JPS62226560A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS62226560A
JPS62226560A JP61069089A JP6908986A JPS62226560A JP S62226560 A JPS62226560 A JP S62226560A JP 61069089 A JP61069089 A JP 61069089A JP 6908986 A JP6908986 A JP 6908986A JP S62226560 A JPS62226560 A JP S62226560A
Authority
JP
Japan
Prior art keywords
positive electrode
molybdenum trioxide
nonaqueous electrolyte
battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61069089A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hino
日野 義久
Hiroyuki Takayanagi
博之 高柳
Michie Yoshioka
吾恵 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61069089A priority Critical patent/JPS62226560A/en
Publication of JPS62226560A publication Critical patent/JPS62226560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the performance of a battery by using a negative electrode made of alkali metal or alkali earth metal, nonaqueous electrolyte, and a positive electrode made of sintered molybdenum trioxide. CONSTITUTION:A battery consists of a negative electrode 4 made of alkali metal or alkali earth metal, a nonaqueous electrolyte, and a positive electrode 1 made of sintered molybdenum trioxide. As the positive electrode, for example, powder of graphite, acetylene black, nickel, or titanium is mixed as conductive material to molybdenum trioxide powder, and the mixture is press-molded, then sintered in a nonoxidizing atmosphere such as argon to bond particles in the mixture. A positive electrode having sufficient mechanical strength can be obtained without use of a binder such as PTFE, and various problems caused by use of binder can be solved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は非水電解液電池に関し、詳しくは、負極活物
質としてリチウムやナトリウムなどのアルカリ金属また
はアルカリ土類金属を、また正極活物質として三酸化モ
リブデンをそれぞれ用いてなる非水電解液電池に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a non-aqueous electrolyte battery, and more specifically, uses an alkali metal or alkaline earth metal such as lithium or sodium as a negative electrode active material and a positive electrode active material as a positive electrode active material. The present invention relates to a non-aqueous electrolyte battery using molybdenum trioxide.

〈従来の技術〉 このような非水電解液電池において、従来、三酸化モリ
ブデンM OO3を活物質とする正極の調製は、三酸化
モリブデンに黒鉛などの導電剤及び四フッ化エチレン樹
脂(PTFE)の粉末またはそのディスパージョンの如
き結着剤を混合した後、加圧成形している。
<Prior art> In such a non-aqueous electrolyte battery, conventionally, the preparation of a positive electrode using molybdenum trioxide MOO3 as an active material involves mixing molybdenum trioxide with a conductive agent such as graphite and tetrafluoroethylene resin (PTFE). After mixing a binder such as a powder or a dispersion thereof, the mixture is press-molded.

〈発明が解決しようとする問題点〉 しかしながら、上記従来電池では、正極中に含有された
PTFEなとの結着剤によって活物質である三酸化モリ
ブデン粒子の表面、おるいは導電剤粒子の表面が被覆さ
れる結果、正極内におけるイオンの移動や電子電導が阻
害され、その分放電時(二次電池の場合は充放電時)の
過電圧が上昇するという問題がある。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional battery, the surface of molybdenum trioxide particles, which are active materials, or the surface of conductive agent particles is As a result of being coated, the movement of ions and electron conduction within the positive electrode are inhibited, and there is a problem in that the overvoltage during discharging (when charging and discharging in the case of secondary batteries) increases accordingly.

また、この種の結着剤は1發水性が強いことから、電解
液注液時の漏れが悪くなり、正極の吸液速度が遅くなる
。このため、正極内の気孔部分に電解液を十分に含浸さ
せることが困難となり、保存中や放電中(二次電池の場
合は充放電サイクル中)にセパレータ中の電解液が正極
に移行してセパレータ中の液量が減少することから、電
池内部抵抗が増大して電池性能の低下をもたらすという
問題もある。
Furthermore, since this type of binder is highly hydrophilic, leakage during injection of electrolyte becomes worse and the liquid absorption rate of the positive electrode becomes slower. For this reason, it is difficult to sufficiently impregnate the electrolyte into the pores within the positive electrode, and the electrolyte in the separator may migrate to the positive electrode during storage or discharge (during charge/discharge cycles in the case of secondary batteries). Since the amount of liquid in the separator decreases, there is also the problem that the internal resistance of the battery increases, resulting in a decrease in battery performance.

〈問題点を解決するための手段〉 この発明の非水電解液電池は、アルカリ金属またはアル
カリ土類金属からなる負極と、非水電解液と、三酸化モ
リブデンを焼結してなる正極とを備えたことを要旨とす
る。
<Means for Solving the Problems> The nonaqueous electrolyte battery of the present invention comprises a negative electrode made of an alkali metal or alkaline earth metal, a nonaqueous electrolyte, and a positive electrode made by sintering molybdenum trioxide. The main point is to be prepared.

このような正極としては、例えば、三酸化モリブデン粉
末に黒鉛、アセチレンブラック、ニッケル、チタンなど
の粉末を導電剤として混合した合剤を、加圧成形1変に
非酸化性雰囲気(アルゴン雰囲気など)で焼結して合剤
中の粒子同士を結着させて合剤を固化させたものを挙げ
ることができる。また、焼結時の加熱温度は、合剤中の
粉体く三酸化モリブデン粉末や導電剤粉末〉の粒度、成
形圧力、あるいは加熱時間などによって異なるが、大略
700〜800°Cの範囲が好ましい。700 ’C以
下では焼結が不十分となりがらで正極の機械的強度が不
足し、また800 ’C以上では三酸化モリブデン(融
点約795℃)が融解しおるいは昇華してしまうので正
極の気孔率が低下すると共に昇華による三酸化モリブデ
ンの10失が大きくなるためである。
For such a positive electrode, for example, a mixture of molybdenum trioxide powder mixed with powders such as graphite, acetylene black, nickel, and titanium as a conductive agent is press-molded in a non-oxidizing atmosphere (such as an argon atmosphere). For example, the mixture may be solidified by sintering to bind the particles in the mixture to each other. The heating temperature during sintering varies depending on the particle size of the molybdenum trioxide powder and conductive agent powder in the mixture, molding pressure, heating time, etc., but is preferably in the range of approximately 700 to 800°C. . At temperatures below 700'C, sintering will be insufficient and the mechanical strength of the positive electrode will be insufficient; at temperatures above 800'C, molybdenum trioxide (melting point approximately 795°C) will melt or sublimate, making the positive electrode This is because as the porosity decreases, the loss of molybdenum trioxide due to sublimation increases.

〈作 用〉 以上の手段を用いることで、PTFEなとの結着剤を用
いることなく十分な機械的強度を有した正極を作成でき
て、結着剤使用に起因する従来電池の問題点を解決でき
る。
<Function> By using the above method, a positive electrode with sufficient mechanical strength can be created without using a binder such as PTFE, and the problems of conventional batteries caused by the use of binders can be solved. Solvable.

〈実施例〉 以下、この発明を偏平形リチウム二次電池に適用した実
施例について説明する。
<Example> Hereinafter, an example in which the present invention is applied to a flat lithium secondary battery will be described.

三酸化モリブデン粉末と黒鉛粉末とを重母比で8:1の
割合で混合した合剤粉末を作り、次いで予め40メツシ
ユのステンレスネットを挿入し内底部に配した金型内に
この合剤粉末を酩込み、1.5ton /cm2の条件
で合剤粉末を加圧成形して、ディスク状の成形体を作る
と共にこのディスク状成形体の片面に上記ステンレスネ
ットを圧着し固着した。その後、この成形体をアルゴン
雰囲気において750℃で30分間加熱して焼結させた
。焼結成形体の寸法は直径15mmで厚さが0.5mm
であった。
A mixture powder is prepared by mixing molybdenum trioxide powder and graphite powder at a weight ratio of 8:1, and then this mixture powder is placed in a mold with 40 mesh stainless steel net inserted in advance and arranged at the inner bottom. The mixture powder was press-molded under conditions of 1.5 ton/cm2 to produce a disc-shaped molded body, and the stainless steel net was crimped and fixed on one side of this disc-shaped molded body. Thereafter, this compact was sintered by heating at 750° C. for 30 minutes in an argon atmosphere. The dimensions of the sintered body are 15 mm in diameter and 0.5 mm in thickness.
Met.

そして、上記焼結成形体、ステンレスネットをそれぞれ
正極1、正極集電体2として用い、第1図に示すように
、これらをステンレス製の正極缶3に収納後電解液を十
分に注入して構成した正極部分と、リチウム−アルミニ
ウム合金粉末を加圧成形してなる負極4をステンレスネ
ッ1〜製で負極缶内底面にスポット溶接された負極集電
体5を介して負極缶6の内底面に圧着させて作った負極
部分とを、ポリプロピレン不織布製のセパレータ7を介
して対向させ、更にポリプロピレン類のガスケツ1−8
を周縁部に組合せて、2016形のコイン形リチウム二
次電池(本発明品A)を作った。尚、電解液としては、
2−メチル−テトラヒドロフランに6フツ化リン酸リチ
ウムLiPF6を1 M#溶解させたものを用いた。
Then, the sintered compact and the stainless steel net are used as the positive electrode 1 and the positive electrode current collector 2, respectively, and as shown in FIG. The positive electrode part and the negative electrode 4 formed by pressure molding lithium-aluminum alloy powder are attached to the inner bottom surface of the negative electrode can 6 via a negative electrode current collector 5 made of stainless steel net 1 and spot welded to the inner bottom surface of the negative electrode can. The negative electrode portion made by pressure bonding is placed opposite to each other with a separator 7 made of polypropylene nonwoven fabric interposed therebetween, and a gasket 1-8 made of polypropylene is further placed.
A 2016-type coin-shaped lithium secondary battery (product A of the present invention) was made by combining the above with the peripheral portion. In addition, as the electrolyte,
A solution of 1 M# of lithium hexafluorophosphate LiPF6 in 2-methyl-tetrahydrofuran was used.

一方、正極として三酸化モリブデン粉末と黒鉛粉末とP
TFE粉末とを重i比で8:1:0.6の割合で混合し
た合剤を加圧成形したものを用いた他は本発明品Aと同
様にして2016形のコイン形リチウム電池(従来品B
)を作った。
On the other hand, molybdenum trioxide powder, graphite powder and P
A 2016-type coin-type lithium battery (conventional) was manufactured in the same manner as inventive product A, except that a pressure-molded mixture of TFE powder and TFE powder at a ratio of 8:1:0.6 was used. Product B
)made.

以上の2つの電池について、2mへの定電流で端子電圧
1.8■まで放電した後に2mAの定電流で端子電圧が
3.OVになるまで充電するというサイクル条件で充放
電試験を行なった。
For the above two batteries, after discharging to a terminal voltage of 1.8cm with a constant current of 2mA, the terminal voltage decreased to 3.8cm with a constant current of 2mA. A charge/discharge test was conducted under cycle conditions of charging until OV.

第2図(^)、 (13)に、両電池の第3サイクル目
及び第10サイクル目の放電時における端子電圧(V)
の経時変化、並びに充電時における端子電圧(V)の経
時変化をそれぞれ示した。これらの図より、本発明品A
は従来品Bに較べて放電電圧が高く、また充電時の端子
電圧の上昇が低く抑えられていると共に、充放電サイク
ルによる劣化が少ないことがわかる。
Figure 2 (^) and (13) show the terminal voltage (V) during the 3rd cycle and 10th cycle of discharge for both batteries.
The changes over time of the terminal voltage (V) during charging and the changes over time of the terminal voltage (V) during charging are shown, respectively. From these figures, it can be seen that the invention product A
It can be seen that the discharge voltage is higher than that of conventional product B, the increase in terminal voltage during charging is suppressed to a low level, and there is little deterioration due to charge/discharge cycles.

尚、本発明を地形式の非水電解液二次電池に適用しても
同様な効果が得られることは言うまでもない。また、本
発明に係る正極を用いて非水電解液−次電池を作成した
場合には放電時の端子電圧が高く維持できて電池性能向
上を図れることは明らかである。
It goes without saying that similar effects can be obtained even when the present invention is applied to a ground-type non-aqueous electrolyte secondary battery. Furthermore, it is clear that when a non-aqueous electrolyte secondary battery is produced using the positive electrode according to the present invention, the terminal voltage during discharge can be maintained high and the battery performance can be improved.

〈発明の効果〉 以上のように構成されるこの発明の非水電解液電池によ
れば、結着剤を用いることなしに十分な強度の正極を作
成できるので、従来電池のような結着剤使用に起因する
放電14あるいは充放電時の過電圧の上昇並びに電池内
部抵抗の増大がなくなり、電池性能向上を図れるという
効果を奏する。
<Effects of the Invention> According to the non-aqueous electrolyte battery of the present invention configured as described above, a sufficiently strong positive electrode can be created without using a binder, so it is possible to create a positive electrode with sufficient strength without using a binder. There is no increase in overvoltage during discharge 14 or charging and discharging due to use, and there is no increase in battery internal resistance, resulting in an effect that battery performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の二次電池を示した断面図、第
2図(A)、(13)はそれぞれ、本発明品及び従来品
の放電時、充電時における端子電圧の経時変化を示した
グラフである。 1・・・正極、3・・・正極缶、4・・・負極、6・・
・負極缶、7・・・セパレータ。
Fig. 1 is a cross-sectional view showing a secondary battery according to an embodiment of the present invention, and Figs. 2 (A) and (13) show changes in terminal voltage over time during discharging and charging of the inventive product and the conventional product, respectively. This is a graph showing 1...Positive electrode, 3...Positive electrode can, 4...Negative electrode, 6...
- Negative electrode can, 7... separator.

Claims (1)

【特許請求の範囲】 1、アルカリ金属またはアルカリ土類金属からなる負極
と、非水電解液と、三酸化モリブデンを焼結してなる正
極とを備えたことを特徴とする非水電解液電池。 2、前記正極が、三酸化モリブデンと導電剤とを含んで
なる合剤を成形後に非酸化性雰囲気で焼結したものであ
ることを特徴とする特許請求の範囲第1項記載の非水電
解液電池。
[Claims] 1. A nonaqueous electrolyte battery comprising a negative electrode made of an alkali metal or alkaline earth metal, a nonaqueous electrolyte, and a positive electrode made of sintered molybdenum trioxide. . 2. The non-aqueous electrolysis device according to claim 1, wherein the positive electrode is formed by molding a mixture containing molybdenum trioxide and a conductive agent and then sintering it in a non-oxidizing atmosphere. liquid battery.
JP61069089A 1986-03-27 1986-03-27 Nonaqueous electrolyte battery Pending JPS62226560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069089A JPS62226560A (en) 1986-03-27 1986-03-27 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069089A JPS62226560A (en) 1986-03-27 1986-03-27 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS62226560A true JPS62226560A (en) 1987-10-05

Family

ID=13392513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069089A Pending JPS62226560A (en) 1986-03-27 1986-03-27 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS62226560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445812A1 (en) * 2001-10-17 2004-08-11 Sony Corporation Alkaline battery
EP1662592A1 (en) * 2003-07-15 2006-05-31 Itochu Corporation Current collecting structure and electrode structure
CN105826595A (en) * 2015-01-06 2016-08-03 深圳市比克电池有限公司 Application of alpha-MoO3-modified graphene in lithium ion battery and lithium ion battery thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108220A (en) * 1978-02-10 1979-08-24 Sanyo Electric Co Nonnaqueous electrolyte cell
JPS55148367A (en) * 1979-05-08 1980-11-18 Matsushita Electric Ind Co Ltd Manufacture of positive electrode of cell
JPS5671272A (en) * 1979-11-15 1981-06-13 Sanyo Electric Co Ltd Nonaqueous-electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108220A (en) * 1978-02-10 1979-08-24 Sanyo Electric Co Nonnaqueous electrolyte cell
JPS55148367A (en) * 1979-05-08 1980-11-18 Matsushita Electric Ind Co Ltd Manufacture of positive electrode of cell
JPS5671272A (en) * 1979-11-15 1981-06-13 Sanyo Electric Co Ltd Nonaqueous-electrolyte battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445812A1 (en) * 2001-10-17 2004-08-11 Sony Corporation Alkaline battery
EP1445812A4 (en) * 2001-10-17 2006-11-29 Sony Corp Alkaline battery
EP1662592A1 (en) * 2003-07-15 2006-05-31 Itochu Corporation Current collecting structure and electrode structure
EP1662592A4 (en) * 2003-07-15 2008-09-24 Itochu Corp Current collecting structure and electrode structure
CN105826595A (en) * 2015-01-06 2016-08-03 深圳市比克电池有限公司 Application of alpha-MoO3-modified graphene in lithium ion battery and lithium ion battery thereof

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JP2002279985A5 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR102278698B1 (en) Preparing method of negative active material comprising silica-metal composite for lithium secondary battery and negative active material using the same, and lithium secondary battery
CN109860603A (en) Lithium battery pole slice and preparation method thereof and lithium battery
US5004657A (en) Battery
JPS63114057A (en) Nonaqueous secondary battery
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JPS62226560A (en) Nonaqueous electrolyte battery
JPH0660880A (en) Lithium secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH11329444A (en) Nonaqueous electrolyte secondary battery
JP2001357872A (en) Nickel-hydrogen secondary battery
CN109449444A (en) Battery anode slice and its manufacturing method and lithium ion battery and its manufacturing method
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
US20220238891A1 (en) Electrode and electricity storage device
JP2000235869A (en) Nonaqueous electrolyte secondary battery
JP3330088B2 (en) Negative electrode for secondary battery
JP7188224B2 (en) All-solid battery
JPH03190060A (en) Polyaniline battery
JPH0430713B2 (en)
JPH02239572A (en) Polyaniline battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH06132027A (en) Nonaquaous electrolytic secondary battery
JPS6174258A (en) Lithium organic secondary battery