrode was prepared by mixing the components at a ratio of 0:5 and press-molding them into a disk shape.

以上の4つの電池について、1  mAの電流で5時間
充電した後、1  mAの電流で電池電圧が2.5vに
なるまで放電するという一連の充放電サイクルを繰り返
し行なった時の充放電効率(%)のサイクル変化を調べ
た。結果は第2図に示す通りである。
The charge/discharge efficiency of the above four batteries was determined by repeating a series of charge/discharge cycles in which the batteries were charged with a current of 1 mA for 5 hours and then discharged with a current of 1 mA until the battery voltage reached 2.5 V. %) was investigated. The results are shown in FIG.

同図より、比較量Cは20サイクル当たりまでは充放電
効率が低いが、本発明品A、Bではサイクル初期から高
い充放電効率を維持している。このように本発明品A、
Bがサイクル初期から高い充放電効率を示すのは、上記
製造例1及び2で得られた有機半導体が予め過塩素酸イ
オンがドープされたものであるためと考えられる。また
比較量りもサイクル初期から高い充放電効率を維持する
ものの、本発明品A、Bに較べて劣っているのは、ドー
プされているイオンが過塩素酸イオンでなく塩素イオン
であるためである。
From the figure, comparative amount C has a low charging and discharging efficiency until about the 20th cycle, but products A and B of the present invention maintain a high charging and discharging efficiency from the beginning of the cycle. In this way, the invention product A,
The reason why B shows high charge/discharge efficiency from the early stage of the cycle is considered to be because the organic semiconductors obtained in Production Examples 1 and 2 were doped with perchlorate ions in advance. In addition, although the comparative weigher maintains high charge/discharge efficiency from the beginning of the cycle, it is inferior to the products A and B of the present invention because the doped ions are chlorine ions rather than perchlorate ions. .

また、比較量Cは50サイクルをすぎるあたりから充放
電効率の急激な低下がみられるのに対し、本発明品A、
Bでは、全サイクルを通じて比較量Cより高い充放電効
率を示すのみならず80サイクルをすぎても90%以上
の高い充放電効率を維持し続けることがわかる。尚、第
80サイクル目における本発明品A、Bの充放電効率は
夫々99%、95%でおるのに対し、比較量C及び比較
量りの場合は夫々25%及び55%と僅かでめった。比
較量Cのサイクル特性がこのように劣悪であるのは、ポ
リアセチレン粉末に完全に除去されずに吸着おるいは付
着していた水や酸素、並びに電解液中の溶存酸素や微量
水分によって、正極材料であるポリアセチレン粉末が材
質劣化したことに依るものと思われる。本発明品A、B
の場合は、正極材料である有機半導体が優れた耐酸化性
をもつことから電解液中の溶存酸素や微量水分による材
質劣化がなく、良好なサイクル特性が得られる訳である
。また、比較量りのサイクル特性が悪いのは、その正極
材料として用いた従来の化学的に酸化重合して得たポリ
ピロールの電気伝導度が小さい他、正極材料中にドーパ
ントとして塩素イオンが存在し、このためにサイクル中
に塩素ガスが発生し、この塩素ガスと負極との反応等が
起こるためと考えられる。本発明品A、Bの場合は、正
極材料として用いたポリピロールの電気伝導性が優秀で
あり、またサイクル中に塩素イオンが存在する可能性は
殆んどないので上記負極における副反応が生じることは
なく、良好なサイクル特性が得られる。
In addition, with comparison amount C, a rapid decrease in charging and discharging efficiency was observed after 50 cycles, whereas inventive product A,
It can be seen that B not only shows a higher charge/discharge efficiency than Comparative Amount C throughout all cycles, but also continues to maintain a high charge/discharge efficiency of 90% or more even after 80 cycles. Incidentally, at the 80th cycle, the charging and discharging efficiencies of the products A and B of the present invention were 99% and 95%, respectively, whereas in the case of the comparative amount C and the comparative weight, the efficiency was only 25% and 55%, respectively. The reason why the cycle characteristics of Comparative Amount C are so poor is that the positive electrode This seems to be due to the material deterioration of the polyacetylene powder. Invention products A and B
In this case, since the organic semiconductor that is the positive electrode material has excellent oxidation resistance, there is no material deterioration due to dissolved oxygen or trace moisture in the electrolyte, and good cycle characteristics can be obtained. In addition, the reason for the poor cycle characteristics of the comparative example is that the electrical conductivity of polypyrrole obtained by conventional chemical oxidative polymerization used as the positive electrode material is low, and chlorine ions are present as a dopant in the positive electrode material. This is thought to be because chlorine gas is generated during the cycle, and a reaction between this chlorine gas and the negative electrode occurs. In the case of products A and B of the present invention, the electrical conductivity of the polypyrrole used as the positive electrode material is excellent, and there is almost no possibility that chlorine ions will be present during the cycle, so there is no possibility that side reactions will occur at the negative electrode. Good cycle characteristics can be obtained.

また、第80ザイクル目における充電及び放電時の夫々
の電池電圧の経時変化を第3図に示す。尚、同図におい
て実線は充電時の、点線は放電時の電圧変化である。第
3図より、本発明品A、Bは充電時における電圧の急激
な立ち上がりもなく、また比較量C,Dに較べて放電電
圧の平坦性が非常に良いことがわかる。
Further, FIG. 3 shows the temporal changes in the battery voltage during charging and discharging in the 80th cycle. In the figure, the solid line represents the voltage change during charging, and the dotted line represents the voltage change during discharging. From FIG. 3, it can be seen that the products A and B of the present invention do not have a sudden rise in voltage during charging, and the flatness of the discharge voltage is very good compared to the comparative products C and D.

更に、第4図に保存中における電池の自己放電特性を示
す。同図より、本発明品A、Bは比較量C,Dに較べて
自己放電が小さく、保存性が良好であることがわかる。
Furthermore, FIG. 4 shows the self-discharge characteristics of the battery during storage. From the figure, it can be seen that the products A and B of the present invention have smaller self-discharge and better storage stability than the comparative products C and D.

比較量Cに較べて本発明品A、Bの保存性がよいのは、
本発明品A、Bで正極材料として用いた有機半導体が優
れた耐酸化性をもつために、電解液中の溶存酸素や微量
水分による材質劣化がないことによると考えられる。ま
た、比較量りの場合、予め塩素がドープされた正極材料
を用いており、このドーパントと電池反応によってドー
プされるドーパント(過塩素酸イオン)とが異なってい
るため、電池系内に塩素イオンなる不純物が存在するこ
ととなり、このためその自己放電が大きいものと考えら
れる。本発明品A、Bの場合は、電池系内に塩素イオン
のような不純物が存在する可能性は少ないためにこのよ
うなことはなく、比較量Cより保存性がよいのである。
The reason why the products A and B of the present invention have a better shelf life than the comparative amount C is that
This is thought to be due to the fact that the organic semiconductor used as the positive electrode material in products A and B of the present invention has excellent oxidation resistance, so that there is no material deterioration due to dissolved oxygen or trace moisture in the electrolytic solution. In addition, in the case of comparative weighing, a positive electrode material that has been doped with chlorine in advance is used, and since this dopant and the dopant (perchlorate ion) doped by the battery reaction are different, chlorine ions may be present in the battery system. It is thought that impurities are present, which is why the self-discharge is large. In the case of products A and B of the present invention, this problem does not occur because there is little possibility that impurities such as chlorine ions exist in the battery system, and the storage stability is better than that of comparative product C.

尚、以上は正極材′lIにのみ有機半導体を用いたもの
について説明したが、負極材料、あるいは正負極材料に
本発明に係る有機半導体を用いた場合も同様の効果が得
られることは明らかである。
Although the above description has been made regarding the use of an organic semiconductor only in the positive electrode material, it is clear that similar effects can be obtained when the organic semiconductor according to the present invention is used in the negative electrode material or the positive and negative electrode materials. be.

〈発明の効果〉 以上のように構成されるこの発明の二次電池によれば、
電極作!!!環境の管理が非常に容易化しまた電極自身
の保存性が向上することは勿論、電極並びに電池の充放
電容量が制限をうけることもなく、また電池内における
電極各部の充放電反応の不均一などに起因する電池の特
性劣化も僅かで充放電効率並びにザイクル寿命などの特
性向上が図れるといった効果を奏する。
<Effects of the Invention> According to the secondary battery of the present invention configured as described above,
Electrode creation! ! ! Not only does environmental management become much easier and the storage life of the electrode itself improves, but the charging and discharging capacity of the electrode and battery is not limited, and the charging and discharging reactions of each part of the electrode within the battery are not uniform. The deterioration of battery characteristics caused by this is also slight, and it is possible to improve characteristics such as charging and discharging efficiency and cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例等の電池構造を示した断面図、
第2図は本発明品及び比較量のサイクル特性を示したグ
ラフ、第3図は同じく充放電における電池電圧の経時変
化を示したグラフ、第4図は本発明品及び比較量の自己
放電特性を示したグラフである。 1・・・正極、2・・・負極、3・・・セパレータ、5
・・・正極缶、7・・・負極缶。
FIG. 1 is a sectional view showing a battery structure according to an embodiment of the present invention,
Figure 2 is a graph showing the cycle characteristics of the inventive product and comparative amount, Figure 3 is a graph showing the change in battery voltage over time during charging and discharging, and Figure 4 is the self-discharge characteristics of the inventive product and comparative amount. This is a graph showing 1...Positive electrode, 2...Negative electrode, 3...Separator, 5
...Positive electrode can, 7...Negative electrode can.

Claims (1)

【特許請求の範囲】 1、ピロール系化合物と酸化剤とを反応させて得られる
有機半導体を正極または負極の少なくとも一方の電極と
して用いてなる二次電池であって、該酸化剤が、一般式 Fe_mX_n……(1) (式中、XはClO_4^−、BF_4^−、ASF_
6^−、PF_6^−、SbF_6^−、CH_3C_
6H_4SO_3^−、 CF_3SO_3^−、ZrF_6^−^−、TiF_
6^−^−またはSiF_6^−^−を表わし、m及び
nは1〜3の整数を表わす。) で示される第二鉄化合物であることを特徴とする二次電
池。 2、ピロール系化合物が、一般式 ▲数式、化学式、表等があります▼……(2) (式中、R^1及びR^2は水素原子、アルキル基、ア
ルコキシ基、アリール基、アリ ロキシ基、アルキルチオ基、アミノ基、 ハロゲン原子、シアノ基またはニトロ基 を表わし、R^3は水素原子、アルキル基 またはアリール基を表わす。) で示される化合物であることを特徴とする特許請求の範
囲第1項記載の二次電池。 3、ピロール系化合物と酸化剤との反応を水溶液中で行
なうことを特徴とする特許請求の範囲第1項または第2
項記載の二次電池。
[Claims] 1. A secondary battery using an organic semiconductor obtained by reacting a pyrrole compound and an oxidizing agent as at least one of a positive electrode and a negative electrode, wherein the oxidizing agent has the general formula Fe_mX_n...(1) (In the formula, X is ClO_4^-, BF_4^-, ASF_
6^-, PF_6^-, SbF_6^-, CH_3C_
6H_4SO_3^-, CF_3SO_3^-, ZrF_6^-^-, TiF_
6^-^- or SiF_6^-^-, m and n represent integers from 1 to 3. ) A secondary battery characterized by being a ferric compound represented by: 2. Pyrrole compounds have the general formula▲mathematical formula, chemical formula, table, etc.▼...(2) (In the formula, R^1 and R^2 are hydrogen atoms, alkyl groups, alkoxy groups, aryl groups, and allyloxy groups. , an alkylthio group, an amino group, a halogen atom, a cyano group, or a nitro group, and R^3 represents a hydrogen atom, an alkyl group, or an aryl group. The secondary battery according to item 1. 3. Claim 1 or 2, characterized in that the reaction between the pyrrole compound and the oxidizing agent is carried out in an aqueous solution.
Secondary batteries listed in section.
JP61069880A 1986-03-28 1986-03-28 Secondary battery Expired - Lifetime JPH0722025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069880A JPH0722025B2 (en) 1986-03-28 1986-03-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069880A JPH0722025B2 (en) 1986-03-28 1986-03-28 Secondary battery

Publications (2)

Publication Number Publication Date
JPS62226568A true JPS62226568A (en) 1987-10-05
JPH0722025B2 JPH0722025B2 (en) 1995-03-08

Family

ID=13415524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069880A Expired - Lifetime JPH0722025B2 (en) 1986-03-28 1986-03-28 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0722025B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319763A (en) * 1986-07-09 1988-01-27 Mitsubishi Chem Ind Ltd Battery
FR2685122A1 (en) * 1991-12-13 1993-06-18 Alsthom Cge Alcatel SUPERCONDENSOR BASED ON CONDUCTIVE POLYMER.
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
CN111235595A (en) * 2020-01-20 2020-06-05 常州大学 TEMPO-based polypyrrole for mixed liquid flow battery cathode and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119860A (en) * 1985-11-20 1987-06-01 Mitsubishi Chem Ind Ltd Secondary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119860A (en) * 1985-11-20 1987-06-01 Mitsubishi Chem Ind Ltd Secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319763A (en) * 1986-07-09 1988-01-27 Mitsubishi Chem Ind Ltd Battery
FR2685122A1 (en) * 1991-12-13 1993-06-18 Alsthom Cge Alcatel SUPERCONDENSOR BASED ON CONDUCTIVE POLYMER.
US5442197A (en) * 1991-12-13 1995-08-15 Alcatel Alsthom Compagnie Generale D'electricite Super-capacitor comprising positive and negative electrodes made of a p-doped electron conductive polymer and an electrolyte containing an organic redox compound
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery
CN111235595A (en) * 2020-01-20 2020-06-05 常州大学 TEMPO-based polypyrrole for mixed liquid flow battery cathode and preparation method
CN111235595B (en) * 2020-01-20 2021-05-25 常州大学 TEMPO-based polypyrrole for mixed liquid flow battery cathode and preparation method

Also Published As

Publication number Publication date
JPH0722025B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JP2717890B2 (en) Lithium secondary battery
US10651473B2 (en) Lithium-doped pernigraniline-based materials
EP0149133B1 (en) Polyacetylene composite, process for production thereof, and method for use thereof
EP0282068B1 (en) Nonaqueous secondary battery
EP3110873A1 (en) New lithium-doped pernigraniline-based materials
JP5818689B2 (en) Lithium ion secondary battery
JPS62226568A (en) Secondary battery
JP2908822B2 (en) Electrode
JP2644480B2 (en) Rechargeable battery
JPH0650637B2 (en) Secondary battery
JP2002141065A (en) Redox active reversible electrode and lithium secondary battery using same
JP2501821B2 (en) Secondary battery
JPS62226567A (en) Secondary battery
JPH0528986A (en) Organic electrolyte battery
JPS62110257A (en) Secondary battery
JPS6319763A (en) Battery
JPS6372070A (en) Secondary battery
JPH0622127B2 (en) Secondary battery
JPH0622125B2 (en) Secondary battery
JPH0740493B2 (en) Non-aqueous solvent secondary battery
JP2619378B2 (en) Operation method of secondary battery
JPS63224160A (en) Secondary battery
JPH0636361B2 (en) Secondary battery
JPS62108460A (en) Secondary cell
JPS63248078A (en) Secondary battery