JPS62224019A - Manufacture of compound semiconductor thin film - Google Patents

Manufacture of compound semiconductor thin film

Info

Publication number
JPS62224019A
JPS62224019A JP6760986A JP6760986A JPS62224019A JP S62224019 A JPS62224019 A JP S62224019A JP 6760986 A JP6760986 A JP 6760986A JP 6760986 A JP6760986 A JP 6760986A JP S62224019 A JPS62224019 A JP S62224019A
Authority
JP
Japan
Prior art keywords
thin film
ultraviolet light
pattern
substrate
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6760986A
Other languages
Japanese (ja)
Other versions
JPH07105348B2 (en
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61067609A priority Critical patent/JPH07105348B2/en
Publication of JPS62224019A publication Critical patent/JPS62224019A/en
Publication of JPH07105348B2 publication Critical patent/JPH07105348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form an area with a fine shape and whose composition changes rapidly at the border on the surface of a substrate by contraction-projecting ultravilt rays which pass through a pattern-shaped mask capable of performing selective compound formation. CONSTITUTION:The shape of the laser beam emitted from an exima laser light source 101 is made to be a rectangular form with a cylindrical lens 103, 104, turned by 90 deg. by means of a reflective mirror 105 and made into a parallel beam with a concave lens 106 and a convex lens 107. The parallel beam passes through a pattern-shaped mask 108; however the edge of the beam passing through the mask is hardly out of focus since the width of the flit of the mask 108 and the distance between slits are 10mum-100mum, and the wavelength of the exima laser is 1930Angstrom or 2220Angstrom . The transmitted beam is condensed with a reduction exposure lens 110 and formed into an image on the substrate 113, with the pattern shape reduced to 1/5-1/10. Therefore, the width of the line of the pattern can be radiated onto the surface of the substrate with the width of the line being 1mu-10mum, with the border being hardly out of focus due to the diffraction effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体薄膜を基板平面上で選択的に組
成の異なるように成長する製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a manufacturing method for growing compound semiconductor thin films with selectively different compositions on the plane of a substrate.

〔従来の技術〕[Conventional technology]

従来0M6CVD法による化合物半導体薄膜の製造方法
は、■族元素の供給源として、トリメチルガリウム(’
!’MGα)、トリメチルアルミニウム(TMAJ)等
の有機金属化合物と、■族元素Q供給源としてアルシン
(AsHs)等の水素化物等を1反応炉O中の加熱され
た基板上に流し、エピタキシャル改良させるものであっ
た。また、この成長中に、供給原料分子の分解波長に相
等する紫外光を照射することにより、光照射部分の結晶
組成は、照射しなβ部分の組成と異なることが知られて
いる。
The conventional method for manufacturing compound semiconductor thin films using the 0M6CVD method uses trimethylgallium ('
! Organometallic compounds such as 'MGα), trimethylaluminum (TMAJ), and hydrides such as arsine (AsHs) as a group II element Q supply source are flowed onto a heated substrate in a reactor O for epitaxial improvement. It was something. Furthermore, it is known that by irradiating ultraviolet light corresponding to the decomposition wavelength of the feedstock molecules during this growth, the crystal composition of the irradiated portion is different from the composition of the non-irradiated β portion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述O従来技術では、熱分解によるMOC’7D
法では基板平面上に均一な組成(D(と会物半導体薄膜
が成長するだけであり、乎面上に組成比を変えた構造を
製作するには、エツチング、再成長の工程?経なければ
ならないという問題点を有する。また、平面)、■組成
比を変えるためには。
However, in the conventional technology mentioned above, MOC'7D due to thermal decomposition
In this method, only a semiconductor thin film with a uniform composition (D) is grown on the plane of the substrate, and in order to fabricate a structure with a different composition ratio on the plane, etching and regrowth steps must be performed. There is also the problem that the composition ratio cannot be changed.

紫外光照射を行なえばよいが、微細な形状パターンに光
照射を行なう場合、マスクからの出射光が、回折現象に
より、基板とでエッヂ0はやけたパターン状に、選択組
成成長してしまうという問題点を胃していた。
Ultraviolet light irradiation can be used, but when light is irradiated onto a fine pattern, the light emitted from the mask grows selectively into a pattern with zero edges due to the diffraction phenomenon. I was worried about the problem.

そこで本情明はこのような問題点を解決するもので、そ
の目的とするところは、微細な形状であり且つ、境界に
おいて急峻に組成の変化する領域を基板平面に作成し得
る化合物半導体薄膜Q成長方法を提供するところにある
The purpose of the present invention is to solve these problems, and the purpose is to create a compound semiconductor thin film Q that has a fine shape and can create regions on the substrate plane where the composition changes sharply at the boundaries. It's about providing a way to grow.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化合物半導体薄膜の成長方法は有機金属化合物
を原料とするMOCVD法による化合物半導体薄膜Q選
択的製造方法ICおいて、前記有機金属化合物0いずれ
か■尤吸収領駿内にある紫外yt、源と該紫外光を平行
光線にする光学系と1選択的組成形成を行ない得るパタ
ーン状マスクと該マスクを透過した前記紫外光を成長基
板上に縮小投影する光学系を有するa造装置によって1
選択的紫外光照射を縮小il!元に行なうことを%微と
する。
The method for growing a compound semiconductor thin film of the present invention is a method for selectively producing a compound semiconductor thin film Q by an MOCVD method using an organometallic compound as a raw material. 1. By means of an a-producing apparatus having a source, an optical system that converts the ultraviolet light into parallel light beams, a patterned mask capable of selectively forming a composition, and an optical system that reduces and projects the ultraviolet light transmitted through the mask onto a growth substrate.
Reduce selective ultraviolet light irradiation! The original thing to do is % fine.

〔作用〕[Effect]

本発明のと記の構成によれば、例えば、TMGαとTM
JJQ吸収波長域にある紫外光で光照射を行なった部分
は、基板表面に飛来するGαあるいは八!の社が、紫外
光の吸収度により異なり、このことにより薄膜内OGα
とAI/の組成比が、光を照射しない場合と異なる。従
って微細パターン状に紫外光照射を行ないながら、薄膜
成長を行なえば、微細パターン状に選択的に組成の異な
る領域が形成できるOである。
According to the configuration of the present invention, for example, TMGα and TM
The portions irradiated with ultraviolet light in the JJQ absorption wavelength range are exposed to Gα or 8! that fly to the substrate surface. The amount of OGα in the thin film varies depending on the absorbance of ultraviolet light.
The composition ratio of and AI/ is different from that in the case where no light is irradiated. Therefore, if a thin film is grown while irradiating ultraviolet light in a fine pattern, regions with different compositions can be selectively formed in a fine pattern.

更に%紫外光の照射を縮小露光法により行なうことによ
り、パターン状マスクの線幅及びその間隔を大きくとる
ことができ、その結果、マスクを透過するときQエッチ
による回折効果がなく、基板表面上に微細なパターン照
射及び境界における組成の急峻な変化が実現できるので
ある。
Furthermore, by performing irradiation with ultraviolet light using a reduction exposure method, it is possible to increase the line width and spacing of the patterned mask, and as a result, there is no diffraction effect due to Q-etching when it passes through the mask, and there is no diffraction effect on the substrate surface. This makes it possible to achieve fine pattern irradiation and sharp changes in composition at boundaries.

〔実施例〕〔Example〕

第1図は本発明の実施列における化合物半導体薄膜の製
造方法における紫外光照射の基本構成図を示す、MOC
VD装置における111の反応管中には、113の単結
晶基板が置かれ、101のエキシマ−レーザ光源から、
出射されたレーザ光1t103,104のシリンドリカ
ルレンズによりのビーム形状を、正方形に近いものにす
る。105の誘電多1−膜で製造された反射鏡によって
、方向ヲ90°曲げられ、106の凹レンズと107の
凸レンズにより、千行光線に変えられ、且つ、106と
107の距離により平行光線0拡がりは変換出来る。モ
行yt線は108のパターン状マスクを透過するが、マ
スクのスリット等の線幅は、 10μm〜100μm1
また。スリット間隔もlOμm〜100μmO長さに保
っである。エキシマ−レーザ光の波長は% 1930A
あるいは2220Aを用いるので、こ0マスクを透過し
た光のエッヂのぼけはほとんど無視できる。この109
の透過光Th1lOの縮小露光レンズにより集束し、1
13の基板表面上に結像させる。110の縮小レンズに
より、パターン形状は、見〜殖に縮小されて、113の
基板上に結はできた。従ってマスクパターンの線幅10
#m〜loOμmがlμ73〜lUμmO線幅で基板表
面上に照射でき、しかも回折効果による境界Oはけはt
lとんとない。
FIG. 1 shows a basic configuration diagram of ultraviolet light irradiation in the method for manufacturing a compound semiconductor thin film in an embodiment of the present invention.
In the VD device, a single crystal substrate 113 is placed in a reaction tube 111, and an excimer laser light source 101 emits light from the excimer laser light source 101.
The beam shape of the emitted laser beams 1t103 and 104 by the cylindrical lens is made close to a square. The direction is bent by 90 degrees by the reflective mirror made of dielectric multi-film 105, and the parallel rays are transformed into a thousand line rays by the concave lens 106 and the convex lens 107, and the parallel rays have zero spread due to the distance between 106 and 107. can be converted. The yt line passes through a 108 patterned mask, but the line width of the slits, etc. in the mask is 10 μm to 100 μm1.
Also. The slit interval is also maintained at a length of 10 μm to 100 μm. The wavelength of excimer laser light is %1930A
Alternatively, since 2220A is used, the blurring of the edges of the light transmitted through the 0 mask can be almost ignored. This 109
The transmitted light Th11O is focused by a reduction exposure lens, and 1
The image is formed on the surface of the substrate No. 13. Using the reduction lens 110, the pattern shape was reduced to an approximate size and formed on the substrate 113. Therefore, the line width of the mask pattern is 10
#m~loOμm can be irradiated onto the substrate surface with a line width of lμ73~lUμmO, and the boundary O due to the diffraction effect is t
l It's outrageous.

第2図には1本発明による紫外光照射装置を含むMOC
VD装[)m本111FIIt、−xス、 208 O
反応管内には210のカーボンサセプター上に2090
亀結晶基板が設置されている、基板t!211の高周波
電源とコイルにより°500℃〜800℃に加熱される
。220,221の有機金属化合物の蒸気は水素ガスを
キャリアとして、反応管中に導入される。AIkGaA
a  系の化合物半導体O場合には、■族元素の原料と
してTMGα、TMAA。
FIG. 2 shows an MOC including an ultraviolet light irradiation device according to the present invention.
VD equipment [)m 111 FIIt, -x, 208 O
Inside the reaction tube, 2090 carbon susceptors were placed on 210 carbon susceptors.
Board t where the turtle crystal board is installed! It is heated to 500°C to 800°C by a 211 high frequency power source and coil. The vapors of the organometallic compounds Nos. 220 and 221 are introduced into the reaction tube using hydrogen gas as a carrier. AIkGaA
In the case of the a-based compound semiconductor O, TMGα and TMAA are used as the raw materials for group Ⅰ elements.

V族元素O原料としてAsH2を用いれば、エキシマ−
レーザの1930Å、2220Hの波長の発振光によっ
てTMGα、TMAJが光エネルギーによって分解され
るが、TMAJの吸収係数が大であるため、基板表面上
OA!原子の数は%元照射しない部分に比較して大とな
る。従って薄膜中の八!の濃度は照射部で大となる0本
実施列の場合通常!7) AAGcLAll  の改良
条件において、A7が15チG、が85チの混成比で形
成される条件において、2220Aの紫外光照射部では
、A7が20俤、Gαが80チの混成比で% l##度
Q高vz A7Gα八8  薄膜が形成可能であった。
If AsH2 is used as a raw material for group V element O, excimer
TMGα and TMAJ are decomposed by the optical energy of the laser's oscillated light with wavelengths of 1930 Å and 2220 H, but since the absorption coefficient of TMAJ is large, OA! The number of atoms is larger than that in the non-irradiated area. Therefore eight in thin film! The concentration of is usually large in the irradiated area in the case of a 0 line implementation row! 7) Under the improved conditions of AAGcLAll, under the conditions where A7 is formed at a mixed ratio of 15 inches and Gα is formed at a mixed ratio of 85 inches, in the ultraviolet light irradiation section of 2220A, %l is formed at a mixture ratio of 20 inches of A7 and 80 inches of Gα. ## Degree Q height vz A7Gα88 A thin film could be formed.

ストライプ状(光照射した場合■境界における組成0急
峻性は良^。
Striped shape (when irradiated with light ■ The composition 0 steepness at the boundary is good.

本発明による製造方法によって、 A、%、za5  
導波路中に、レンズ形状17)An濃度の低い領域形成
でき、且つ、境界が急峻であるため、薄膜レンズの形成
が可能であった。また、半導体レーザの活性層形成中に
、本発明による製造方法によって、ストライプ状O電流
、光閉じ込め層が形成でき、亀−モード発振の低閾直レ
ーザが!I!!造可能であった。
By the production method according to the present invention, A, %, za5
Lens shape 17) A region with low An concentration could be formed in the waveguide, and since the boundary was steep, it was possible to form a thin film lens. Furthermore, during the formation of the active layer of a semiconductor laser, the manufacturing method according to the present invention allows the formation of a stripe-shaped O current and optical confinement layer, resulting in a low-threshold direct laser with tortoise-mode oscillation! I! ! It was possible to build

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、化合物半導体N膜の
千面上に組成比の異なる領域を、境界でだれがなく形成
可能であることにより、散乱損失0少なtn薄嘆レンズ
の製造が可能であるという効果?有する。尚且つ、半導
体レーザQ活性層を横方向から、電流光閉じ込めが可能
であり、モード制御された低閾儂半導体し−ザQ製造が
可能であるという効果1に宵する。
As described above, according to the present invention, it is possible to form regions with different composition ratios on the 1,000-plane surface of a compound semiconductor N film without any droop at the boundaries, thereby making it possible to manufacture a tn thinning lens with zero scattering loss. The effect of being possible? have In addition, effect 1 is achieved in that it is possible to confine current and light in the semiconductor laser Q active layer from the lateral direction, and it is possible to manufacture a mode-controlled low threshold semiconductor laser Q.

また、縮小露光することにより、基板長面とで0光強度
密度が増し、光による反応効率が冒く、組成比の違いが
大きな選択成長が可能であるという効果も胃する。
In addition, reduction exposure increases the zero light intensity density on the long surface of the substrate, impairs the reaction efficiency due to light, and allows selective growth with large differences in composition ratio.

【図面の簡単な説明】[Brief explanation of drawings]

嘉1図は本発明の化合物子→体薄@製造方法による光露
光装置Q主要構成図である。 第2図は本発明0化会物半導体薄膜製造方法による製造
装[1iり主要購成図である。 102・・シャッター 1030104・・シリンド1
05・・反射鏡       リカルレンズ106・−
凹レンズ 107・・凸レンズ 112働−カーボンサセプター 2011エキシマ−レーザ 202 、203・・シリンドリカルレンズ204−・
反射鏡 205・・凹レンズ20G・・凸レンズ 20
7・・合成石英窓208・・反応炉 209・・基板 210e・カーボンサセプター 211・・高周波電源 212〜219・・パルプ22
0 、221・・有限金属 222〜2260番マスフローコントローラー227〜
228・会ガスボンベ 229@・ターボ分子ポンプ 230 、231・・ロータリーポンプ232・・除害
Vi ft  233・・パターン状マスク234・・
縮小露光レンズ 235・・シャッター以  北 出願人 セイコーエグンyi式会社 代理人 弁理士鏝 上  務池1名 III/、”二斗シ7レープパ 第1図
FIG. 1 is a main configuration diagram of a light exposure apparatus Q according to the compound particle→body thinning@ manufacturing method of the present invention. FIG. 2 is a main purchasing diagram of the manufacturing equipment [1i] according to the method for manufacturing a compound semiconductor thin film of the present invention. 102...Shutter 1030104...Cylinder 1
05... Reflector Rical Lens 106...
Concave lens 107... Convex lens 112 - Carbon susceptor 2011 Eximer laser 202, 203... Cylindrical lens 204...
Reflector 205...Concave lens 20G...Convex lens 20
7.Synthetic quartz window 208..Reactor 209..Substrate 210e.Carbon susceptor 211..High frequency power source 212-219..Pulp 22
0, 221...Limited Metals 222-2260 Mass Flow Controller 227-
228・Gas cylinder 229@・Turbo molecular pump 230, 231・・Rotary pump 232・・Harm removal Vi ft 233・・Patterned mask 234・・
Reduction exposure lens 235... From the shutter Applicant Seiko Egun YI type company agent Patent attorney Kami Mutsuike 1 person III

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物を原料とする化学気相成長法(以
下MOCVD法と記す)による化合物半導体薄膜の選択
的製造方法において、前記有機金属化合物のいずれかの
光吸収領域内にある紫外光源と、該紫外光を平行光線に
する光学系と、選択的組成形成を行ない得るパターン状
マスクと、該マスクを透過した前記紫外光を成長基板上
に縮小投影する光学系を有する製造装置によって、選択
的紫外光照射を縮小露光により行なうことを特徴とする
化合物半導体薄膜の製造方法。
(1) In a method for selectively producing a compound semiconductor thin film by a chemical vapor deposition method (hereinafter referred to as MOCVD method) using an organometallic compound as a raw material, an ultraviolet light source located within any light absorption region of the organometallic compound; , an optical system that converts the ultraviolet light into parallel light beams, a patterned mask capable of selectively forming a composition, and an optical system that reduces and projects the ultraviolet light transmitted through the mask onto a growth substrate. 1. A method for producing a compound semiconductor thin film, characterized in that targeted ultraviolet light irradiation is performed by reduction exposure.
(2)前記紫外光源がエキシマーレーザであり、その発
振波長が1930Åあるいは2220Åであることを特
徴とする特許請求の範囲第1項記載の化合物半導体薄膜
の製造方法。
(2) The method for manufacturing a compound semiconductor thin film according to claim 1, wherein the ultraviolet light source is an excimer laser whose oscillation wavelength is 1930 Å or 2220 Å.
JP61067609A 1986-03-26 1986-03-26 (III) -Method for manufacturing Group V compound semiconductor thin film Expired - Lifetime JPH07105348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067609A JPH07105348B2 (en) 1986-03-26 1986-03-26 (III) -Method for manufacturing Group V compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067609A JPH07105348B2 (en) 1986-03-26 1986-03-26 (III) -Method for manufacturing Group V compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS62224019A true JPS62224019A (en) 1987-10-02
JPH07105348B2 JPH07105348B2 (en) 1995-11-13

Family

ID=13349847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067609A Expired - Lifetime JPH07105348B2 (en) 1986-03-26 1986-03-26 (III) -Method for manufacturing Group V compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH07105348B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992523A (en) * 1982-11-18 1984-05-28 Nec Corp Method for crystal growth
JPS59111322A (en) * 1982-12-16 1984-06-27 Agency Of Ind Science & Technol Manufacture of thin-film
JPS6155927A (en) * 1984-08-28 1986-03-20 Toshiba Corp Formation of pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992523A (en) * 1982-11-18 1984-05-28 Nec Corp Method for crystal growth
JPS59111322A (en) * 1982-12-16 1984-06-27 Agency Of Ind Science & Technol Manufacture of thin-film
JPS6155927A (en) * 1984-08-28 1986-03-20 Toshiba Corp Formation of pattern

Also Published As

Publication number Publication date
JPH07105348B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4615904A (en) Maskless growth of patterned films
JPH02144910A (en) Internal light induction evaporating enhancement method of compound thin-film during or after epitaxial growth
WO1983004269A1 (en) Maskless growth of patterned films
JPH03504299A (en) Etching method
JPS62224019A (en) Manufacture of compound semiconductor thin film
US5186750A (en) Method and apparatus for forming semiconductor thin films
GB2190541A (en) A method for the production of semiconductor devices
JPS58119630A (en) Molecular beam crystal growth method
JP2003013236A (en) Pattering method
JPS59121917A (en) Vapor growth device
US5273932A (en) Method for forming semiconductor thin films where an argon laser is used to suppress crystal growth
JP2652630B2 (en) Crystal growth method
JPS5992523A (en) Method for crystal growth
JPH0431391A (en) Epitaxial growth
JPH0322410A (en) Formation of semiconductor thin film
JPS62183109A (en) Crystal growth
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JPH04212411A (en) Epitaxial growth method
JPS62138390A (en) Molecular beam epitaxy
JPH02164791A (en) Semiconductor thin film formation device
JPS6131392A (en) Vapor phase crystal growth device
JPH01184278A (en) Depositing method for high-purity metal
JPH0355827A (en) Photo excited epitaxial growth device
JPS63478A (en) Formation of thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term