JPS62220241A - Casting mold and vacuum casting method using said casting mold - Google Patents

Casting mold and vacuum casting method using said casting mold

Info

Publication number
JPS62220241A
JPS62220241A JP6299186A JP6299186A JPS62220241A JP S62220241 A JPS62220241 A JP S62220241A JP 6299186 A JP6299186 A JP 6299186A JP 6299186 A JP6299186 A JP 6299186A JP S62220241 A JPS62220241 A JP S62220241A
Authority
JP
Japan
Prior art keywords
mold
casting
molds
sand
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6299186A
Other languages
Japanese (ja)
Other versions
JPH0647149B2 (en
Inventor
Hideo Nonoyama
野々山 秀夫
Minoru Uozumi
稔 魚住
Kunio Shimizu
邦雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6299186A priority Critical patent/JPH0647149B2/en
Publication of JPS62220241A publication Critical patent/JPS62220241A/en
Publication of JPH0647149B2 publication Critical patent/JPH0647149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a casting mold which is provided with advantages of both a sand mold and metallic mold and is applicable to a vacuum casting method as well by using fluid metallic molds to be molded of metallic powder having fluidity as back metallic molds and preliminarily providing cooling pipes into the fluid metallic molds. CONSTITUTION:The casting mold 1 is provided with the cooling pipes 12, 16 in the fluid metallic molds 5, 7 held in respective outside flasks 4, 6 of a cope 2 and a drag 3 and is molded with the sand molds 9, 15 having a prescribed thickness on the cavity 8 surface of the molds 5, 7. A molten metal is filled from a sprue 10 into a product cavity 11 and immediately thereafter, cooling water is passed in the cooling pipes 12, 16 to cool the molds 5, 7 and chiller 14 at the time of casting. A chamber is put on the casting mold 1 clamped on a bottom plate to seal the mold and while the chamber inside is evacuated to a reduced pressure state, the molten metal is poured through the sprue reservoir into the casting mold in the case of vacuum casting. The casting mold molded with the advantages of both the sand mold and metallic mold is thereby obtd. and is made applicable to vacuum casting as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動金型を使用した鋳型およびその鋳型を用
いた減圧鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold using a flow mold and a vacuum casting method using the mold.

〔従来の技術〕[Conventional technology]

鋳型はその構成材料から金型と砂型に大別される。この
金型と砂型には、それぞれ一長一短があり、それぞれの
特質を活かした使い方がされている。
Molds are broadly classified into metal molds and sand molds based on their constituent materials. Both molds and sand molds have their advantages and disadvantages, and they are used to take advantage of their respective characteristics.

砂型鋳造法では、鋳型の造型がし易く、ガス抜きが良好
になされるので鋳造欠陥が生じに(い反面、冷却能が低
いため鋳造組織が粗(なるという欠点がある。
In the sand casting method, the mold is easy to form and gas is vented well, so casting defects do not occur (on the other hand, the cooling ability is low, so the casting structure becomes rough).

また、金型鋳造では、鋳型として金型を使用しているた
め、鋳物の冷却速度が速く、機械的性質に優れた鋳物が
得られ、また、高剛性により寸法精度が高いという長所
を有する。
In addition, since mold casting uses a mold as a mold, the cooling rate of the casting is fast, a casting with excellent mechanical properties can be obtained, and it has the advantage of high dimensional accuracy due to high rigidity.

しかしながら、その反面、砂型に比べて金型の製作には
多くの費用と時間がかかる上、一度合型を製作すると、
型の冷却や指向性凝固等のコントロールのための冷却箇
所の変更がとれない等の欠点があった。
However, on the other hand, it takes more money and time to make a mold than a sand mold, and once the mold is made,
There were drawbacks such as the inability to change the cooling location to control mold cooling and directional solidification.

これに対し、金型製作における費用および時間を低減す
るとともに、砂型の利点であるガス抜きの良好さを兼ね
備えた背面金型が知られている(特開昭6O−1661
55)。この背面金型は、金型の内面に大気へ連通する
砂型を備えてなるので、金型の内面を高精度に仕上げる
必要が無く、金型の持つ高い剛性により寸法精度を向上
させるとともに、砂型の持つ通気性を利用して鋳造欠陥
を減らしたものである。
On the other hand, a back mold is known which reduces the cost and time in mold production and also has the advantage of good gas venting of sand molds (Japanese Patent Laid-Open No. 6O-1661
55). This back mold is equipped with a sand mold on the inside of the mold that communicates with the atmosphere, so there is no need to finish the inside of the mold with high precision, and the high rigidity of the mold improves dimensional accuracy. Casting defects are reduced by utilizing the breathability of the material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この背面金型を用いてなる鋳型においては、上述の利点
があるものの、金型製作にはまだ相当の時間と費用を要
する上、指向性凝固に対する考慮が払われていなかった
Although the mold using the back surface mold has the above-mentioned advantages, it still requires a considerable amount of time and cost to manufacture the mold, and no consideration has been given to directional solidification.

したがって、本発明の目的は、砂型と金型の長所を併せ
持つとともに、鋳型の製作に要する時間と費用を低減し
、指向性凝固を可能として引は巣等の発生を防止するこ
と、およびそのような鋳型を減圧鋳造方法にも適用可能
とすることにある。
Therefore, an object of the present invention is to combine the advantages of sand molds and metal molds, reduce the time and cost required for manufacturing molds, enable directional solidification, and prevent the occurrence of shrinkage cavities. The objective is to make the mold applicable to the vacuum casting method.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は、流動性を有する金属粉から造型され
る流動金型を背面金型として用い、指向性凝固のための
冷却パイプを予め流動金型中に設けてお(ことを特徴と
する。
Therefore, the present invention is characterized in that a flow mold made from metal powder having fluidity is used as the back mold, and a cooling pipe for directional solidification is provided in advance in the flow mold. .

具体的には、第1の発明としての鋳型は、外枠で保持さ
れ、内部にキャビティを有する流動金型とそのキャビテ
ィ面に沿って所定の厚みを持って造型され、内部に製品
キャビティを形成する砂型とからなる鋳型であって、前
記流動金型には冷却パイプが配設されていることを特徴
とする。
Specifically, the mold as the first invention includes a fluid mold that is held by an outer frame and has a cavity inside, and is molded with a predetermined thickness along the cavity surface to form a product cavity inside. A sand mold comprising a sand mold, characterized in that the fluid mold is provided with a cooling pipe.

また、第2の発明としての減圧鋳造方法は、外枠で保持
され、内部にキャビティを有する流動金型とそのキャビ
ティ面に沿って所定の厚みを持つて造型され、内部に製
品キャビティを形成する砂型とからなり、前記流動金型
には冷却パイプが配設されている鋳型を用いた減圧鋳造
方法であって、前記鋳型を底板上へ載置する工程、前記
鋳型の周囲を被って前記鋳型の製品キャビティ内が所定
の負圧となるよう減圧を行う工程、前記鋳型内へ注湯す
る工程、注湯完了後に前記鋳型の被いを外す工程および
被いを外した前記鋳型の前記冷却パイプに冷却媒体を送
り金型等を冷却する工程を順次行うことを特徴とする。
In addition, the vacuum casting method as the second invention includes a fluid mold that is held by an outer frame and has a cavity inside, and is molded with a predetermined thickness along the cavity surface to form a product cavity inside. The method includes a step of placing the mold on a bottom plate, a step of placing the mold on a bottom plate, and a step of placing the mold on the bottom plate, covering the periphery of the mold. A step of reducing the pressure in the product cavity to a predetermined negative pressure, a step of pouring the metal into the mold, a step of removing the cover of the mold after pouring the metal, and a step of the cooling pipe of the mold with the cover removed. It is characterized by sequentially performing the steps of feeding a cooling medium to cool the mold, etc.

本発明において、冷却パイプは、流動金型の冷却の他に
、指向性凝固のため、金型および溶湯の冷却を行いたい
箇所の近くに予め配設された上、流動金型とは一体に成
形される。その際、溶湯の冷却部分に、砂型に代えて冷
し金を配しておくと、冷却パイプによる冷却が促進され
て指向性凝固がより確実に行われる。
In the present invention, in addition to cooling the flow mold, the cooling pipe is installed in advance near the location where the mold and molten metal are desired to be cooled for directional solidification, and is also integral with the flow mold. molded. At that time, if a chiller is placed instead of a sand mold in the cooling part of the molten metal, cooling by the cooling pipe will be accelerated and directional solidification will be more reliably performed.

〔作用〕[Effect]

本発明の鋳型によれば、流動金型内に冷却パイプを配設
したので、従来の流動金型における冷却能の低さを改善
することができる。また、流動金型内における冷却パイ
プの配設は、所望に応じ必要箇所に行うことができる上
、流動金型の有する通気性等の利点を失うことがない。
According to the mold of the present invention, since the cooling pipe is disposed within the flow mold, it is possible to improve the low cooling capacity of the conventional flow mold. Furthermore, the cooling pipes can be placed in the required locations within the fluid mold as desired, without losing the advantages of the fluid mold, such as air permeability.

さらに、第2の発明によれば、本発明の鋳型減圧鋳造に
も適用することが可能であり、鋳造欠陥のより少ない製
品が得られる。
Furthermore, according to the second invention, it is possible to apply the mold vacuum casting of the present invention, and a product with fewer casting defects can be obtained.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

ここで、第1図は本発明に係る鋳型の断面図である。Here, FIG. 1 is a sectional view of a mold according to the present invention.

第1図において、1は鋳型であり、上型2と下型3から
なる。上型2は箱形の金属製外枠4と外枠内に充填・成
形された流動金型5からなる。同様に、下型3は箱形の
金属製外枠6と外枠に充填・成形された流動金型7から
なる。
In FIG. 1, 1 is a mold, which consists of an upper mold 2 and a lower mold 3. The upper mold 2 consists of a box-shaped metal outer frame 4 and a fluid mold 5 filled and molded into the outer frame. Similarly, the lower mold 3 consists of a box-shaped metal outer frame 6 and a fluid mold 7 filled and molded into the outer frame.

この上型2には、流動金型5のキャビティ面8に沿って
、砂型9と湯口IOがコールドボックス法により形成さ
れ、砂型9の内面は、製品キャビティ11の上側を郭定
している。そして、流動金型7の内部には、冷却パイプ
12が配設されており、外枠4より冷却水の循環口13
が突設している。
A sand mold 9 and a sprue IO are formed in this upper mold 2 by a cold box method along the cavity surface 8 of the flow mold 5, and the inner surface of the sand mold 9 defines the upper side of the product cavity 11. A cooling pipe 12 is disposed inside the fluid mold 7, and a cooling water circulation port 13 is provided from the outer frame 4.
is protruding.

この冷却パイプ12の配設に当っては、冷却パイプ13
の循環口13側を外枠4に取り付けると共に反対側をワ
イヤで吊架した状態で、湯口IOおよびキャビティ11
に砂型9の厚みを見んだ模型を配して、上方より市販の
金属粉、セラミックファイバーおよびバインダーを主体
とするスラリーを流し込み、乾燥、焼成し、流動金型と
する。
When arranging the cooling pipe 12, the cooling pipe 13
With the circulation port 13 side of the
A model of the thickness of the sand mold 9 is placed in the mold, and a slurry mainly consisting of commercially available metal powder, ceramic fibers, and binder is poured from above, dried, and fired to form a fluid mold.

砂型9の形成は、製品各個の鋳造毎に行う。具体的には
、製品キャビティ11に模型を配しておき、流動金型5
の通気性を利用した減圧状態において、フェノール樹脂
とポリイソシアネートを被覆した珪砂を模型と流動金型
のキャビティ面8の間隙に吹き込んだ後、アミンガスを
流通し、硬化させて砂型9とする。
The sand mold 9 is formed each time each product is cast. Specifically, a model is placed in the product cavity 11, and the fluid mold 5
In a reduced pressure state utilizing the air permeability of the sand, silica sand coated with phenol resin and polyisocyanate is blown into the gap between the model and the cavity surface 8 of the flow mold, and then amine gas is passed through it to harden it to form a sand mold 9.

下型3には、流動金型7のキャビティ面13に沿って、
冷し金14を配した砂型15が上型2と同様の方法で形
成され、それらの内面は、製品キャビティ11の下側を
郭定している。そして、流動金型7の内部には、冷却パ
イプ16が上型2と同様の方法で配設されており、循環
口17が取り付けられて、冷却水により下型3および冷
し金14を冷却するようになっている。
In the lower mold 3, along the cavity surface 13 of the fluid mold 7,
A sand mold 15 with a cooling mold 14 is formed in a similar manner to the upper mold 2, their inner surface defining the underside of the product cavity 11. Inside the fluid mold 7, a cooling pipe 16 is arranged in the same manner as the upper mold 2, and a circulation port 17 is attached to cool the lower mold 3 and the cooling mold 14 with cooling water. It is supposed to be done.

次に、本実施例の鋳型を用いた重力鋳造方法について説
明する。
Next, a gravity casting method using the mold of this example will be explained.

前述した如く形成した下型3および上型2は、図示しな
いシリンダを作動させて上型2を下降させ、下型3に当
接させて型締めをする。この結果、第1図に示す状態と
なり、砂型9.15によって製品キャビティ11が郭定
される。
The lower mold 3 and upper mold 2 formed as described above are lowered by operating a cylinder (not shown), and brought into contact with the lower mold 3 to be clamped. As a result, the state shown in FIG. 1 is reached, and the product cavity 11 is defined by the sand mold 9.15.

この状態において、湯口lOへ上方より取鍋(図示せず
)の溶湯(SC3−13、オーステナイトステンレス鋳
鋼)を流し込んだ後、ただちに、循環口13.17より
冷却水を循環させ、流動金型5.7および冷し金14を
冷却した。
In this state, after pouring the molten metal (SC3-13, austenitic stainless steel cast steel) from a ladle (not shown) into the sprue lO from above, cooling water is immediately circulated through the circulation port 13.17, and the flow mold 5 .7 and chiller 14 were cooled.

この結果、得られた鋳鋼は、引は巣やブローホール等の
鋳造欠陥のない健全なものであった。
As a result, the obtained cast steel was sound and free from casting defects such as cavities and blowholes.

これは、キャビティ面に砂型が形成されている流動金型
の有するガス抜は性、湯回り性の良い点に加ねえて、冷
却パイプと冷し金による冷却硬化が十分で指向性凝固が
図れたためと解される。
This is because, in addition to the good degassing and hot water circulation properties of a fluid mold with a sand mold formed on the cavity surface, the cooling pipe and chiller provide sufficient cooling and hardening to achieve directional solidification. It is understood that this was due to a delay.

ちなみに、製品キャビティ11の中心部(第1図のA点
)の温度が500℃以下になる時間は、従来のCO□型
の砂型に比べて約3分の1に短縮できており、冷却効果
の大きさが確認されている。
Incidentally, the time for the temperature at the center of the product cavity 11 (point A in Figure 1) to drop below 500°C has been shortened to about one-third compared to the conventional CO□ type sand mold, and the cooling effect has been reduced. The size of has been confirmed.

次に、第2の発明に係る実施例を説明する。Next, an embodiment according to the second invention will be described.

ここで、第2図は本発明の鋳型を用いた減圧鋳造方法を
示す断面図である。
Here, FIG. 2 is a sectional view showing a vacuum casting method using the mold of the present invention.

鋳型1は、先の実施例と同じものであるので、同一番号
を付与する。第2図は、上型2と下型3を型締めして、
キャビティll内の減圧を行い、注湯を行っている状態
を示している。
Since the mold 1 is the same as in the previous example, it is given the same number. Figure 2 shows the upper mold 2 and lower mold 3 being clamped together.
This shows a state in which the pressure inside the cavity 1 is reduced and molten metal is poured.

この状態では、鋳型1がスペーサ18を介して、金属製
の底板19上に載置されている。鋳型1の上面には、湯
こぼれ受けを兼ねた錘20が載置され、上型2と下型3
の型締めを行っており、湯口10に相対する位置に湯口
10とほぼ同じ径の開口21を有している。さらに、鋳
型1を被う金属板製の箱形のチャンバー22が底板19
上に載置され、底板19との間をガムテープ23でシー
ルされ、減圧状態を保つようになっている。
In this state, the mold 1 is placed on the metal bottom plate 19 with the spacer 18 in between. A weight 20 that also serves as a catch for hot water spill is placed on the top surface of the mold 1, and the upper mold 2 and the lower mold 3
It has an opening 21 having approximately the same diameter as the sprue 10 at a position opposite to the sprue 10. Further, a box-shaped chamber 22 made of a metal plate that covers the mold 1 is attached to the bottom plate 19.
It is placed on top and sealed with adhesive tape 23 between it and the bottom plate 19 to maintain a reduced pressure state.

湯口10上方のチャンバー22には、湯口だま   ′
す24が設けられている。湯口だまり24は、鉄板で作
られた漏斗状の湯口だまり外皮25がチャンバー22に
取り付けられており、外皮の内側には通気性をほとんど
有さない耐火物からなる内張り26が形成されている。
In the chamber 22 above the sprue 10, there is a sprue ′
24 is provided. In the sprue pool 24, a funnel-shaped sprue skin 25 made of an iron plate is attached to the chamber 22, and a lining 26 made of a refractory material with almost no air permeability is formed inside the skin.

内張り26の下方の段部には、板厚約0.8 tmの鉄
板製の溶湯止め蓋27が置かれており、所定時間だけ湯
口だまり24に注湯された溶湯25を保持するようにな
っている。
A molten metal stopper lid 27 made of an iron plate with a plate thickness of about 0.8 tm is placed on the step below the lining 26, and is designed to hold the molten metal 25 poured into the sprue pool 24 for a predetermined period of time. ing.

チャンバー22の側面下方に、ダクト28が接続されて
おり、ダクト28の他端は図示しない真空ポンプに連結
されている。
A duct 28 is connected to the lower side of the chamber 22, and the other end of the duct 28 is connected to a vacuum pump (not shown).

次に、本実施例の鋳型を用いた減圧鋳造方法について説
明する。
Next, a vacuum casting method using the mold of this example will be explained.

先の実施例と同様に上型2および下型3が形成され、底
板19上で型合わせをされた鋳型1は、上型2の上面に
錘20が載置されて型締めされる。
As in the previous embodiment, an upper mold 2 and a lower mold 3 are formed, and the mold 1 is molded together on the bottom plate 19. A weight 20 is placed on the upper surface of the upper mold 2 and the mold 1 is clamped.

型締めされた鋳型1は、クレーンで吊られたチャンバー
22が被せられ、底板19とチャンバー22の間にガム
テープが貼着され、シールが行われる。
The clamped mold 1 is covered with a chamber 22 suspended by a crane, and duct tape is pasted between the bottom plate 19 and the chamber 22 for sealing.

この状態で、真空ポンプを始動し、ダクト28を介して
チャンバー22内を減圧する。約300mmHgの減圧
度が確保されたところで、取鍋29より湯口だまり24
へ第1実施例と同じ溶湯の注湯を行った。注湯後10秒
経過して、溶湯止め蓋27が溶損すると、湯口だまり2
4内の溶湯25が減圧状態のチャンバー22内の湯口1
0へ注がれ、製品キャビティll内へ流入充填される。
In this state, the vacuum pump is started to reduce the pressure inside the chamber 22 via the duct 28. When a degree of reduced pressure of approximately 300 mmHg is secured, the sprue pool 24 is removed from the ladle 29.
The same molten metal as in the first example was poured. If the molten metal stopper lid 27 is damaged by melting 10 seconds after pouring, the sprue pool 2
The sprue 1 in the chamber 22 in which the molten metal 25 in the chamber 4 is in a reduced pressure state
0 and flows into the product cavity 11 to fill it.

この時、湯口だまり24は、溶湯25で満たされてシー
ル作用をするため、チャンバー22内への大気の洩れは
生じなかった。
At this time, the sprue pool 24 was filled with the molten metal 25 and had a sealing effect, so that no air leaked into the chamber 22.

湯口10への注湯が完了すると、ただちにチャンバー2
2を取り外し、循環口13.17に冷却水供給管を接続
して、冷却水を冷却パイプ12.16へ送り、流動金型
5.6および冷し金14の冷却を行った。
Immediately after pouring into the sprue 10, the chamber 2
2 was removed, a cooling water supply pipe was connected to the circulation port 13.17, and the cooling water was sent to the cooling pipe 12.16 to cool the fluid mold 5.6 and the chiller 14.

このようにして作られた鋳鋼製品を切断して検査を行っ
た、その結果、引は巣はなく、健全鋳物が得られており
、また、ガス欠陥もなく、チャンバー内への大気の巻き
込みが生じていないことが確認できた。
The cast steel products made in this way were cut and inspected, and the results showed that there were no shrinkage cavities and a sound casting was obtained.There were also no gas defects and no atmospheric air was drawn into the chamber. We have confirmed that this has not occurred.

以上、本発明の特定の実施例について説明したが、本発
明は上記実施例に限定されるものではなく、特許請求の
範囲内において種々の実施態様を包含するものである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes various embodiments within the scope of the claims.

例えば、本実施例の減圧鋳造方法においては、注湯後に
チャンバーを鋳型より取り外してから冷却パイプへの給
水を行ったが、チャンバー自体に内部の循環口および外
部の供給口と連結するための接続ジヨイントを設けてお
き、チャンバーを取り外さなくとも冷却が行えるように
してもよい。
For example, in the vacuum casting method of this example, water was supplied to the cooling pipe after the chamber was removed from the mold after pouring, but the chamber itself had connections to connect with the internal circulation port and the external supply port. A joint may be provided so that cooling can be performed without removing the chamber.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明の鋳型およびその鋳型を用いた減圧鋳
造方法によれば、以下の効果を奏する。
As described above, the mold of the present invention and the vacuum casting method using the mold have the following effects.

(イ)溶湯の凝固コントロールが容易になるため指向性
凝固が図れ、引は巣等の鋳造欠陥のない健全な鋳物が得
られる。
(a) Since the solidification of the molten metal can be easily controlled, directional solidification can be achieved, and sound castings without casting defects such as cavities can be obtained.

(ロ)指向性凝固が容易に図れるため、押し湯量を減ら
すことができ、歩留りが向上する。
(b) Since directional coagulation can be easily achieved, the amount of feed water can be reduced and the yield can be improved.

(ハ)流動金型を使用しているため、金型に比べて、型
の製作に要する費用と時間を少くすることができる。
(c) Since a fluid mold is used, the cost and time required for mold production can be reduced compared to molds.

(ニ)流動金型を用いて、さらに、冷却パイプを配設し
ているため、従来の砂型を用いた場合に比べ、溶湯の凝
固時間の短縮が図れ、サイクルタイムの短縮により生産
性が向上する。
(iv) Since a flow mold is used and a cooling pipe is installed, the solidification time of the molten metal can be shortened compared to when using a conventional sand mold, and productivity is improved by shortening the cycle time. do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例に係る鋳型の断面図、そ
して、第2図は、本発明の第2実施例に係り、第1実施
例の鋳型を用いた減圧鋳造方法をシール断面図である。 1−・−−−−一鋳型 2・〜・−・上型 3−−−−−−一下型 4.6−−−−−−一外枠 5.7−−−−−−一流動金型 8−・・−キャビティ 9〜・−・−砂型 11−−−−−一・−製品キャビティ 12.16−・−・−冷却パイプ 出願人  トヨタ自動車株式会社 第2図
FIG. 1 is a cross-sectional view of a mold according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a mold according to a second embodiment of the present invention, in which a vacuum casting method using the mold of the first embodiment is performed. FIG. 1-・-----1 mold 2-------upper mold 3-------1 lower mold 4.6-------1 outer frame 5.7--1 liquid gold Mold 8 - Cavity 9 - Sand mold 11 - Product cavity 12.16 - Cooling pipe Applicant Toyota Motor Corporation Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)外枠で保持され、内部にキャビティを有する流動
金型とそのキャビティ面に沿って所定の厚みを持って造
型され、内部に製品キャビティを形成する砂型とからな
る鋳型であって、前記流動金型には冷却パイプが配設さ
れていることを特徴とする鋳型。
(1) A mold consisting of a fluid mold held by an outer frame and having a cavity inside, and a sand mold molded with a predetermined thickness along the cavity surface to form a product cavity inside, the mold comprising: A mold characterized in that a cooling pipe is provided in the flow mold.
(2)特許請求の範囲第1項において、前記製品キャビ
ティに臨むよう前記砂型の一部に冷し金が配設されてい
ることを特徴とする鋳型。
(2) The mold according to claim 1, characterized in that a cooling metal is disposed in a part of the sand mold so as to face the product cavity.
(3)外枠で保持され、内部にキャビティを有する流動
金型とそのキャビティ面に沿って所定の厚みを持って造
型され、内部に製品キャビティを形成する砂型とからな
り、前記流動金型には冷却パイプが配設されている鋳型
を用いた減圧鋳造方法であって、前記鋳型を底板上へ載
置する工程、前記鋳型の周囲を被って前記鋳型の製品キ
ャビティ内が所定の負圧となるよう減圧を行う工程、前
記鋳型内へ注湯する工程、注湯完了後に前記鋳型の被い
を外す工程および被いを外した前記鋳型の前記冷却パイ
プに冷却媒体を送り金型等を冷却する固定を順次行うこ
とを特徴とする減圧鋳造方法。
(3) It consists of a fluid mold that is held by an outer frame and has a cavity inside, and a sand mold that is molded with a predetermined thickness along the cavity surface to form a product cavity inside. is a reduced pressure casting method using a mold equipped with a cooling pipe, which includes the step of placing the mold on a bottom plate, the process of placing the mold on a bottom plate, and creating a predetermined negative pressure in the product cavity of the mold by covering the periphery of the mold. A step of reducing the pressure so that the metal is poured into the mold, a step of removing the cover of the mold after pouring is completed, and a step of sending a cooling medium to the cooling pipe of the mold with the cover removed to cool the mold etc. A vacuum casting method characterized by sequentially performing fixing.
JP6299186A 1986-03-20 1986-03-20 Mold and vacuum casting method using the mold Expired - Fee Related JPH0647149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6299186A JPH0647149B2 (en) 1986-03-20 1986-03-20 Mold and vacuum casting method using the mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299186A JPH0647149B2 (en) 1986-03-20 1986-03-20 Mold and vacuum casting method using the mold

Publications (2)

Publication Number Publication Date
JPS62220241A true JPS62220241A (en) 1987-09-28
JPH0647149B2 JPH0647149B2 (en) 1994-06-22

Family

ID=13216346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299186A Expired - Fee Related JPH0647149B2 (en) 1986-03-20 1986-03-20 Mold and vacuum casting method using the mold

Country Status (1)

Country Link
JP (1) JPH0647149B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361009A1 (en) * 2002-05-10 2003-11-12 Deutsche Giesserei- und Industrie-Holding AG Mould for producing a casting piece using moulding base material and method for producing a mould
EP1531021A1 (en) * 2003-11-05 2005-05-18 Deutsche Giesserei- und Industrie-Holding AG Casting process for producing a casting piece
JP2006305594A (en) * 2005-04-27 2006-11-09 Daido Castings:Kk Precision casting method
WO2009121611A1 (en) * 2008-04-05 2009-10-08 Evosteel Gmbh Casting mould for producing a cast component and method for producing a casting mould
CN105339110A (en) * 2013-06-20 2016-02-17 日立金属株式会社 Cast article manufacturing method
EP3539687A1 (en) * 2017-12-27 2019-09-18 Casa Maristas Azterlan Device and method for improved cooling of a metallic alloy in a sand mold
CN114918365A (en) * 2022-04-27 2022-08-19 河北津西钢铁集团重工科技有限公司 Casting method of cast steel water-cooling furnace mouth

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361009A1 (en) * 2002-05-10 2003-11-12 Deutsche Giesserei- und Industrie-Holding AG Mould for producing a casting piece using moulding base material and method for producing a mould
US6892788B2 (en) 2002-05-10 2005-05-17 Deutsche Giesserei- Und Industrie-Holding Ag Mould for the manufacture of a casting using moulding material and method for the manufacture of a mould
EP1531021A1 (en) * 2003-11-05 2005-05-18 Deutsche Giesserei- und Industrie-Holding AG Casting process for producing a casting piece
JP2006305594A (en) * 2005-04-27 2006-11-09 Daido Castings:Kk Precision casting method
WO2009121611A1 (en) * 2008-04-05 2009-10-08 Evosteel Gmbh Casting mould for producing a cast component and method for producing a casting mould
CN105339110A (en) * 2013-06-20 2016-02-17 日立金属株式会社 Cast article manufacturing method
EP3539687A1 (en) * 2017-12-27 2019-09-18 Casa Maristas Azterlan Device and method for improved cooling of a metallic alloy in a sand mold
CN114918365A (en) * 2022-04-27 2022-08-19 河北津西钢铁集团重工科技有限公司 Casting method of cast steel water-cooling furnace mouth

Also Published As

Publication number Publication date
JPH0647149B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
AU635858B2 (en) Countergravity casting using particulate supported thin walled investment shell mold
US3786857A (en) Metal casting apparatus with mechanism for immersing jig and mould
JPH03230860A (en) Pressurized casting method
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
CN112605342A (en) Forming method of small-sized thin-wall stainless steel casting with complex cavity
US7032647B2 (en) Pressure casting using a supported shell mold
JPS5911383B2 (en) Low-pressure casting mold for tire molding and vulcanization
JPH0561018B2 (en)
JPS61296938A (en) Casting method using sand mold
CN208483212U (en) A kind of shell structure that suction pouring ingate quickly solidifies
WO1994020240A1 (en) Vacuum suction casting apparatus and method using the same
JPS6354466B2 (en)
JP3794033B2 (en) Vacuum suction casting method and apparatus
JP2003326337A (en) Mold for producing casting by using holding material and method for making mold
JPH0367787B2 (en)
JPH05277699A (en) Method for casting thin casting
US5062467A (en) Vacuum countergravity casting apparatus and method
JP2820882B2 (en) Vacuum suction casting apparatus and method
JPH09300061A (en) Reduced pressure suction casting device and cast parts using this
JPH07121446B2 (en) Method for manufacturing cast ceramic body
JPS58125360A (en) Method and device for vacuum casting
JPH06106327A (en) Casting method of thin casting
JPS6240966A (en) Casting method for thin-walled casting
JPH0757416B2 (en) Suction casting method using sand sand stokes
SU457538A1 (en) The way to pour under low pressure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees