JPS62219961A - Manufacture of thin film mos structure semiconductor device - Google Patents

Manufacture of thin film mos structure semiconductor device

Info

Publication number
JPS62219961A
JPS62219961A JP6444986A JP6444986A JPS62219961A JP S62219961 A JPS62219961 A JP S62219961A JP 6444986 A JP6444986 A JP 6444986A JP 6444986 A JP6444986 A JP 6444986A JP S62219961 A JPS62219961 A JP S62219961A
Authority
JP
Japan
Prior art keywords
film
deposited
semiconductor device
islands
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6444986A
Other languages
Japanese (ja)
Other versions
JPH0620138B2 (en
Inventor
Nobuhiko Tsunoda
信彦 角田
Tsutomu Wada
力 和田
Noboru Naito
昇 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6444986A priority Critical patent/JPH0620138B2/en
Publication of JPS62219961A publication Critical patent/JPS62219961A/en
Publication of JPH0620138B2 publication Critical patent/JPH0620138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To provide a thin film semiconductor device with levelling effect which avoids local dielectric breakdown of a gate and achieve element isolation in the semiconductor device with combination of simple processes and in a short time by a method wherein 1st Si film is formed on an insulating substrate and, after Si islands are formed in element forming regions of the Si film, 2nd Si film is deposited over the whole surface and, after the 2nd Si film is subjected to hot oxidation, SiO2 on the surface of the islands is removed. CONSTITUTION:A polycrystalline silicon film 2 is deposited on an insulating substrate 1 by CVD and the film 2 is removed by plasma etching except the parts on element forming regions to form islands 2'. Then the resist is removed by ashing and 2nd polycrystalline silicon film 2'' is deposited on the surface by CVD. Then the 2nd film 2'' is subjected to oxidation to be converted into an SiO2 film 9 to form element isolation structure. After that, SiO2 on the islands 2' is removed by etching with photoresist 8 as a mask and then an oxide film 3 is formed by wet hot oxidation. Thereafter, like by conventional processes, polycrystalline silicon is deposited as gate electrode material 4, source and drain are formed, an SiO2 layer insulating film 11 is deposited by sputtering and the source and the drain are contacted with Al electrodes 12 through through-holes to complete a semiconductor substrate.

Description

【発明の詳細な説明】 発明の分野 本発明は薄膜型MOS構造半導体装置の製造法に関する
ものであシ、具体的には、TPT (Thin Fi1
mTransiatoデ;薄膜トランジスタ)の素子分
離工程に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a thin film type MOS structure semiconductor device, and specifically relates to a method of manufacturing a thin film type MOS structure semiconductor device.
The present invention relates to an element isolation process for thin film transistors.

従来の技術 薄膜型MOS構成半導体装置の素子間分離は、基本的に
は以下の工程で行われる。
Conventional technology Isolation between elements of a thin film type MOS semiconductor device is basically performed in the following steps.

第2図に示すように、絶縁基板1の上にポリシリコン等
のSi膜を形成し、フォトリングラフィ技術によシ、各
能動領域間の!It @を除去し、アイランドτを形成
した後、熱酸化によりゲート酸化膜3を形成すれば、各
能動素子は電気的に分離し得る。次いでゲート酸化膜上
にゲート電極材を成模し、フォトリソグラフィで所要の
形状にバターニングを行い、ゲート電極4を形成し以後
通常のMOS工程でMO3構造素子を成膜させる。
As shown in FIG. 2, a Si film such as polysilicon is formed on an insulating substrate 1, and a Si film such as polysilicon is formed between each active region using photolithography technology. After removing It@ and forming islands τ, each active element can be electrically isolated by forming a gate oxide film 3 by thermal oxidation. Next, a gate electrode material is formed on the gate oxide film and patterned into a desired shape by photolithography to form a gate electrode 4. Thereafter, an MO3 structure element is formed by a normal MOS process.

この製法は、処理方法が単純で工程数が少ないことが特
長であるが、次の欠点を有している。
Although this manufacturing method is characterized by a simple processing method and a small number of steps, it has the following drawbacks.

その1は、S(アイランドの側面と、下地の絶縁基板が
接触する所(第2図のA点)で、ゲート酸化膜が薄くな
ることである。素子の使用時KA点近傍のゲート酸化膜
が絶縁破壊を起こす危険が高くなる。
The first is that the gate oxide film becomes thinner at the point where the side surface of the island (S) contacts the underlying insulating substrate (point A in Figure 2).When the device is used, the gate oxide film near the KA point increases the risk of dielectric breakdown.

その2は、素子表面の段差が大きく、以後の工程で配線
の断線や短絡の要因となシ得ること、またフォトリソグ
ラフィの精度を低下させることである。
The second problem is that the level difference on the element surface is large, which can cause disconnection or short circuit of wiring in subsequent steps, and also reduces the accuracy of photolithography.

また、素子表面を平坦化する技術として、第3図に示す
ように、絶縁基板1′上にStアイランド2′を形成し
た後(第3図a )、CVD法やスパッタ法でS(Q、
 3’をS(アイランド2′の膜厚以上に堆積し、その
上にレジスト4′を塗布して表面を平坦化した後(第3
図6)、ドライエツチングする(第3図C)いわゆるエ
ッチパック法がある。この素子間分離法は表面の平坦性
は得られるが次の欠点がある。
In addition, as a technique for flattening the element surface, as shown in Fig. 3, after forming an St island 2' on an insulating substrate 1' (Fig. 3a), S(Q,
3' is deposited to a thickness greater than that of island 2', and a resist 4' is applied thereon to flatten the surface (3rd layer).
There is a so-called etch pack method in which dry etching (FIG. 3C) is performed. Although this inter-element isolation method provides surface flatness, it has the following drawbacks.

その1は、CVD法、あるいはスパッタ法で段差上に堆
積し九5t(h嘆は、CVD法では次の文献(村本、中
島;電子通信学会誌Vo1.66、 NO,7,198
3)で、またスパッタ法では次の文献(T、Jaデtk
awa andT、Yaa屓 : J、EleaDoa
ham、Boa、t+oj−121L J’918.1
9Si )に各々述べられているように、段差の側壁に
は粗な膜質のStO鵞が付着する。この粗な膜質の部分
が以後のエツチングや拡散の工程で欠陥を生じやすい。
The first method is to deposit 95t on the step using the CVD method or the sputtering method.
3), and in the sputtering method, the following literature (T, Ja de tk
awa and T, Yaa: J, EleaDoa
ham, Boa, t+oj-121L J'918.1
9Si), a coarse film of StO is deposited on the side wall of the step. This rough film is likely to cause defects in subsequent etching and diffusion steps.

その2は、1積StO,の場合、熱酸化膜に比べS(膜
との界面での単位に関連したリーク電流等素子特性を変
動させる要因が多い。従って、ゲート絶縁模の絶縁破壊
や、段差形状や、堆積Stow@の膜質不均一や界面準
位の不安定性等の欠点を排除するため、一般には、Si
ウェハMO3LsI工程に採用されているwcos法に
準じた素子間分離法(コプレーナプロセス)にょシ製造
されている。
Second, in the case of 1 product StO, there are many factors that change device characteristics such as leakage current related to the unit at the interface with S (film) compared to thermal oxide films.Therefore, dielectric breakdown of the gate insulation model, In general, Si
It is manufactured using an element isolation method (coplanar process) similar to the WCOS method adopted in the wafer MO3LsI process.

@4図aK示した絶縁基板1の上に1ポリシリコン等の
Si膜2を堆積する。熱漬化法で薄いStへ層5を形成
した後、CVD法で1化シリコン6゜5+(Q、 7を
順次堆積する。
@4 A Si film 2 such as polysilicon is deposited on the insulating substrate 1 shown in FIG. After forming a layer 5 on a thin St layer by a hot dipping method, silicon monide 6°5+(Q, 7) is sequentially deposited by a CVD method.

下地のStO,層5はSi膜2と窒化シリコン6が反応
する等のS(膜2と窒化シリコン6が接触することによ
って発生するトラブルを防止するためである。第4図す
て示す如く、フォトリソグラフィ技術で、先ず表面の5
ift 7を部分的に除去し、(第4図C)更に、それ
をマスクとして窒化シリコン6、  、!(O@ 5.
5(1(!’2を順次エツチング除去して第4図gの構
造を得る。
The underlying StO layer 5 is to prevent troubles caused by contact between the Si film 2 and silicon nitride 6, such as reaction between the Si film 2 and the silicon nitride 6. As shown in FIG. Using photolithography technology, first the surface 5
Partially remove ift 7 (FIG. 4C) and use it as a mask to further remove silicon nitride 6, , ! (O@5.
5(1(!'2) are sequentially removed by etching to obtain the structure shown in FIG. 4g.

次に、Sin雪膜7を除去し、この時S(膜を約半分の
厚さだけ残すことが、このプロセスの要点である。次に
熱酸化すると、窒化シリコンで被覆されていない部分の
Si膜2′は完全に酸化すると約2倍の厚さになシ、第
4図−に示した構造となる。
Next, the Si snow film 7 is removed, and the key point of this process is to leave only about half the thickness of the S film. When the film 2' is completely oxidized, it becomes about twice as thick and has the structure shown in FIG.

窒化シリコン6およびその下のstow sを除去する
と第4図!で示した如(5i(h 9とS(アイランド
2′の上表面が連続した平坦な素子間分離の構造が得ら
れる。
Figure 4 shows the removal of silicon nitride 6 and the stow s below it! As shown in (5i (h 9 and S), a flat element isolation structure in which the upper surface of the island 2' is continuous is obtained.

その後、再度S(アイランド上にゲート酸化膜3′を形
成しく第4図g)、その上にゲート電極材4を堆積しく
第4図h)、フォトリソグラフィ技術でパターニングを
行いゲート電極8′を形成しく8はレジスト)(第今図
5sj)、以後通常のプロセスでMO3型素子を形成し
最終的に第4図にの構造となって工程を完了する。
After that, the gate oxide film 3' is formed on the island again (Fig. 4g), the gate electrode material 4 is deposited on it (Fig. 4h), and patterning is performed using photolithography to form the gate electrode 8'. 8 is a resist) (FIG. 5sj). Thereafter, an MO3 type element is formed by a normal process, and finally the structure shown in FIG. 4 is obtained, and the process is completed.

以上説明した従来の素子間分離法は工程数が多く、工程
所要時間が長い、更に、Si膜の約半分の厚さをエツチ
ング時に残すことが要点になっていてエツチングの制御
性が悪く平坦度に変動が生じる欠点を有している。工程
所要時間が長くなるのは次の理由による。
The conventional device isolation method described above requires a large number of steps and takes a long time.Furthermore, the key point is to leave approximately half the thickness of the Si film during etching, resulting in poor etching controllability and poor flatness. It has the disadvantage that fluctuations occur. The reason why the process takes longer is as follows.

(イ)選択酸化のマスクとして窒化シリコンを堆積する
必要がある。
(a) It is necessary to deposit silicon nitride as a mask for selective oxidation.

(−この窒化シリコンを用いるため、8401層で窒化
シリコンをサンドイッチ構造にする必要がある。
(-In order to use this silicon nitride, it is necessary to form a silicon nitride sandwich structure with 8401 layers.

(ハ)堆積したStO,、窒化シリコンを除去する必要
がある。
(c) It is necessary to remove the deposited StO and silicon nitride.

によるものである。This is due to

発明の目的 本発明は以上の欠点を解決するために提案するもので、
その目的とする所は、局部的ゲート絶縁破壊を防止した
平坦化効果のある薄膜型半導体装置の素子間分離を簡潔
な工程の組合せでしかも少い所要時間で成膜させる方法
を提供することKある。
Purpose of the Invention The present invention is proposed to solve the above-mentioned drawbacks.
The purpose is to provide a method for forming element isolation in a thin film semiconductor device with a flattening effect that prevents local gate dielectric breakdown by using a simple combination of steps and in a short amount of time. be.

、1!關9s叙 発明の要約 上記の目的を達するため、本発明は、絶縁基板上に第1
のポリシリコン等のSi膜を成膜させる工程と、このS
(膜をフォトリングラフィ技術で素子形成領域だけをア
イランドとして残し、その他をエツチング除去する工程
と、 このSiアイランドを形成した後、更に全面に第1のS
i膜厚よシ薄い第2のポリシリコン等のSi膜を堆積す
る工程と、この第2の堆積したポリシリコン等のS(膜
を熱酸化で完全にStO,にする工程と。
, 1! Summary of the Invention In order to achieve the above object, the present invention provides a first
The process of forming a Si film such as polysilicon, and this S
(The film is etched using photolithography technology, leaving only the element formation area as an island and removing the rest by etching. After forming this Si island, the first S
A step of depositing a second Si film such as polysilicon that is thinner than the thickness of the i film, and a step of thermally oxidizing the second deposited S film of polysilicon or the like to completely convert it into StO.

第1のSi膜によるS(アイランド表面のStO,をフ
ォトエツチング法、あるいはエッチバック法で除去する
工程と、その後、Siアイランド表面にゲート酸化膜を
成膜させる工程と、ゲート酸化膜上にゲート電極材を堆
積してパターニングしてゲート電極を成膜させる工程と
を含むことを特徴とする薄膜型MOfl p造の素子間
分離の製造法を提供するものである。
A process of removing S (StO on the island surface) from the first Si film by a photoetching method or an etch-back method, followed by a process of forming a gate oxide film on the Si island surface, and a process of forming a gate oxide film on the gate oxide film. The present invention provides a method for manufacturing element isolation in a thin film type MOflp structure, which is characterized by including a step of depositing and patterning an electrode material to form a gate electrode.

従来の窒化シリコンを用いた複雑多岐にわたる工程を要
する選択酸化法と同等の性能を有する素子間分離を、第
1の34膜の上にポリシリコン等の第2のS(膜を堆積
し、酸化するだけの簡潔単純な短工糧で形成し得ること
に本発−の特長がある。
A second S film, such as polysilicon, is deposited on top of the first 34 films, and a second S (film) such as polysilicon is deposited on top of the first 34 films, and then oxidized. The feature of this invention is that it can be formed with simple and simple steps.

実施例 本発明の実施1例を図面に基づいて説明する。Example An embodiment of the present invention will be described based on the drawings.

なお、実施例は一つの例示であって、本発明の主旨を逸
脱しない範囲で種々の変更、あるいは改良を行い得るこ
とは云うまでもない。
Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

まf−1MOJ構造の半導体素子について説明している
が、本発明による素子間分離は、バイポーラ素子等の能
動素子や、キャパシター、抵抗等の受動素子間の分離法
としても有効であることは明白である。
Although a semiconductor device with an f-1 MOJ structure has been described, it is clear that the device isolation according to the present invention is also effective as a method for separating active devices such as bipolar devices, and passive devices such as capacitors and resistors. It is.

第1図α〜jに、本発明の半導体装置の製造法の実施例
(工程図)を示す。
FIGS. 1a to 1j show an embodiment (process diagram) of the method for manufacturing a semiconductor device of the present invention.

第1図αに示す絶縁基板(石英製)1の上に1CVD法
によシポリシリコン膜2と200OA堆積した。
A polysilicon film 2 of 200 OA was deposited on an insulating substrate (made of quartz) 1 shown in FIG. 1α by the 1CVD method.

次に、フォトリングラフィ技術を用いてポリシリコン膜
の素子形成領域以外をCC1,F、を用いたプラズマエ
ツチングで除去し、第1図すに示すポリシリコンのアイ
ランド2′構造を形成した。600℃の酸素雰囲気中で
レジストを灰化除去した後、再度この表面に第2のポリ
シリコン21をCVD 法によシ約800Xの厚さに堆
積した(第1図6)。次に、900C60分のウェット
熱酸化法でこの第2のポリシリコン膜2′を完全に酸化
して5inH層9に変えると、素子を成膜させるポリシ
リコンアイランド2′が熱酸化膜で分離された素子間分
離構造が第1図dK示した如く形成される。ポリシリコ
ンアイランド間の840.9の厚さは約150OAであ
る。この熱酸化工程では、超過に対して、即ち第1のポ
リシリコン膜2′まで酸化が進行しても支障はなく、素
子間分離工程における条件の許容範囲が広く、再現性の
高いプロセスである。
Next, using a photolithography technique, the polysilicon film other than the element formation region was removed by plasma etching using CC1, F to form a polysilicon island 2' structure as shown in FIG. After the resist was ashed and removed in an oxygen atmosphere at 600° C., second polysilicon 21 was deposited on this surface again to a thickness of about 800× by CVD method (FIG. 1, 6). Next, when this second polysilicon film 2' is completely oxidized by a wet thermal oxidation method of 900C for 60 minutes and turned into a 5inH layer 9, the polysilicon islands 2' on which the elements are formed are separated by a thermal oxide film. A device isolation structure is formed as shown in FIG. 1dK. The thickness of 840.9 between polysilicon islands is approximately 150 OA. In this thermal oxidation process, there is no problem even if the oxidation progresses to the first polysilicon film 2', and the tolerance range of conditions in the element isolation process is wide, making it a highly reproducible process. .

この実施例では、この後、ポリシリコンアイランド2′
上のStO,を通常のポジレジストによるフォトリング
ラフィ技術を用いて、フォトレジスト8でマスクし、緩
衝弗酸溶液でエツチング除去し、第4図−1fに示した
構造とし、続いて900℃20分のウェット熱酸化法で
100OAのゲート酸化膜3を形成した(第1図g)。
In this embodiment, after this, the polysilicon island 2'
The above StO was masked with a photoresist 8 using a photolithography technique using a normal positive resist, and etched away with a buffered hydrofluoric acid solution to obtain the structure shown in Fig. 4-1f. A gate oxide film 3 of 100 OA was formed using a wet thermal oxidation method for 10 minutes (FIG. 1g).

以後、通常のプロセス通りに、ゲート電極材4としてポ
リシリコンを堆積し、バターニング後ソース、トレー7
10をイオン注入法で形成しく第1図ん、i)、続いて
スパッタStO,で層間絶縁膜11を4積し、スルーホ
ールを介して、4j141極12で接続し、最終的に第
3図jに示す構造の、薄膜型MOS構造半導体装置を完
成した。
Thereafter, polysilicon is deposited as the gate electrode material 4 according to the usual process, and after buttering, the source and tray 7 are deposited.
10 is formed by ion implantation (Fig. 1, i), then four interlayer insulating films 11 are deposited by sputtering StO, and connected by 4j141 poles 12 via through holes, finally as shown in Fig. 3. A thin film MOS semiconductor device having the structure shown in j was completed.

以上説明した本発明の実施例では、ポリシリコンアイラ
ンド上の5i02を最も簡単なフォトレジストを用い友
邦酸系ウェットエツチングで除去する方法を示した。こ
の方法では、第1図fでわかる通り、アイランド周縁に
第2ポリシリコンを酸化した5iftが残存して、完全
平坦な構造とはなっていない。しかしこの段差は150
07以下と薄いことウェットエツチングや、ゲート酸化
時に角が滑らかとなるためゲート電極の断線等素子特性
に支障を起こすものではない。しかも、第2ポリシリコ
ンの堆積膜厚でこの段差を制御することが可能である。
In the embodiment of the present invention described above, a method was shown in which 5i02 on a polysilicon island was removed by amic acid-based wet etching using the simplest photoresist. In this method, as can be seen from FIG. 1(f), 5ifts formed by oxidizing the second polysilicon remain at the periphery of the island, and a completely flat structure is not obtained. However, this step is 150
Since the thickness is less than 0.07 mm, the corners are smooth during wet etching and gate oxidation, so there is no problem with device characteristics such as disconnection of the gate electrode. Moreover, it is possible to control this step difference by controlling the deposited film thickness of the second polysilicon.

高密度化等の対策として、よシ平坦化が必須の場合には
、第2ポリシリコンの酸化後の膜厚が、第1ポリシリコ
ンアイランドの膜厚と同等以上になるように第2ポリシ
リコンを堆積し、次に7オトレジストをその表面が平坦
を得るに充分な膜厚に全面塗布した後、イオンエツチン
グでポリシリコンアイランドの表面が現われるまで全面
をエツチング除去するいわゆるエッチバック法を用いれ
ば、熱酸化膜で平坦な素子間分離を成膜させることがで
きる。
If planarization is essential as a countermeasure for higher density, etc., the second polysilicon film should be made so that the film thickness after oxidation of the second polysilicon island is equal to or greater than the film thickness of the first polysilicon island. If we use the so-called etch-back method, in which we deposit 7 photoresist on the entire surface to a thickness sufficient to obtain a flat surface, and then use ion etching to remove the entire surface until the surface of the polysilicon island appears. A flat device isolation can be formed using a thermal oxide film.

発明の効果 以上のように本発明によれば、薄膜型半導体装置の素子
間分離を、単純で、再現性の高い工程を用いて、平坦か
つ耐絶繰性に優れた構造として形成し得る利点がある。
Effects of the Invention As described above, the present invention has the advantage that the isolation between elements of a thin film semiconductor device can be formed into a flat structure with excellent repeatability using a simple and highly reproducible process. There is.

更に、従来の方法と比較して素子間分離に要する工程数
を40幅以上低減できる利点がある。
Furthermore, compared to conventional methods, there is an advantage that the number of steps required for isolation between elements can be reduced by more than 40 widths.

半導体装置の製造法を示す工程図である。FIG. 3 is a process diagram showing a method for manufacturing a semiconductor device.

第2図、第3図a −a工程図及び第4図α〜に工程図
は、従来の薄膜型MOS構造半導体装置の製造法を説明
するための図である。
The process diagrams in FIGS. 2 and 3 a-a and FIGS.

1・・・絶縁基板 2・・・ポリシリコン等S(膜(基板Si膜)2′・・
・分離されたSi膜 2′・・・第1のStHに重さねて准覆し九Si膜3・
・・ゲート酸化膜 4・・・ゲート電極(材) 5・・・下地sto、 g 6゛・・・窒化Si膜 7・・・マスクEji02膜 8・・・フォトレジスト 9・・・素子間分離用ポリシリコンの酸化340゜10
・・・ソースとドレーン 11・・・層間5iO1 12・・・Afi電極 特許出願人 日本電信電話株式会社 代理人 弁理出玉1久五部(外2名) 第 1 図 2′:  アイランド  4; ゲート電極jlN2 
 図
1... Insulating substrate 2... Polysilicon etc. S (film (substrate Si film) 2'...
・Separated Si film 2'...overlay on the first StH and semi-overlap 9 Si film 3.
...Gate oxide film 4...Gate electrode (material) 5...Base sto, g 6゛...Si nitride film 7...Mask Eji02 film 8...Photoresist 9...Isolation between elements Oxidation of polysilicon for 340°10
... Source and drain 11 ... Interlayer 5iO1 12 ... Afi electrode patent applicant Nippon Telegraph and Telephone Corporation representative Patent attorney 1 Kugobe (2 others) 1st Figure 2': Island 4; Gate Electrode jlN2
figure

Claims (3)

【特許請求の範囲】[Claims] (1)(イ)絶縁基板上に第1のSi膜を形成する工程
と、 (ロ)前記Si膜を選択除去し、アイランド状に素子形
成領域を形成する工程と、 (ハ)前記、素子形成領域がアイランド状に分離された
表面に第2のSi膜を全面に堆積する工程と、 (ニ)次に第2のSi膜を完全に酸化させ、素子形成領
域のSiアイランドを酸化物内に埋め込んだ構造の素子
間分離領域を形成する工程と、 (ホ)次に、Siアイランド上の酸化物を選択除去する
工程と、 (ヘ)前記Siアイランド上にMOS構造半導体装置の
ゲートと絶縁膜を成膜させる工程と (ト)前記ゲート絶縁膜上にゲート電極を形成する工程
と、 を含むことを特徴とする薄膜型MOS構造半導体装置の
製造法。
(1) (A) A step of forming a first Si film on an insulating substrate; (B) A step of selectively removing the Si film to form an island-shaped element formation region; (C) A step of forming an element formation region on the insulating substrate A step of depositing a second Si film over the entire surface of the surface where the formation region is separated into islands; (iv) Next, the second Si film is completely oxidized, and the Si islands in the element formation region are covered with oxide. (e) Next, a step of selectively removing the oxide on the Si island; and (f) forming an isolation region with a gate of a MOS structure semiconductor device on the Si island. A method for manufacturing a thin-film MOS structure semiconductor device, comprising the steps of: (g) forming a film on the gate insulating film; and (g) forming a gate electrode on the gate insulating film.
(2)特許請求の範囲第1項記載のSiアイランド上の
酸化物を選択除去する工程がフォトリソグラフィ技術に
よるエッチング法を用いることを特徴とする薄膜型MO
S構造半導体装置の製造法。
(2) A thin film type MO characterized in that the step of selectively removing the oxide on the Si island according to claim 1 uses an etching method using photolithography technology.
A method for manufacturing an S-structure semiconductor device.
(3)特許請求の範囲第1項記載のSiアイランド上の
酸化物を選択除去する工程がエッチバック法を用いるこ
とを特徴とする薄膜型MOS構造半導体装置の製造法。
(3) A method for manufacturing a thin-film MOS structure semiconductor device, wherein the step of selectively removing the oxide on the Si island according to claim 1 uses an etch-back method.
JP6444986A 1986-03-22 1986-03-22 Method of manufacturing thin film MOS structure semiconductor device Expired - Lifetime JPH0620138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6444986A JPH0620138B2 (en) 1986-03-22 1986-03-22 Method of manufacturing thin film MOS structure semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6444986A JPH0620138B2 (en) 1986-03-22 1986-03-22 Method of manufacturing thin film MOS structure semiconductor device

Publications (2)

Publication Number Publication Date
JPS62219961A true JPS62219961A (en) 1987-09-28
JPH0620138B2 JPH0620138B2 (en) 1994-03-16

Family

ID=13258572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6444986A Expired - Lifetime JPH0620138B2 (en) 1986-03-22 1986-03-22 Method of manufacturing thin film MOS structure semiconductor device

Country Status (1)

Country Link
JP (1) JPH0620138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295463A (en) * 1988-05-24 1989-11-29 Nippon Soken Inc Thin film semiconductor element and manufacture thereof
JPH0766424A (en) * 1993-08-20 1995-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JP2009170794A (en) * 2008-01-18 2009-07-30 Advanced Lcd Technologies Development Center Co Ltd Method of manufacturing thin film semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295463A (en) * 1988-05-24 1989-11-29 Nippon Soken Inc Thin film semiconductor element and manufacture thereof
JPH0766424A (en) * 1993-08-20 1995-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6010924A (en) * 1993-08-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor
US6841432B1 (en) 1993-08-20 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7354811B2 (en) 1993-08-20 2008-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7585715B2 (en) 1993-08-20 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
JP2009170794A (en) * 2008-01-18 2009-07-30 Advanced Lcd Technologies Development Center Co Ltd Method of manufacturing thin film semiconductor device

Also Published As

Publication number Publication date
JPH0620138B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JPH09181164A (en) Semiconductor device and forming method of its element isolation region
US6849521B2 (en) Method for manufacturing a semiconductor device
JPS6015944A (en) Semiconductor device
JPS61214446A (en) Manufacture of semiconductor device
JPS62219961A (en) Manufacture of thin film mos structure semiconductor device
JPH11176929A (en) Element isolation method of semiconductor device with second pad oxide film formed through chemical vapor deposition
JP2672596B2 (en) Method for manufacturing semiconductor device
KR920007824B1 (en) Contacting device of semiconductor elements
JPS6038872B2 (en) Manufacturing method of semiconductor device
JPS5950540A (en) Manufacture of semiconductor device
KR100364124B1 (en) Method for manufacturing isolation layer in semiconductor device
JPH06169066A (en) Manufacture of semiconductor device
JPH04315433A (en) Manufacture of semiconductor device
JPS5845190B2 (en) Handout Taisouchino Seizouhouhou
JPH06295888A (en) Fabrication of semiconductor device
JPH0117256B2 (en)
JPS61214537A (en) Manufacture of semiconductor device
JPH01144671A (en) Manufacture of semiconductor memory device
JPH05299414A (en) Method for formation of element isolation oxide film in semiconductor device
JPH08236608A (en) Fabrication of semiconductor device
JPH01120058A (en) Device isolation of soi structure
JPS6219076B2 (en)
JPH0555363A (en) Element isolating method
JPS62181451A (en) Forming method for field insulating film
JPH05114614A (en) Thin film transistor and manufacture of the same