JPH0430713B2 - - Google Patents

Info

Publication number
JPH0430713B2
JPH0430713B2 JP59196296A JP19629684A JPH0430713B2 JP H0430713 B2 JPH0430713 B2 JP H0430713B2 JP 59196296 A JP59196296 A JP 59196296A JP 19629684 A JP19629684 A JP 19629684A JP H0430713 B2 JPH0430713 B2 JP H0430713B2
Authority
JP
Japan
Prior art keywords
active material
nickel
positive electrode
filling
nickel positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59196296A
Other languages
Japanese (ja)
Other versions
JPS6174261A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59196296A priority Critical patent/JPS6174261A/en
Publication of JPS6174261A publication Critical patent/JPS6174261A/en
Publication of JPH0430713B2 publication Critical patent/JPH0430713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はアルカリ蓄電池用ニツケル正極に関す
るものである。 従来技術とその問題点 アルカリ蓄電池用ニツケル正極としては、ニツ
ケル粉末を穿孔鋼板あるいはニツケルネツト等に
焼結させた多孔体基板に活物質を充填させた焼結
式極板がよく知られている。 この多孔体基板は、多孔体細孔が10μ以下と小
さいので活物質の充填は公知の如く繁雑な工程を
繰返す溶液含浸法に限定されている。 一方、活物質である水酸化ニツケルの固体粉末
を直接に充填したものとして、たとえば水酸化ニ
ツケル粉末に電導剤や結着剤を加えてプレスし、
ペレツト状にして使用するボタン型や、穿孔鋼板
を加工しポケツト部を作り、その中に水酸化ニツ
ケル粉末および電導剤等の混合されたものを充填
するポケツト型がある。さらに数十〜数百ミクロ
ンの細孔からなる金属繊維焼結体、あるいはスポ
ンジ状ニツケル多孔体に水酸化ニツケルを主体と
した活物質そのものを水等によつてペースト状に
して、直接充填するペースト型がある。 後者の水酸化ニツケル固体粉末を直接充填する
ものは、溶液含浸法と異なり、微孔性焼結体を使
用しない為集電性に乏しく、50〜60%程度の活物
質利用率である。これは、焼結式極板の活物質利
用率90%に比べて大巾に悪い性能である。これを
改良するべく、水酸化ニツケル粉末とカーボニル
ニツケル粉末の如く微細な粒子を混合して用いて
いる。しかしながらこの場合でも性能向上はわず
かに約10%程度にすぎない。この様に正極に混合
したニツケル粉末が有効に作用しない原因は、正
極の充放電々位によつてニツケル粉末の表面に、
電導性の悪いニツケル水酸化物が形成されるため
である。 発明の目的 本発明は、アルカリ蓄電池用ニツケル正極、特
に水酸化ニツケル活物質粉末を直接に充填する正
極において、活物質の利用率を向上させて、高性
能で且つ生産性の高いニツケル−カドミウム蓄電
池用性極板を提供することを目的とする。 発明の構成 すなわち、本発明は、活物質そのものを、プレ
ス成形して電極用基板のポケツト部に充填した
り、ペースト状として電極用基板に充填したりし
て、電極用基板に直接充填してなるアルカリ蓄電
池用ニツケル正極において、活物質である水酸化
ニツケル粉末に2価の水酸化コバルト粉末を50〜
80:50〜20の割合で混合し、この混合物を直接充
填してなることを特徴とするものである。 実施例 以下本発明の一実施例について詳述する。 硫酸コバルト水溶液を60〜80℃のアルカリ溶液
と中和させて水酸化コバルトを沈澱させた。この
沈澱物を充分に温水で洗浄して、アルカリ分を除
去した。その後真空乾燥により水分を除去すると
ピンク色を呈した2価の水酸化コバルトβ−Co
(OH)2が得られた。この2価の水酸化コバルト
粉末5〜50%を水酸化ニツケル粉末50〜95%およ
び少量の添加剤(これには電導剤や結着剤が含ま
れていてもよい。)と共に粉砕混合した後、プレ
スしてペレツト状にした。このペレツトをニツケ
ルネツトで包み正極とした。 同様に酸化カドミウム粉末、金属カドミウム粉
末の混合物からなる正極よりも容量が大である負
極を作り、ポリプロプレン不織布セパレータ、比
重1.20の水酸化カリウム水溶液等を用いて直径
15.6mm、厚み6.2mmのボタン型ニツケル−カドミ
ウム蓄電池を作成した。この電池を充放電して、
活物質利用率を測定した。なお比較のため、2価
の水酸化コバルト粉末に代えて従来のニツケル粉
末5〜
INDUSTRIAL APPLICATION FIELD The present invention relates to a nickel positive electrode for alkaline storage batteries. Prior Art and Its Problems As a nickel positive electrode for an alkaline storage battery, a sintered electrode plate is well known, in which a porous substrate made by sintering nickel powder into a perforated steel plate or nickel net is filled with an active material. Since this porous substrate has small pores of 10 μm or less, filling of the active material is limited to a well-known solution impregnation method that involves repeating complicated steps. On the other hand, solid powder of nickel hydroxide, which is an active material, is directly filled, for example, by adding a conductive agent or a binder to nickel hydroxide powder and pressing it.
There are button types that are used in the form of pellets, and pocket types that process a perforated steel plate to form a pocket and fill it with a mixture of nickel hydroxide powder, conductive agent, and the like. Furthermore, a paste in which the active material itself, which is mainly composed of nickel hydroxide, is made into a paste form with water or the like and directly filled into a metal fiber sintered body with pores of several tens to hundreds of microns or a sponge-like porous nickel body. There is a type. The latter method, in which nickel hydroxide solid powder is directly filled, differs from the solution impregnation method in that it does not use a microporous sintered body, so it has poor current collecting properties and has an active material utilization rate of about 50 to 60%. This is a significantly worse performance than the 90% active material utilization rate of the sintered electrode plate. In order to improve this, a mixture of fine particles such as nickel hydroxide powder and carbonyl nickel powder is used. However, even in this case, the performance improvement is only about 10%. The reason why the nickel powder mixed in the positive electrode does not work effectively is that the surface of the nickel powder is affected by the charging and discharging levels of the positive electrode.
This is because nickel hydroxide with poor conductivity is formed. Purpose of the Invention The present invention provides a nickel-cadmium storage battery with high performance and high productivity by improving the utilization rate of the active material in a nickel positive electrode for an alkaline storage battery, particularly in a positive electrode directly filled with nickel hydroxide active material powder. The purpose is to provide a useful electrode plate. Structure of the Invention In other words, the present invention is capable of directly filling the electrode substrate by press-molding the active material itself and filling it into the pocket portion of the electrode substrate, or by filling the electrode substrate in the form of a paste. In the nickel positive electrode for alkaline storage batteries, divalent cobalt hydroxide powder is added to the active material nickel hydroxide powder by 50 to 50%.
It is characterized by being mixed at a ratio of 80:50 to 20 and directly filling this mixture. EXAMPLE An example of the present invention will be described in detail below. An aqueous cobalt sulfate solution was neutralized with an alkaline solution at 60 to 80°C to precipitate cobalt hydroxide. This precipitate was thoroughly washed with warm water to remove alkaline content. Divalent cobalt hydroxide β-Co, which took on a pink color when the water was then removed by vacuum drying.
(OH) 2 was obtained. After pulverizing and mixing 5 to 50% of this divalent cobalt hydroxide powder with 50 to 95% of nickel hydroxide powder and a small amount of additives (which may contain conductive agents and binders). , pressed into pellets. This pellet was wrapped in nickel net and used as a positive electrode. Similarly, a negative electrode with a larger capacity than the positive electrode was made from a mixture of cadmium oxide powder and metal cadmium powder, and a polypropylene nonwoven fabric separator, a potassium hydroxide aqueous solution with a specific gravity of 1.20, etc. were used to make the negative electrode.
A button-shaped nickel-cadmium storage battery with a size of 15.6 mm and a thickness of 6.2 mm was created. Charge and discharge this battery
The active material utilization rate was measured. For comparison, conventional nickel powder 5~ was used instead of divalent cobalt hydroxide powder.

【表】【table】

【表】 50%を使用した正極を用いた電池についても活物
質利用率を測定した。第1表は上記の性能比較を
示したものである。 すなわち、正極容量制限のボタン型電池を0.1C
電流で15時間充電した後、0.2C電流で1.00Vまで
放電した。正極の水酸化ニツケル活物質の利用率
および放電容量を充填量(水酸化ニツケル+水酸
化コバルトあるいはニツケル粉末)で除した値で
ある。 第1表に示したごとく、従来のニツケル粉末添
加品は、その添加量を増加させても活物質利用率
は、それほど向上しない。 本発明の2価の水酸化コバルト粉末を混合した
ものは、著しく活物質利用率が向上した。例え
ば、従来のニツケル粉末20%混合においては、活
物質利用率が58%である。これに対して、2価の
水酸化コバルト粉末20%混合では、活物質利用率
が94%にも向上した。但し、2価の水酸化コバル
トの混合量に伴なつて水酸化ニツケルの活物質利
用率は増大する。しかし、直接容量に関係する水
酸化ニツケルの含有量が減少するため、絶対容量
の減少があり適切な混合量を選択する必要があ
る。この最適コバルト混合量は、得られた放電容
量を正極活物質充填量で除した値(mAh/g)
によつて比較できる。上記の結果より最も正極容
量が大となる2価の水酸化コバルト混合量は、5
〜30%である。 また活物質利用率が著しく向上する2価の水酸
化コバルトの混合量は20〜50%である。これによ
れば活物質利用率は90%以上となる。 上述の如く、2価の水酸化コバルト粉末を混合
した場合、水酸化ニツケル活物質の活物質利用率
が向上する。 しかし一般に水酸化コバルトを代表する3価の
水酸化コバルトを混合した場合あるいは、コバル
トとニツケルの固溶体として添加した場合は、効
果がほとんど認められなかつた。 第1図は市販の3価の水酸化コバルト、第2図
は本発明の2価水酸化コバルト・β−Co(OH)2
のX線回折図である。 第1図と第2図の回折図において、あきらかに
結晶構造が異なつている。 なぜ2価の水酸化コバルトの混合が効果があ
り、3価の水酸化コバルトの混合が効果が無いの
かは明確ではない。しかしながら以下の如く推定
される。 混合された2価の水酸化コバルトは、充放電の
電気化学的作用により3価の水酸化コバルトに変
化する。しかしながらこのものは、一般の化学的
に合成された3価の水酸化コバルトとは異なつた
ものではないかと考えられる。 上記の実施例は活物質を金属ネツトで包んでな
るボタン型ニツケル正極について述べたが、ニツ
ケルメツキした穿孔鋼板を加工して形成したポケ
ツト部に活物質を充填したポケツト型ニツケル正
極、金属繊維よりなる多孔性基板に活物質を充填
したニツケル正極、連続気泡型多孔性プラスチツ
クに金属メツキを施すことによつて作成したスポ
ンジ状金属多孔体基板に活物質を充填したニツケ
ル正極等の場合でも同様な効果が得られた。 発明の効果 以上のように本発明によれば、活物質を直接充
填してなるアルカリ蓄電池用ニツケル正極を、活
物質である水酸化ニツケル粉末に2価の水酸化コ
バルト粉末を50〜80:50〜20の割合で混合して製
作したので、活物質利用率を90%以上に大巾に向
上させることができる。従つて高性能で且つ焼結
式極板に比して生産性の高いアルカリ蓄電池用ニ
ツケル正極を得ることができ、その工業的価値は
極めて大である。 また活物質を金属ネツトで包んでなるボタン型
正極に限らず、ニツケルメツキした穿孔鋼板を加
工して形成したポケツト部に活物質を充填してな
るポケツト型正極、活物質を金属繊維からなる多
孔性基板に充填してなる正極、連続気泡型多孔性
プラスチツクに金属メツキを施すことにより作成
したスポンジ状金属多孔体基板に活物質を充填し
てなる正極においても、同様の効果を奏する。
[Table] The active material utilization rate was also measured for a battery using a positive electrode using 50%. Table 1 shows the above performance comparison. In other words, a button type battery with a positive electrode capacity limit of 0.1C
After charging with current for 15 hours, it was discharged to 1.00V with 0.2C current. This is the value obtained by dividing the utilization rate and discharge capacity of the nickel hydroxide active material of the positive electrode by the filling amount (nickel hydroxide + cobalt hydroxide or nickel powder). As shown in Table 1, with conventional nickel powder additives, even if the amount added is increased, the active material utilization rate does not improve much. The mixture containing the divalent cobalt hydroxide powder of the present invention had a significantly improved active material utilization rate. For example, in a conventional nickel powder mixture of 20%, the active material utilization rate is 58%. On the other hand, when a 20% mixture of divalent cobalt hydroxide powder was used, the active material utilization rate increased to 94%. However, the active material utilization rate of nickel hydroxide increases as the amount of divalent cobalt hydroxide mixed increases. However, since the content of nickel hydroxide, which is directly related to capacity, decreases, the absolute capacity decreases, and it is necessary to select an appropriate mixing amount. This optimal cobalt mixing amount is the value obtained by dividing the obtained discharge capacity by the filling amount of positive electrode active material (mAh/g)
It can be compared by From the above results, the mixing amount of divalent cobalt hydroxide that gives the largest positive electrode capacity is 5
~30%. Further, the mixing amount of divalent cobalt hydroxide, which significantly improves the active material utilization rate, is 20 to 50%. According to this, the active material utilization rate is over 90%. As described above, when divalent cobalt hydroxide powder is mixed, the active material utilization rate of the nickel hydroxide active material is improved. However, when trivalent cobalt hydroxide, which is representative of cobalt hydroxide, is mixed, or when cobalt and nickel are added as a solid solution, almost no effect is generally observed. Figure 1 shows commercially available trivalent cobalt hydroxide, Figure 2 shows the divalent cobalt hydroxide of the present invention, β-Co(OH) 2
It is an X-ray diffraction diagram of. In the diffraction diagrams of FIG. 1 and FIG. 2, the crystal structures are clearly different. It is not clear why mixing divalent cobalt hydroxide is effective and mixing trivalent cobalt hydroxide is ineffective. However, it is estimated as follows. The mixed divalent cobalt hydroxide changes into trivalent cobalt hydroxide by the electrochemical action of charging and discharging. However, it is thought that this material is different from general chemically synthesized trivalent cobalt hydroxide. The above example describes a button-shaped nickel positive electrode in which the active material is wrapped in a metal net, but a pocket-shaped nickel positive electrode in which the active material is filled in a pocket formed by processing a nickel-plated perforated steel plate, and a pocket-shaped nickel positive electrode made of metal fibers is also used. Similar effects can be obtained with nickel positive electrodes in which a porous substrate is filled with an active material, or in the case of a nickel positive electrode in which an active material is filled in a sponge-like porous metal substrate created by applying metal plating to open-cell porous plastic. was gotten. Effects of the Invention As described above, according to the present invention, a nickel positive electrode for an alkaline storage battery is prepared by directly filling an active material with divalent cobalt hydroxide powder in a ratio of 50 to 80:50 to nickel hydroxide powder, which is an active material. Since it was manufactured by mixing at a ratio of ~20%, the active material utilization rate can be greatly improved to over 90%. Therefore, it is possible to obtain a nickel positive electrode for alkaline storage batteries that has high performance and higher productivity than sintered electrode plates, and its industrial value is extremely large. In addition to the button-type positive electrode in which the active material is wrapped in a metal net, there are also pocket-type positive electrodes in which the active material is filled in a pocket formed by processing a nickel-plated perforated steel plate, and porous electrodes in which the active material is made of metal fibers. A similar effect can be obtained in a positive electrode formed by filling a substrate, or in a positive electrode formed by filling an active material into a sponge-like metal porous substrate prepared by metal plating open-cell porous plastic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は市販の水酸化コバルト(3価)のX線
回折図であり、第2図は本発明において用いた2
価の水酸化コバルト・β−Co(OH)2のX線回折
図である。
Figure 1 is an X-ray diffraction diagram of commercially available cobalt hydroxide (trivalent), and Figure 2 is an X-ray diffraction diagram of cobalt hydroxide (trivalent) used in the present invention.
2 is an X-ray diffraction diagram of cobalt hydroxide β-Co(OH) 2 .

Claims (1)

【特許請求の範囲】 1 活物質そのものを、プレス成形して電極用基
板のポケツト部に充填したり、ペースト状として
電極用基板に充填したりして、電極用基板に直接
充填してなるアルカリ蓄電池用ニツケル正極にお
いて、活物質である水酸化ニツケル粉末に2価の
水酸化コバルト粉末を50〜80:50〜20の割合で混
合し、この混合物を直接充填してなることを特徴
とするアルカリ蓄電池用ニツケル正極。 2 活物質を金属ネツトで包んでなるボタン型で
ある特許請求の範囲第1項記載のアルカリ蓄電池
用ニツケル正極。 3 ニツケルメツキした穿孔鋼板を加工して形成
したボケツト部に活物質を充填してなるポケツト
型である特許請求の範囲第1項記載のアルカリ蓄
電池用ニツケル正極。 4 活物質を金属繊維からなる多孔性基板に充填
してなる特許請求の範囲第1項記載のアルカリ蓄
電池用ニツケル正極。 5 連続気泡型多孔性プラスチツクに金属メツキ
を施すことにより作成したスポンジ状金属多孔体
基板に活物質を充填してなる特許請求の範囲第1
項記載のアルカリ蓄電池用ニツケル正極。
[Claims] 1. An alkali which is formed by press-molding the active material itself and filling it into the pocket of the electrode substrate, or by filling the electrode substrate in the form of a paste, and directly filling the electrode substrate. In a nickel positive electrode for a storage battery, an alkaline product is produced by mixing nickel hydroxide powder, which is an active material, with divalent cobalt hydroxide powder in a ratio of 50 to 80:50 to 20, and directly filling this mixture. Nickel positive electrode for storage batteries. 2. The nickel positive electrode for an alkaline storage battery according to claim 1, which is button-shaped and has an active material wrapped in a metal net. 3. The nickel positive electrode for an alkaline storage battery according to claim 1, which is a pocket type in which an active material is filled in a pocket formed by processing a nickel-plated perforated steel plate. 4. A nickel positive electrode for an alkaline storage battery according to claim 1, which is formed by filling a porous substrate made of metal fibers with an active material. 5. Claim 1, in which an active material is filled in a sponge-like porous metal substrate prepared by metal plating open-cell porous plastic.
Nickel positive electrode for alkaline storage batteries as described in .
JP59196296A 1984-09-19 1984-09-19 Nickel positive pole for alkaline strage battery Granted JPS6174261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196296A JPS6174261A (en) 1984-09-19 1984-09-19 Nickel positive pole for alkaline strage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196296A JPS6174261A (en) 1984-09-19 1984-09-19 Nickel positive pole for alkaline strage battery

Publications (2)

Publication Number Publication Date
JPS6174261A JPS6174261A (en) 1986-04-16
JPH0430713B2 true JPH0430713B2 (en) 1992-05-22

Family

ID=16355441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196296A Granted JPS6174261A (en) 1984-09-19 1984-09-19 Nickel positive pole for alkaline strage battery

Country Status (1)

Country Link
JP (1) JPS6174261A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124061A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Nickel positive pole plate for alkaline storage battery
SG71014A1 (en) * 1996-02-07 2000-03-21 Sanyo Electric Co Conductive agent and non-sintered nickel electrode for alkaline storage batteries
JP3429741B2 (en) 2000-03-24 2003-07-22 松下電器産業株式会社 Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP3558590B2 (en) 2000-07-14 2004-08-25 松下電器産業株式会社 Method for producing positive electrode active material for alkaline storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery

Also Published As

Publication number Publication date
JPS6174261A (en) 1986-04-16

Similar Documents

Publication Publication Date Title
JPH0430713B2 (en)
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH0855618A (en) Sealed alkaline storage battery
JPH0429189B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP2001155724A (en) Akaline storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2530281B2 (en) Alkaline storage battery
JPH0793138B2 (en) Positive electrode plate for battery and manufacturing method thereof
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3384109B2 (en) Nickel plate
JPS61124061A (en) Nickel positive pole plate for alkaline storage battery
JPS61124068A (en) Nickel cadmium alkaline battery
JPH041992B2 (en)
JPS60211766A (en) Paste type negative electrode plate for alkaline storage battery
JPH05314981A (en) Alkaline storage battery and manufacture thereof
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JPH10270038A (en) Paste nickel hydroxide positive electrode plate for alkaline storage battery
JPH07118331B2 (en) Nickel-cadmium storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term