JPS6222057A - Online predicting method for ferrite crystal grain of steel products - Google Patents

Online predicting method for ferrite crystal grain of steel products

Info

Publication number
JPS6222057A
JPS6222057A JP16158685A JP16158685A JPS6222057A JP S6222057 A JPS6222057 A JP S6222057A JP 16158685 A JP16158685 A JP 16158685A JP 16158685 A JP16158685 A JP 16158685A JP S6222057 A JPS6222057 A JP S6222057A
Authority
JP
Japan
Prior art keywords
transformation
rate
grain size
steel
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16158685A
Other languages
Japanese (ja)
Other versions
JPH0641936B2 (en
Inventor
Masahiko Morita
正彦 森田
Koichi Hashiguchi
橋口 耕一
Shinobu Okano
岡野 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16158685A priority Critical patent/JPH0641936B2/en
Publication of JPS6222057A publication Critical patent/JPS6222057A/en
Publication of JPH0641936B2 publication Critical patent/JPH0641936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To realize the control of the quality of steel products and the prediction of the quality thereof with high accuracy by measuring the conveying speed of the steel products and measuring the transformation rates in the plural longitudinal positions of the steel products thereby determining the progression rate of the gamma/alpha transformation of the steel products. CONSTITUTION:The progression condition of the transformation rate on a run-out table can be approximated by Y=exp{-[(k-t)/a]<n>}X100 when the gamma/alpha transformation rate is designated as Y%, the time elapsed after finish rolling as t(sec), constants by the chemical components of the steel plate are designated as K and (a) and the value depending on the progression rate of the transformation is designated as (n). The progression rate of the transformation can, therefore, be calculated from iVj=(Yj-Yi)/(tj-ti) if (n) is determined by substituting the measured value of the gamma/alpha transformation rate Y by the transformation rate detectors A1-A8 nearest the desired transformation rate range and the elapsed time (t) calculated from the conveying speed into the above-mentioned equation then determining the elapsed time ti, tj in the desired transformation rate range, for example, Yi, Yj by using such (n) value. The ferrite crystal grain size is predicted from the signals from the detectors A1-A8 and a conveying speedometer 24 and the information on the chemical components of the steel to be measured separately inputted into an arithmetic unit 22.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は鋼材のフェライト結晶粒径のオンライン予測方
法に係り、特に、ホットストリップミルあるいはプレー
トミル等で製造される圧延鋼材のフェライト結晶粒径(
粒度の概念を含む。以下同じ〉を、オンラインで高精度
に予測する方法に関する。
The present invention relates to an online prediction method for the ferrite grain size of steel materials, and in particular, the ferrite grain size (
Contains the concept of granularity. The present invention relates to a method for accurately predicting the following items online.

【従来の技術] 鋼材のフェライト結晶粒径は、該鋼材の強度及び低温靭
性、延性、更には降伏比、冷間成形加工性等に大きな影
響を与えるため、al1品を製造する上で制御を要する
重要な冶金的因子の一つである。 例えば高張カラインパイプ用熱延鋼板のように、高靭化
と高強度化を同時に達成する1手段として多くの結晶粒
の微細化技術が開発されて来たことは周知の通りである
。又低炭素鋼の成形加工性についても結晶粒径と密接な
関連があり、結晶粒径が大き過ぎる場合には、成形後に
、オレンヂビールと呼ばれる肌荒れを発生し、逆に結晶
粒径が小−さ過ぎる場合には成形加工性自体が劣化する
ので良好な品質及び成形加工性を得るためには、その最
適な結晶粒径に調整する必要があることも知られている
。 このように、結晶粒径は鋼製品の機械的性質を左右する
重要な因子でありながら、従来の測定方法では製造後の
製品から試片を採取し、機械的若しくは化学的に鏡面研
磨した後、適当な腐食液で結晶粒界を現出せしめ、これ
を顕微鏡によって観察することによってようやく知るこ
とができるものであった。 【発明が解決しようとする問題点】 しかしながら、これらの測定作業は極めて煩雑であり、
しかも破壊検査であるため測定点が制約され、!!製品
全体の結晶粒径の変動を把握することができないという
問題を有する。 一方、このような破壊検査に対してX11回折法(星野
ら:鉄と1Vo1.64. No 、 5 (1978
)P621)によるオンライン非接触測定方法も知られ
ているが、この方法は原理上被測定材の表面における結
晶粒径を対象とする測定法であり、例えば制御圧延を施
すために、板厚表層部と中心部とで結晶粒径が著しく異
なる高張カラインバイブ材のような場合には、測定結果
が製品の機械的性質と必ずしも対応せず有用とならない
こと、及び被測定材と検出器の距離の変動によって測定
精度が影響され易いこと、更には、測定装置が大掛つと
なり、しかも冷却水あるいは水蒸気等の存在する測定環
境下では充分な測定精度が得られないため、測定位置が
制約される等の難点を有している。
[Prior art] The ferrite grain size of steel has a large effect on the strength, low-temperature toughness, ductility, yield ratio, cold formability, etc. of the steel, so it must be controlled when producing Al1 products. It is one of the important metallurgical factors required. For example, it is well known that many grain refinement techniques have been developed as a means of achieving high toughness and high strength at the same time, such as in hot rolled steel sheets for high tension Karaline pipes. The formability of low carbon steel is also closely related to the crystal grain size; if the crystal grain size is too large, a rough surface called orange beer will occur after forming; conversely, if the crystal grain size is too small, It is also known that if the crystal grain size is too small, the moldability itself deteriorates, and therefore, in order to obtain good quality and moldability, it is necessary to adjust the crystal grain size to its optimum size. As described above, grain size is an important factor that affects the mechanical properties of steel products, but the conventional measurement method is to collect specimens from manufactured products, mechanically or chemically polish them to a mirror surface, and then It was only possible to find out the grain boundaries by exposing them with a suitable corrosive solution and observing them with a microscope. [Problems to be solved by the invention] However, these measurement operations are extremely complicated;
Moreover, since it is a destructive test, the measurement points are limited! ! There is a problem in that it is not possible to grasp fluctuations in the crystal grain size of the entire product. On the other hand, for such destructive inspection, the X11 diffraction method (Hoshino et al.: Iron and 1Vo1.64. No. 5 (1978
) P621) is also known, but this method is, in principle, a measurement method that targets the crystal grain size on the surface of the material to be measured. For example, in order to perform controlled rolling, it is necessary to In cases such as hypertonic Kalline vibrator materials, where the crystal grain size is significantly different between the central and central portions, the measurement results may not necessarily correspond to the mechanical properties of the product and may not be useful, and there may be differences between the material to be measured and the detector. Measurement accuracy is easily affected by changes in distance, and furthermore, the measurement equipment is large and sufficient measurement accuracy cannot be obtained in a measurement environment where cooling water or water vapor exists, so the measurement location is limited. It has some disadvantages such as being exposed to

【発明の目的】[Purpose of the invention]

本発明は、以上のような従来技術の問題に鑑みてなされ
たものであって、従来達し難かった熱延工程あるいは熱
処理工程における鋼材の結晶粒径を非接触で且つオンラ
インで連続測定可能とし、この測定情報から製造中の鋼
材の材質制御並びに     (材質予測を高精度に行
うことのできる鋼材のフェライト結晶粒径のオンライン
予測方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art as described above, and enables continuous non-contact and online measurement of the crystal grain size of steel materials during hot rolling or heat treatment processes, which has been difficult to achieve in the past. The purpose of this study is to provide an online prediction method for the ferrite grain size of steel materials that can control and predict the material properties of steel products with high accuracy from this measurement information.

【問題点を解決するための手段1 本発明は、オーステナイト状態からの冷却に際してγ/
α変態を生じる鋼材のフェライト結晶粒径の予測方法に
おいて、第1図にその要旨を示す如く、前記鋼材の熱延
ライン又は熱処理ライン搬送中に、γ/α変態率が0〜
80%の範囲において予め定めたγ/α変態率範囲にお
ける該鋼材のγ/α変態進行速度を、搬送速度測定及び
鋼材長手方向複数位置での変態率測定によって求める手
順と、該変態進行速度を、予め求めたフェライト結晶粒
径と変態進行速度との関係に対応させる手順と、を含む
ことにより上記目的を達成したものである。 上記構成における好ましい実i L!? 様は、前記予
め定めたγ/α変態率範囲が、鋼材のC当量が0゜6%
未満の場合に、0〜50%とされることである。これに
より、該鋼材における一層正確な粒径予測が可能である
。 【作用] 本発明は、先に本出願人が提案した「鋼材の変B11及
び平坦性のオンライン検出装置」 (特開昭59−18
8508>を用いて、各種の熱延鋼材について測定を行
っているうちに、特定範囲における鋼材のγ/α変態の
進行・挙動とR柊組織におけるフェライト結晶粒径との
間に極めて高い相関があることを見出し、該知見に基づ
き構成されたものである。 以下に上記知見に関づる本発明者らの調査結果の一例を
述べる。 第2図はC10,21%、5i10.12%、Mn10
.69%の組成の!jA板をホットストリップミルにお
いて板厚3.2mnの熱延鋼帯に圧延するに際して、熱
延後の最終的なフェライト結晶粒径が同−材料的長手方
向において大幅に異なるように仕上圧延温度を種々に変
更して圧延した時の、γ/α変態率が20〜30%範囲
におけるγ→α変態進行速度(以下20 V 3(1の
ように略記する)と、熱延鋼帯の最終組織におけるフェ
ライト結晶粒径Dαとの関係を示すものである。なお、
変態率はランアウトテーブル上に設置したオンライン変
態率検出装置によって測定した。 第1図かられかるように、変態進行速度20 V 2゜
とフェライト結晶粒径Dαとの間には明確な対応があり
、20 V 30の増大と共にDαは、小さくなる傾向
が認められる。このことはγ/α変態の初期段階におけ
る変態進行速度を把握すれば、最終的なフェライト結晶
粒径を予測することが可能であることを示している。 上記の現象は次のように考えられる。亜共折鋼における
γ/α変態の進行挙動を考えてみると、まず変態の開始
はオーステナイト粒界あるいは圧延によってオーステナ
イト粒内に導入された変形帯等から初析フェライト粒の
核が生成し、続く変態の初期段階においてもしばらくこ
の核生成によって変態が進行する。従ってこの期間にお
ける変態進(テ速度は、核生成速度に見合う大きざを取
るはずである。フェライト粒の核生成速度が増加した場
合、単位体積当りのフェライト変態検数が増大し、これ
はR終組織におけるフェライト結晶粒径を小さくする方
向に作用する。 即ち、γ/α変態の初期段階における変態進行速度は生
成するフェライト粒の検数を反映しており、これを通じ
て最終組織におけるフェライト粒径と密接な関係を有す
るに至るものと考えられる。 ここで、本発明において数値限定を行ったのは以下の理
由による。 即ち、フェライト結晶粒径の予測に用いる変態進行速度
としてγ/α変態率が0〜80%の範囲以内の値に限定
するのは、上述したように最終的なフェライト結晶粒径
を左右する最も大きな因子がγ/α変態過程で生成する
フェライト変態検数であるため、フェライト変態核の生
成頻度の高い変態率領域を選定するのが予測精度を高め
る上での必要だからである。本発明者らの得た知見によ
れば、γ/α変態率が80%を超える領域では、)1ラ
イト変態核の生成頻度が低下するため・こ    「の
m域の変態進行速度を用いた場合には予測精度の低下が
生じるので好ましくない。 なお、0〜80%の範囲で最も好適な変態率範囲は被測
定鋼の化学成分によって、若干変動する。 定性的にはC当量(C(%)+Mn(%)/6)が高く
なるに従って最適範囲は低変態率側に移動する傾向とな
るが、通常、C当量が0.6%未満の鋼材であれば、変
態率範囲として0〜50%の範囲以内を選定するのが最
も好ましい。 変態進行速度からフェライト結晶粒径を予測する場合に
は、予め鋼種毎に前出の第1図に示したような変態進行
速度とフェライト結晶粒径の関係とを個々に求めておく
か、あるいは例えば後述(2)式に示すように、フェラ
イト結晶粒径Dαを変態進行速度iVJと化学成分の影
響項CEQとで表現する関数式を求めて置くことによっ
て行うことができる。 【実施例】 以下図面を参照して本発明の実施例を詳細に説明する。 先ず、本発明方法を実施する製造工程を説明する。第3
図における符号10は熱間圧延工程のうちの仕上圧延礪
、12は熱延鋼板、14は熱延鋼板12を冷却でるため
冷却水を例えばミスト、ジェット、管ラミナーあるいは
スリットラミナー状態にして鋼板12に注水する、ラン
アウトテーブル上に配置した注水装置を示す。冷却水は
給水装@16から供給されバルブ制御器18の指示に従
って駆動する水量調整バルブ20によって水量を調整さ
れた後、注水装置14によって熱延tA#i12に注水
される。 A1〜八8は変態率検出装置を示し、該装@A1〜A8
上を通過する熱延鋼板12のγ/α変態率を定量的に検
出し、その測定信号を、演算装置22に伝送する。バル
ブ制御器18は演算装@22と接続され、これからの制
御信号によって作動してバルブ20の開度を調整する。 なお、24は熱延鋼板12のランアウトテーブル上の搬
送速度を計測する速度計、B1は仕上圧延温度を計測す
る温度計、B2はランアウトテーブル上の中間温度を計
測する温度計、B3は巻取温度を計測する温度計、26
は巻取機を示づ。 変態率検出装置A1−八8は冷却中の熱延鋼板12のγ
/α変態率をオンラインで迅速且つ定量的に計測し得る
ものであれば任意の測定手段を採用し得るが、本実施例
では本出願人が特願昭58−064147で既に提案し
ている「鋼材の変態量及び平坦性のオンライン検出装置
Jを用いた。 この変態量オンライン検出装置A1〜A8は、第4図に
示づ如く、被測定材たる熱延鋼板12の一方の側に配置
せしめ、交流励磁装置52によって交番磁束を発生自在
とした励磁コイル53と、該励磁コイル53と同一側に
且つ励磁コイル53からの距離がβ1.12と互いに異
なる位置に配置せしめ、該励磁コイル53によって相互
誘導されるようにした2個の検出コイル551.552
と、各検出コイル55+、55zにおける鎖交磁束量の
違いによって生じる検出信号の違いから鋼板12の変態
率を求める演算装置57とを備えてなる。なお、図中の
符号541は励磁コイル53にて発生され、鋼板12を
通じて検出コイル551に鎖交する磁束、同じく542
は検出コイル552に鎖交する磁束である。 鋼板12が変態を開始していない状態、即ちγ単相の時
は、常磁性状態であるから、検出コイル55+、552
に鎖交する磁束541,542は励磁コイル53からの
距1!1f+、J2zに応じた一定の強さにありそれぞ
れこれらに比例した誘起電圧が発生している状態(以下
初期状態)にある。 鋼板12にγ→α変態が生じ、強磁性のα相が析出する
と、α相は磁化され、鋼板12の磁界強さに変動が起こ
り、磁束541.542の強さが初期状態からずれるの
で、検出コイル55+、552の誘起電圧の変化として
それぞれから検出される。 このような検出コイル55+、552における検出信号
561,562を演算装置57に伝送し、検出コイル5
51と552との測定信号の大きさを相対的に対比させ
、演算装[57により鋼板12′)変態率を求めるもの
1ある・             (次に予測方法を
説明する。 先ず、変態率検出装置A1−八8によって求めたランア
ウトテーブル上の変態率の進行推移と鋼板搬送速度計2
4からの信号とによって所定変態率範囲(i%〜j%)
の変態進行速度iVJを求める。この変態進行速度iV
Jの算出にあたっては、ランアウトテーブルに設置した
変態率検出装置の一数が多い程、精密な測定が可能であ
ることは言うまでもないが、該設置個数が少ない場合に
おいても次の方法によって比較的高精度に算出が可能で
ある。 即ち、本発明者らの知見によると、ランアウトテーブル
上での変態率の進行状況は、γ/α変態率をY(%)、
仕上圧延後の経過時間をt(sec)、鋼板の化学成分
によって定まる定数をk及びa、変態進行速度に依存す
る値をnとした時、下記(1)式で近似することができ
る。 Y−exo  [−((k −t > /a ) ’]
 xl 00・・・(1) 従って、所望する変態率範囲に最も近い変態率検出装置
A1〜A8によるγ/α変態率Yの測定値、及び搬送速
度から算出される経過時間tを(1)式に代入して、n
を求め、次いで、このnの値を用いて、所望する変態率
範囲、例えばY i sYJでの経過時間ti、tJを
求めれば、変態進行速度は、IVJ−(YJ−Y+)/
(t J −ti)によって算出することができる。 次に上記手順によって求めた変態進行速度から、フェラ
イト結晶粒径を予測する。その方法は、前述したように
、予め鋼種毎に前出の第1図に示したような変態進行速
度とフェライト結晶粒径の関係を個々求めておくか、あ
るいは例えば下記(2)式示すように、フェライト結晶
粒径Dαを変態進行速度IvJと化学成分の影響項CE
Qとで表現する関数式を求めて置くことによって行うこ
とができる。 Dα−r  (iVJ、CEQ)・・・(2)以上の演
算手段を演算装置22で行い、変態率検出装置A1−八
8からの測定信号と搬送速度計24からの信号及び別途
、演算装置22に入力される被測定鋼の化学成分の情報
から、フェライト結晶粒径を予測するものである。 次に本発明方法の効果を確認した調査結果について説明
する。 第5図に示7化学成分のIIについてホットストリップ
ミル(A〜II)及びプレートミル(0〜1m)におい
て所定の条件で圧延後加速冷却を施し、ホットストリッ
プミル材はコイルに巻取り、プレートミル材は空冷した
。これらについてそれぞれ冷却装置内に設置した変態率
検出装置を用いて、冷却中の鋼板のγ/α変態進行速度
を測定し、本発明法に基づいて冷却後の最終組織におけ
るフェライト結晶粒径の予測を行った後、冷却後の製品
からそれぞれの予測個所に対応した位置から顕微ill
!察用の試料を切出し、実際のフェライト結晶粒径を測
定し、上記予測値と対比せしめた。 第6図に圧延条件、冷部条件及び予測に用いた変態進行
速度、フェライト結晶粒径の予測値及び顕微鏡観察によ
るフェライト結晶粒径実測値を示す。 第6図から本発明法によるフェライト結晶粒径の予測値
は、いずれの鋼材においても実測したフェライト結晶粒
径と極めて良い対応を示しており、且つ、予測に用いる
変態進行速度の変態率範囲が本発明の限定範囲を外れる
ものについては、予測精度が悪化していることが確認で
きる。 [発明の効果] 以上より説明した通り、本発明法によれば、圧延ライン
等で製造される鋼材のフェライト結晶粒径をオンライン
で、非接触且つ連続的に、又高精度に予測することが可
能になるという優れた効果が得られる。 その結果、本発明法によって得られるフェライト結晶粒
径の予III!Iをオンライン情報として、各種熱延ラ
イン、あるいは熱処理ラインの製造条件(例えば冷却条
件等)に反映せしめれば、材質制御の高精度化を図るこ
とが可能となり、一方、圧延後の製品の材質制御に適用
せしめれば、その品質管理を高度に精密化することが可
能となり、これらを含めた利用方法は極めて多枝に亘る
もので    「ある。
[Means for solving the problem 1] The present invention provides γ/
In a method for predicting the ferrite grain size of a steel material that undergoes α transformation, as shown in FIG.
A procedure for determining the γ/α transformation rate of the steel material in a predetermined γ/α transformation rate range of 80% by measuring the conveying speed and the transformation rate at multiple positions in the longitudinal direction of the steel material, and determining the transformation rate. The above object is achieved by including a procedure for making the relationship between the ferrite crystal grain size and the transformation progression rate determined in advance correspond to the following steps. Preferred actual i L in the above configuration! ? In this case, the predetermined γ/α transformation rate range is such that the C equivalent of the steel material is 0°6%.
If it is less than 0%, it is set as 0% to 50%. This allows more accurate grain size prediction in the steel material. [Operation] The present invention is based on the "On-line detection device for deformation B11 and flatness of steel" (Japanese Patent Laid-Open No. 59-18
8508>, we found that there was an extremely high correlation between the progress and behavior of the γ/α transformation of the steel material in a specific range and the ferrite grain size in the R holly structure. It was constructed based on this finding. An example of the inventors' research results regarding the above findings will be described below. Figure 2 shows C10.21%, 5i10.12%, Mn10
.. Composition of 69%! When rolling the A sheet into a hot rolled steel strip with a thickness of 3.2 mm in a hot strip mill, the finish rolling temperature was adjusted so that the final ferrite grain size after hot rolling was significantly different in the longitudinal direction of the material. The γ→α transformation progress rate (hereinafter abbreviated as 20 V 3 (abbreviated as 1)) in the range of γ/α transformation rate of 20 to 30% and the final structure of the hot rolled steel strip when rolled with various changes. This shows the relationship between the ferrite grain size Dα and the ferrite grain size Dα.
The metamorphosis rate was measured by an online metamorphosis rate detection device installed on the runout table. As can be seen from FIG. 1, there is a clear correspondence between the transformation progress rate 20 V 2° and the ferrite crystal grain size Dα, and it is recognized that Dα tends to decrease as 20 V 30 increases. This shows that it is possible to predict the final ferrite crystal grain size by understanding the transformation progress rate at the initial stage of γ/α transformation. The above phenomenon can be considered as follows. Considering the progress behavior of γ/α transformation in sub-eutectic steel, the transformation begins with the formation of nuclei of pro-eutectoid ferrite grains from austenite grain boundaries or deformation bands introduced into austenite grains by rolling. Even in the initial stage of the subsequent transformation, the transformation progresses for a while due to this nucleation. Therefore, the rate of transformation during this period should have a size commensurate with the nucleation rate. When the nucleation rate of ferrite grains increases, the ferrite transformation coefficient per unit volume increases, which is R It acts in the direction of reducing the ferrite grain size in the final structure.In other words, the transformation progress rate in the initial stage of γ/α transformation reflects the number of ferrite grains generated, and through this, the ferrite grain size in the final structure decreases. It is thought that the numerical value is limited in the present invention for the following reason. That is, the γ/α transformation rate is used as the transformation progress rate used to predict the ferrite crystal grain size. The reason why is limited to a value within the range of 0 to 80% is because, as mentioned above, the largest factor that influences the final ferrite grain size is the ferrite transformation coefficient generated in the γ/α transformation process. This is because it is necessary to select a transformation rate region where ferrite transformation nuclei are frequently generated in order to improve prediction accuracy.According to the knowledge obtained by the present inventors, the γ/α transformation rate exceeds 80%. In the ) region, the frequency of generation of 1-light metamorphosis nuclei decreases.If the metamorphosis progress rate in the m region is used, the prediction accuracy will decrease, which is undesirable. The most suitable transformation rate range varies slightly depending on the chemical composition of the steel to be measured. Qualitatively, as the C equivalent (C (%) + Mn (%) / 6) increases, the optimal range shifts to the lower transformation rate side. However, if the C equivalent is less than 0.6%, it is usually most preferable to select a transformation rate within the range of 0 to 50%. When making predictions, the relationship between the transformation progress rate and ferrite grain size as shown in Figure 1 above should be determined individually for each steel type, or the relationship between the transformation rate and ferrite grain size should be determined individually for each type of steel, or for example, as shown in equation (2) below. This can be done by finding a functional formula that expresses the ferrite crystal grain size Dα by the transformation progress rate iVJ and the influence term CEQ of chemical components. An example will be explained in detail. First, the manufacturing process for carrying out the method of the present invention will be explained. Third
In the figure, reference numeral 10 denotes a finish rolling mill in the hot rolling process, 12 denotes a hot rolled steel plate, and 14 denotes a hot rolled steel plate 12 by using cooling water in a mist, jet, tube laminar or slit laminar state, for example, to cool the hot rolled steel plate 12. A water injection device placed on a runout table is shown. Cooling water is supplied from the water supply device @16, and after the water amount is adjusted by the water amount adjustment valve 20 which is driven according to instructions from the valve controller 18, the cooling water is injected into the hot rolling tA#i12 by the water injection device 14. A1 to 88 indicate metamorphosis rate detection devices, and the devices @A1 to A8
The γ/α transformation rate of the hot rolled steel sheet 12 passing above is quantitatively detected, and the measurement signal is transmitted to the arithmetic unit 22. The valve controller 18 is connected to the arithmetic unit @22 and is operated in response to a control signal from it to adjust the opening degree of the valve 20. In addition, 24 is a speedometer that measures the conveyance speed on the runout table of the hot rolled steel plate 12, B1 is a thermometer that measures the finish rolling temperature, B2 is a thermometer that measures the intermediate temperature on the runout table, and B3 is a winding Thermometer for measuring temperature, 26
indicates the winder. The transformation rate detection device A1-88 detects γ of the hot rolled steel sheet 12 during cooling.
Any measuring means can be used as long as it can quickly and quantitatively measure the /α transformation rate online, but in this example, the method proposed by the applicant in Japanese Patent Application No. 58-064147 is used. An online detection device J for the amount of transformation and flatness of steel material was used.The online amount of transformation detection devices A1 to A8 were placed on one side of the hot rolled steel plate 12, which was the material to be measured, as shown in FIG. , an excitation coil 53 capable of freely generating alternating magnetic flux by an AC excitation device 52, and disposed on the same side as the excitation coil 53 and at positions different from each other at distances from the excitation coil 53 of β1.12, and by the excitation coil 53. Two detection coils 551 and 552 that are mutually induced
and an arithmetic device 57 that calculates the transformation rate of the steel plate 12 from the difference in detection signals caused by the difference in the amount of interlinkage magnetic flux in each of the detection coils 55+, 55z. Note that the reference numeral 541 in the figure indicates a magnetic flux generated by the excitation coil 53 and linked to the detection coil 551 through the steel plate 12;
is the magnetic flux interlinking with the detection coil 552. When the steel plate 12 has not started transformation, that is, when it is in the γ single phase, it is in a paramagnetic state, so the detection coils 55+, 552
The magnetic fluxes 541 and 542 interlinking with each other have a constant strength according to the distances 1!1f+ and J2z from the excitation coil 53, and are in a state in which induced voltages proportional to these are generated (hereinafter referred to as initial state). When the γ → α transformation occurs in the steel plate 12 and the ferromagnetic α phase is precipitated, the α phase is magnetized, the magnetic field strength of the steel plate 12 changes, and the strength of the magnetic fluxes 541 and 542 deviates from the initial state. It is detected as a change in the induced voltage of the detection coils 55+ and 552, respectively. The detection signals 561 and 562 in the detection coils 55+ and 552 are transmitted to the arithmetic unit 57, and the detection coils 5
There is a system that compares the magnitudes of the measurement signals 51 and 552 relatively and calculates the transformation rate using an arithmetic unit [57 on the steel plate 12'] (Next, the prediction method will be explained. First, the transformation rate detection device A1 - Progression of transformation rate on the runout table determined by 88 and steel plate conveyance speed meter 2
A predetermined transformation rate range (i% to j%) is determined by the signal from 4.
Find the metamorphosis progression speed iVJ. This metamorphosis progress rate iV
When calculating J, it goes without saying that the more metamorphosis rate detection devices installed on the run-out table, the more accurate the measurement will be. It is possible to calculate with high accuracy. That is, according to the findings of the present inventors, the progress status of the metamorphosis rate on the runout table is determined by dividing the γ/α metamorphosis rate by Y (%),
When the elapsed time after finish rolling is t (sec), the constants determined by the chemical composition of the steel sheet are k and a, and the value depending on the transformation progress rate is n, it can be approximated by the following equation (1). Y-exo [-((k-t >/a)']
xl 00...(1) Therefore, the elapsed time t calculated from the measured value of the γ/α transformation rate Y by the transformation rate detection devices A1 to A8 closest to the desired transformation rate range and the conveyance speed is (1) By substituting into the formula, n
Then, by using this value of n to find the desired transformation rate range, for example, elapsed time ti, tJ at Y i sYJ, the transformation progress rate is IVJ-(YJ-Y+)/
It can be calculated by (t J −ti). Next, the ferrite crystal grain size is predicted from the transformation progress rate determined by the above procedure. As mentioned above, the method is to determine the relationship between the transformation progress rate and ferrite grain size individually for each steel type as shown in Figure 1 above, or, for example, as shown in equation (2) below. Then, the ferrite grain size Dα is expressed as the transformation progress rate IvJ and the influence term CE of chemical components.
This can be done by finding a functional formula expressed by Q. Dα-r (iVJ, CEQ)... (2) The above calculation means are performed by the calculation device 22, and the measurement signal from the transformation rate detection device A1-88, the signal from the conveyance speed meter 24, and the calculation device separately The ferrite crystal grain size is predicted from the information on the chemical composition of the steel to be measured inputted to 22. Next, the results of a study confirming the effectiveness of the method of the present invention will be explained. For II of the 7 chemical components shown in Figure 5, accelerated cooling was performed after rolling under predetermined conditions in a hot strip mill (A to II) and a plate mill (0 to 1 m), and the hot strip mill material was wound into a coil and plated. The mill material was air cooled. For each of these, the γ/α transformation progress rate of the steel plate during cooling is measured using a transformation rate detection device installed in the cooling device, and the ferrite grain size in the final structure after cooling is predicted based on the method of the present invention. After performing this, microscopic illumination is performed from the position corresponding to each predicted location from the cooled product.
! A sample was cut out for inspection, and the actual ferrite crystal grain size was measured and compared with the predicted value. FIG. 6 shows the rolling conditions, the cold section conditions, the transformation progress rate used for prediction, the predicted value of the ferrite crystal grain size, and the actual value of the ferrite crystal grain size measured by microscopic observation. From FIG. 6, the predicted value of the ferrite grain size by the method of the present invention shows an extremely good correspondence with the actually measured ferrite grain size for all steel materials, and the transformation rate range of the transformation rate used for prediction is It can be confirmed that prediction accuracy deteriorates for those outside the limited range of the present invention. [Effects of the Invention] As explained above, according to the method of the present invention, it is possible to predict the ferrite crystal grain size of steel products produced on a rolling line, etc. online, non-contact, continuously, and with high accuracy. The excellent effect of being able to achieve this is obtained. As a result, the prediction of the ferrite grain size obtained by the method of the present invention is as follows. If I is reflected in the manufacturing conditions (e.g. cooling conditions) of various hot rolling lines or heat treatment lines as online information, it will be possible to achieve higher accuracy in material quality control. If applied to control, it will be possible to make quality control highly precise, and there are many ways to use it, including these.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る鋼材のフェライト粒結晶径のオ
ンライン予測方法の要旨を示す流れ図、第2図は、γ/
α変態率20〜30%間の変態進行速度と最終組織にお
けるフェライト結晶粒径の関係の一例を示す縮図、 第3図は、本発明法に係るフェライト結晶粒径の予測方
法が採用されたホットストリップミルの実施例の構成を
示すブロック図、 第4図は、前記ホットストリップミルで用いられている
γ/α変態率検出装置の構成を示すブロック図、 第5図は、本発明の効果を確認するために行った調査で
の被検査対象鋼材の化学組成を示す線図、第6図は、上
記調査結果を示1線図である。 10・・・仕上圧延機、 12・・・熱延鋼板、 14・・・注水装置、 16・・・給水装置、 18・・・バルブ制御器、 20・・・水口調整バルブ、 22・・・演算装置、 24・・・速度計、 26・・・巻取機、 A1〜A8・・・変態率検出Vt@、 81〜B3・・・温度計、 IVJ・・・i%〜j%範囲における γ→α変態進行速度、 Dα・・・フェライト結晶粒径(粒度)、CEQ・・・
化学成分の影響項。
FIG. 1 is a flowchart showing the gist of the online prediction method for the ferrite grain size of steel materials according to the present invention, and FIG.
A miniature diagram showing an example of the relationship between the transformation progress rate between 20% and 30% of the α-transformation rate and the ferrite crystal grain size in the final structure. FIG. 4 is a block diagram showing the configuration of an embodiment of the strip mill. FIG. 4 is a block diagram showing the configuration of the γ/α transformation rate detection device used in the hot strip mill. FIG. 5 shows the effects of the present invention. FIG. 6 is a diagram showing the chemical composition of the steel material to be inspected in the survey conducted for confirmation, and is a diagram showing the results of the survey. DESCRIPTION OF SYMBOLS 10... Finishing rolling mill, 12... Hot rolled steel plate, 14... Water injection device, 16... Water supply device, 18... Valve controller, 20... Water port adjustment valve, 22... Arithmetic device, 24... Speedometer, 26... Winder, A1-A8... Transformation rate detection Vt@, 81-B3... Thermometer, IVJ... In the range of i% to j% γ→α transformation progress rate, Dα...ferrite crystal grain size (particle size), CEQ...
Influence term of chemical components.

Claims (2)

【特許請求の範囲】[Claims] (1)オーステナイト状態からの冷却に際してγ/α変
態を生じる鋼材のフェライト結晶粒径の予測方法におい
て、 前記鋼材の熱延ライン又は熱処理ライン搬送中に、γ/
α変態率が0〜80%の範囲において予め定めたγ/α
変態率範囲における該鋼材のγ/α変態進行速度を、搬
送速度測定及び鋼材長手方向複数位置での変態率測定に
よつて求める手順と、該変態進行速度を、予め求めたフ
ェライト結晶粒径と変態進行速度との関係に対応させる
手順と、を含むことを特徴とする鋼材のフェライト結晶
粒径のオンライン予測方法。
(1) In a method for predicting the ferrite grain size of a steel material that undergoes γ/α transformation upon cooling from an austenitic state, γ/
Predetermined γ/α in the range of α transformation rate from 0 to 80%
A procedure for determining the rate of progress of γ/α transformation of the steel material in the transformation rate range by measuring the conveying speed and measuring the rate of transformation at multiple positions in the longitudinal direction of the steel material; 1. A method for online prediction of ferrite grain size of a steel material, comprising: a procedure for responding to a relationship with a transformation progress rate.
(2)前記予め定めたγ/α変態率範囲が、鋼材のC当
量が0.6%未満の場合に、0〜50%とされる特許請
求の範囲第1項記載の鋼材のフェライト結晶粒径のオン
ライン予測方法。
(2) Ferrite crystal grains of the steel material according to claim 1, wherein the predetermined γ/α transformation rate range is 0 to 50% when the C equivalent of the steel material is less than 0.6%. Online prediction method for diameter.
JP16158685A 1985-07-22 1985-07-22 Online Prediction Method of Ferrite Grain Size of Steel Expired - Fee Related JPH0641936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16158685A JPH0641936B2 (en) 1985-07-22 1985-07-22 Online Prediction Method of Ferrite Grain Size of Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16158685A JPH0641936B2 (en) 1985-07-22 1985-07-22 Online Prediction Method of Ferrite Grain Size of Steel

Publications (2)

Publication Number Publication Date
JPS6222057A true JPS6222057A (en) 1987-01-30
JPH0641936B2 JPH0641936B2 (en) 1994-06-01

Family

ID=15737942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16158685A Expired - Fee Related JPH0641936B2 (en) 1985-07-22 1985-07-22 Online Prediction Method of Ferrite Grain Size of Steel

Country Status (1)

Country Link
JP (1) JPH0641936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369003A (en) * 1991-06-17 1992-12-21 Nippon Steel Corp Production of steel plate
CN101949810A (en) * 2010-08-12 2011-01-19 中国石油天然气集团公司 Method for identifying and assessing needle-like ferrite pipe line steel tissues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369003A (en) * 1991-06-17 1992-12-21 Nippon Steel Corp Production of steel plate
CN101949810A (en) * 2010-08-12 2011-01-19 中国石油天然气集团公司 Method for identifying and assessing needle-like ferrite pipe line steel tissues

Also Published As

Publication number Publication date
JPH0641936B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
CN103635798B (en) Electromagnetic sensor and calibration therefor
US20100219567A1 (en) Process line control apparatus and method for controlling process line
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
US5420518A (en) Sensor and method for the in situ monitoring and control of microstructure during rapid metal forming processes
KR900006692B1 (en) Method of controlling of hot rolled steel sheet and system therefor
Titto et al. Non-destructive magnetic measurement of steel grain size
JP7343575B2 (en) Device for in-line measurement of the proportion of austenite in steel
JPS6222057A (en) Online predicting method for ferrite crystal grain of steel products
KR100711471B1 (en) On-line transformation ratio determination device of hot rolled steel sheet
EP0725937B1 (en) Hardness testing of steels
JPH0242402B2 (en)
JPH1068705A (en) Method and device for measuring transformation ratio of steel
JPS61110723A (en) Cooling controlling method of hot-rolled steel plate
JPH04274812A (en) Cooling control method for hoop in hot rolling
JPS5847243A (en) Method of and apparatus for monitoring phase modification of steel
JPS61266524A (en) Method for controlling cooling of steel product
JPS6186121A (en) Tube cutting method
Hall Measurement of recovery and recrystallisation in interstitial free steels using electromagnetic sensors
JP3020620B2 (en) On-line measurement method of martensite content in cold rolling of metastable austenitic stainless steel strip
Matyuk et al. Testing of mechanical Properties of the light-gauge rolled Products of low-carbon Steels in the Zinc galvanizing line by the pulse magnetic method
JPS61243125A (en) Cooling method for steel products
JPS59110737A (en) Method and apparatus for controlling heat treatment in continuous annealing
JPH049450B2 (en)
JPH0255613A (en) Controlling method for cooling hot rolled steel sheet of high carbon equivalent
JPH11166918A (en) Method and device for measuring rate of transformation

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees