JPS62218501A - Manufacture of sintered mn-cr steel product - Google Patents

Manufacture of sintered mn-cr steel product

Info

Publication number
JPS62218501A
JPS62218501A JP6160086A JP6160086A JPS62218501A JP S62218501 A JPS62218501 A JP S62218501A JP 6160086 A JP6160086 A JP 6160086A JP 6160086 A JP6160086 A JP 6160086A JP S62218501 A JPS62218501 A JP S62218501A
Authority
JP
Japan
Prior art keywords
sintered
carburizing
steel
product
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6160086A
Other languages
Japanese (ja)
Inventor
Masahide Unno
正英 海野
Sumio Toyozumi
豊住 澄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6160086A priority Critical patent/JPS62218501A/en
Publication of JPS62218501A publication Critical patent/JPS62218501A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered Mn-Cr steel product causing no internal oxidation during heat treatment by carburizing and hardening a sintered body of Mn-Cr alloy steel powder in a mixed atmosphere consisting of prescribed volume percentages of gaseous HC and H2 and the balance N2 and having a regulated dew point. CONSTITUTION:Mn-Cr alloy steel powder contg. 0.4-2.0wt% Mn and/or 0.3-3.0wt% Cr is compacted and sintered at 1,100-1,250 deg.C in a reducing atmosphere contg. H2. The sintered body is carburized at 850-1,050 deg.C for 0.5-5hr in a mixed atmosphere consisting of 2-10vol% gaseous HC such as propane, <=20vol% H2 and the balance N2 and having <=-10 deg.C dew point. The resulting sintered Mn-Cr steel product is not internally oxidized at all during carburization, the sizing of the product is facilitated and the dimensional accuracy is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結品の製造方法、特に焼結品への熱処理法
として浸炭焼入れを行なうMn−Cr系鋼の焼結品の製
造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a sintered product, particularly a method for manufacturing a sintered product of Mn-Cr steel in which carburizing and quenching is performed as a heat treatment method for the sintered product. Regarding.

(従来の技術) 今日、多くの機械構造部品が焼結品とし供給されるよう
になってきており、特に近年の粉末冶金技術の発展に伴
い、焼結品の寸法精度が上がったため、通用部品の種類
そして適用鋼種の範囲の拡大が見られるようになり、重
要部品に各種合金鋼粉の焼結品も多く見られるようにな
ってきた。例えば、自動車用のトランスミッション部品
、エンジン部品およびステアリング部品等、引張強度が
100〜120 kgf /mwat程度にも達する高
強度機械構造部品にも焼結品が使用されるようになって
おり、かかる用途には、Ni−Mo系の460o鋼粉や
Mn −Cr −Mo系の4100鋼粉が用いられてい
る。
(Conventional technology) Today, many mechanical structural parts are being supplied as sintered products, and the dimensional accuracy of sintered products has improved with the recent development of powder metallurgy technology. The types of steel and the range of applicable steel types are expanding, and sintered products of various alloy steel powders are increasingly being used for important parts. For example, sintered products are now being used for high-strength mechanical structural parts such as automobile transmission parts, engine parts, and steering parts, which have a tensile strength of about 100 to 120 kgf/mwat. Ni-Mo based 460o steel powder and Mn-Cr-Mo based 4100 steel powder are used.

このような焼結品は、通常、粉末を圧粉成形後、適宜雰
囲気下で焼結してからサイジングによって寸法精度を出
して、次いで熱処理して使用に供している。
Such sintered products are usually prepared by compacting the powder, sintering it in an appropriate atmosphere, sizing it to achieve dimensional accuracy, and then heat treating it.

上述のような合金鋼の場合、調質あるいは浸炭焼入れに
よる熱処理を行ってから使用に供しているが、従来の吸
熱型変性ガス(以下、単に“RXガス”という)による
熱処理雰囲気では、Mn、 Crを含有した焼結鋼の加
熱処理は焼結品の内部酸化を生じさせてしまう。溶製鋼
の場合、Mns Crを含有した鋼をRXガス中で浸炭
焼入れしても表面に酸化層が生成するだけであるのに対
し、焼結鋼の場合、酸化性成分を含むRXガスが内部の
空孔内に拡散し、焼結品内部まで酸化してしまうのであ
る。
In the case of the above-mentioned alloy steel, it is heat treated by tempering or carburizing and quenching before use, but in the heat treatment atmosphere using conventional endothermic modified gas (hereinafter simply referred to as "RX gas"), Mn, Heat treatment of sintered steel containing Cr causes internal oxidation of the sintered product. In the case of molten steel, even if steel containing Mns Cr is carburized and quenched in RX gas, an oxidized layer is only formed on the surface, whereas in the case of sintered steel, RX gas containing oxidizing components forms inside the steel. It diffuses into the pores and oxidizes the inside of the sintered product.

なお、従来のRXガスの組成は、一般に、N2:40〜
45容積%、l(2:30〜40容積%、Co :20
〜25容積%、CO2:0゜2〜0.5容積%であって
、露点は一5〜5℃である。
Note that the composition of conventional RX gas is generally N2:40~
45% by volume, l (2:30-40% by volume, Co: 20
~25% by volume, CO2: 0°2~0.5% by volume, and the dew point is -5~5°C.

また、Mn−Cr鋼の焼結品の場合、調質して使用する
が、通常原料鋼粉に黒鉛を0.5〜0.6%添加含有し
ているため、焼結体の硬度がかなり高くなっており、サ
イジングが困難となるなどの欠点がみられる。
In addition, in the case of sintered Mn-Cr steel, it is tempered before use, but since the raw material steel powder usually contains 0.5 to 0.6% graphite, the hardness of the sintered product is quite low. There are disadvantages such as high price and difficulty in sizing.

(発明が解決しようとする問題点) このように、従来のMn−Cr鋼の焼結品は熱処理に問
題があり、その優れた特性にもかかわらずまだ十分な利
用が図られていない。
(Problems to be Solved by the Invention) As described above, conventional sintered products of Mn-Cr steel have problems in heat treatment, and despite their excellent properties, they have not yet been fully utilized.

したがって、本発明の目的は、熱処理時に上述のような
内部酸化のみられないMn−Cr鋼焼結品の製造方法を
提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing a sintered Mn-Cr steel product that does not undergo internal oxidation as described above during heat treatment.

また、本発明の別の目的は、焼結品としての硬度の上昇
を可及的に抑え、サイジングによる寸法精度の向上を図
ることのできるMn−Cr1l焼結品の製造方法を提供
することである。
Another object of the present invention is to provide a method for manufacturing a Mn-Cr1l sintered product that can suppress the increase in hardness of the sintered product as much as possible and improve dimensional accuracy through sizing. be.

(問題点を解決するための手段) ここに、本発明者らは、非酸化性雰囲気中で焼結したM
n −Cr系合金鋼の焼結品の浸炭焼入れに際しても雰
囲気を調整して表面酸化はもちろん内部酸化をも抑制す
ることにより、従来のような欠点のないMn −Cr鋼
焼結品製品が得られ、さらにMn −Cr鋼の焼結品の
炭素含有量を可及的に少なくし、焼結後に浸炭処理を併
用することにより、焼結品の硬度の上昇を抑え、焼結品
のサイジング容易になるなど寸法精度などが改善され、
一層生産性が向上することを知り、本発明を完成した。
(Means for Solving the Problems) Here, the present inventors have discovered that M sintered in a non-oxidizing atmosphere
By adjusting the atmosphere during carburizing and quenching of sintered products of n-Cr alloy steel and suppressing not only surface oxidation but also internal oxidation, it is possible to obtain sintered Mn-Cr steel products that do not have the drawbacks of conventional products. Furthermore, by reducing the carbon content of the sintered Mn-Cr steel as much as possible and using carburizing treatment after sintering, the increase in hardness of the sintered product is suppressed and the sizing of the sintered product is made easier. Dimensional accuracy has been improved, such as
The present invention was completed after realizing that productivity could be further improved.

よって、本発明の要旨とするところは、Mn : 0゜
4〜2.0重量%およびCr : 0.3〜3.0重量
%の少なくとも1種以上を含むMn−Cr系合金鋼粉を
原料とした焼結品を、炭化水素ガス2〜10容積%、H
220容積%以下、露点−10℃以下、残りN2から成
る混合雰囲気中で浸炭焼入れすることを特徴とする焼結
品の製造方法である。
Therefore, the gist of the present invention is to use Mn-Cr alloy steel powder containing at least one of Mn: 0.4 to 2.0% by weight and Cr: 0.3 to 3.0% by weight as a raw material. The sintered product was heated with 2 to 10% by volume of hydrocarbon gas, H
This is a method for producing a sintered product characterized by carburizing and quenching in a mixed atmosphere consisting of 220% by volume or less, a dew point of -10°C or less, and the remainder N2.

本発明のさらに別の態様によれば、上記Mn−Cr鋼焼
結品はMo : 0.1〜0.5重量%含有し、その密
度は6.6 g 7cm”以上である。
According to yet another aspect of the present invention, the Mn-Cr steel sintered product contains Mo: 0.1 to 0.5% by weight, and has a density of 6.6 g 7 cm" or more.

本発明における浸炭処理自体は焼結品の表面硬化処理法
の1つとして行われるものであって、表面のみ高硬度で
あれば良いという場合に好ましい。
The carburizing treatment itself in the present invention is carried out as one of the surface hardening treatment methods for sintered products, and is preferable when only the surface needs to be highly hardened.

その際上述のような雰囲気によれば焼結品の内部酸化を
もたらすことなく、十分な量の炭素を浸透させることが
できる。したがって、浸炭処理それ自体は従来のもので
あってもよく、浸炭雰囲気の限定を除いてその他特に制
限されるものではない。
At this time, the above-mentioned atmosphere allows a sufficient amount of carbon to penetrate without causing internal oxidation of the sintered product. Therefore, the carburizing process itself may be a conventional process, and there are no particular limitations other than the limitations on the carburizing atmosphere.

このように、本発明によれば、焼結品に対しては浸炭処
理が行われるためCは必ずしも高くなくてよく、焼結後
のサイジングが容易になり、寸法精度も向上する。
As described above, according to the present invention, since the sintered product is carburized, C does not necessarily have to be high, sizing after sintering becomes easy, and dimensional accuracy is improved.

したがって、かかる好適態様にあって、本発明は圧粉体
のC含有量を低下させて成形性、寸法精度の確保が図れ
るばかりでなく、所要C量は後続の浸炭処理によって加
えれば良く、かかる場合、後続の浸炭処理は非酸化性雰
囲気下で行われるため、浸炭焼入れ時にも焼結品の表面
酸化は何ら問題とならないなど、予想外の効果が得られ
るのが分かる。
Therefore, in this preferred embodiment, the present invention not only lowers the C content of the green compact to ensure formability and dimensional accuracy, but also allows the required amount of C to be added through the subsequent carburizing treatment, In this case, since the subsequent carburizing treatment is performed in a non-oxidizing atmosphere, unexpected effects such as surface oxidation of the sintered product do not pose any problem during carburizing and quenching can be seen.

(作用) 本発明において使用するMn−Cr系合金鋼の鋼組成は
、前述のように、自動車用のトランスミッション部品、
エンジン部品およびステアリング部品等、引張強度が1
00〜120 kgf /am’程度にも達する高強度
機械構造部品を製造すべく選定されたもので、Mn :
 0.4〜2.0重量%およびCr:0.3〜3.0重
量にの少なくとも1種以上を含み、さらに必要に応じ、
Mo:0.1〜0.5重量%を含有し、残部reから成
るものである。ここに、Mn、 Crは焼結鋼の焼入れ
性を向上させ、表面硬さを高めるのに不可欠の元素であ
るが、Mn : 0.4%未満、Cr : 0゜3%未
満ではその効果が少なく、また、Mn : 2.0%超
、Cr : 3.0%超では浸炭層の残留オーステナイ
トが増加するため好ましくない。また、Moは綱の焼入
性を高める元素であるが、Mo : 0.1%未満では
その効果が少なく、一方、0.5%超では経済的でない
(Function) As mentioned above, the steel composition of the Mn-Cr alloy steel used in the present invention is as follows:
Engine parts, steering parts, etc. have a tensile strength of 1
It was selected to manufacture high-strength mechanical structural parts reaching about 00 to 120 kgf/am', and Mn:
0.4 to 2.0% by weight and Cr: 0.3 to 3.0% by weight, and if necessary,
Mo: Contains 0.1 to 0.5% by weight, and the remainder consists of re. Here, Mn and Cr are essential elements for improving the hardenability of sintered steel and increasing the surface hardness, but if Mn: less than 0.4% and Cr: less than 0.3%, the effect is lost. If the Mn content exceeds 2.0% and the Cr content exceeds 3.0%, retained austenite in the carburized layer increases, which is not preferable. Further, Mo is an element that improves the hardenability of steel, but if it is less than 0.1%, the effect is small, while if it exceeds 0.5%, it is not economical.

代表的な組成例を以下に重量%で示す。Typical composition examples are shown below in weight %.

≦0.03  ≦0.05 0.60〜0.90 0.
80〜1.10このような組成の粉末は成形後、H2含
有還元性雰囲気下で焼結される。成形、焼結条件は従来
のものに同じであって特に制限されない。通常、4〜7
T/c112の圧力を加えて圧粉成形し、圧粉密度を6
.6〜7.2g/cm ’程度としてから、1100〜
1250℃で15〜60分間焼結するのである。
≦0.03 ≦0.05 0.60-0.90 0.
80-1.10 After compaction, the powder with such a composition is sintered in a reducing atmosphere containing H2. The molding and sintering conditions are the same as conventional ones and are not particularly limited. Usually 4-7
Pressure of T/c112 is applied to compact the compacted powder to a density of 6.
.. From about 6 to 7.2 g/cm', to 1100 to
Sintering is performed at 1250°C for 15 to 60 minutes.

本発明にあって、C:0.3%以下に制限する場合、焼
結後のサイジングは容易となり寸法精度は著しく向上す
る。つまり、従来は、焼結後の硬度は、80〜100 
(1B))程度であったが、本発明によれば、通常、5
0〜70(H,B)となり、高合金鋼にもかかわらず、
その表面硬度はかなり低く、また、そのような軟質の材
質のためサイジングの際などに荷重が小さくて済む、金
型の損傷が少な(なるなど、生産性の向上にも著しいも
のがある。
In the present invention, when C is limited to 0.3% or less, sizing after sintering becomes easy and dimensional accuracy is significantly improved. In other words, conventionally, the hardness after sintering was 80 to 100.
(1B)), but according to the present invention, usually 5
0 to 70 (H, B), despite being made of high alloy steel.
Its surface hardness is quite low, and because it is such a soft material, it requires less load during sizing, reduces mold damage, and significantly improves productivity.

次に、本発明にあっては、前述のような浸炭雰囲気下で
浸炭処理を行うが、その浸炭雰囲気ガスに含有させる炭
化水素ガスとしては、メタン(CH4)、エタン(C2
H6)、プロパン(CsH8)、ブタン(C4H1)な
どがあり、いずれを用いても良いが、浸炭速度の大きい
プロパン、ブタンガスの使用が好ましい。炭化水素ガス
が、2容積%未満では浸炭速度が小さり、10容積%を
越えるとススの付着が著しくなる。
Next, in the present invention, carburizing treatment is performed in the carburizing atmosphere as described above, and the hydrocarbon gases contained in the carburizing atmosphere gas include methane (CH4), ethane (C2
H6), propane (CsH8), butane (C4H1), etc., and any of them may be used, but it is preferable to use propane or butane gas, which has a high carburizing rate. If the hydrocarbon gas content is less than 2% by volume, the carburizing rate will be low, and if it exceeds 10% by volume, soot will be deposited significantly.

H2ガスは焼結鋼の表面を還元し、浸炭速度を高めるの
に有効であるが、20容積%を越えるとC+2H2=C
H,反応が大きくなり、浸炭速度が、低下する。
H2 gas is effective in reducing the surface of sintered steel and increasing the carburizing rate, but if it exceeds 20% by volume, C+2H2=C
H, the reaction increases and the carburization rate decreases.

露点が、−10℃を越えると浸炭速度が、低下し、また
、そのばらつきも大きくなる。可及的に乾いたガスを使
用するのが好ましい。
When the dew point exceeds -10°C, the carburizing rate decreases and its dispersion increases. It is preferable to use a gas that is as dry as possible.

浸炭温度および時間は、目的とする表面硬さおよび硬化
層深さにより変化するが、通常は、llv 513とな
るときのを効浸炭深さで表わして0.3〜2゜0、好ま
しくは0.3〜1.0であれば十分であり、850〜1
050℃の範囲、0.5〜5hrの範囲である。
The carburizing temperature and time vary depending on the target surface hardness and hardened layer depth, but usually the effective carburizing depth is 0.3 to 2°0, preferably 0. .3 to 1.0 is sufficient, and 850 to 1.
The temperature range is 0.5 to 5 hours.

本発明の場合、このような高温、長時間の処理にもかか
わらず、浸炭処理ということで、前述のような浸炭性雰
囲気を採用することにより、焼結品の内部酸化はほとん
どみられない。
In the case of the present invention, despite such a high temperature and long time treatment, internal oxidation of the sintered product is hardly observed due to the carburizing treatment and employing the above-mentioned carburizing atmosphere.

なお、密度が低いということは、焼結品の場合、空孔が
多いということであり、したがって、密度の低いときに
は空孔にガスが浸入し焼結部品の内部まで浸炭される。
Note that a low density means that there are many pores in the case of a sintered product. Therefore, when the density is low, gas infiltrates the pores and carburizes the inside of the sintered part.

表面のみを浸炭させるためには、密度を6.6g/c+
J以上とするのが好ましい。
To carburize only the surface, set the density to 6.6g/c+
It is preferable to set it to J or more.

次に、実施例によって本発明をさらに詳述する。Next, the present invention will be explained in further detail with reference to Examples.

実施例 第2表に示す組成の合金鋼粉に黒鉛を0.3%添加した
後、直径60ux高さ30酊の円筒状試験片を圧粉成形
した。圧粉密度はほぼ7.1g/c+1であった。この
ようにして成形された試験片を1250℃で30分間N
2雰囲気下で焼結した後、浸炭処理をおこなった。処理
条件を第3表に示す。
Example After adding 0.3% graphite to alloy steel powder having the composition shown in Table 2, a cylindrical test piece with a diameter of 60 ux and a height of 30 ux was compacted. The green density was approximately 7.1 g/c+1. The test piece thus formed was heated to 1250°C for 30 minutes with N
After sintering under two atmospheres, carburizing treatment was performed. The processing conditions are shown in Table 3.

象I表 Iユ  」辷  Mn   Cr  Usr IIIJ
L−Ni1 0.003 0.01 0.22 2.1
5 −  0.14  −n  O,0090,011
,350,160,300,12−I[[0,0050
,010,691,020,240,10−第3表 (露点−30℃) 浸炭焼入後、各試験片断面の表層から中心部に至る硬さ
くマイクロピンカース硬度)分布を調べた。
Elephant I Table I Yu” Mn Cr Usr IIIJ
L-Ni1 0.003 0.01 0.22 2.1
5-0.14-n O,0090,011
,350,160,300,12-I[[0,0050
, 010, 691, 020, 240, 10 - Table 3 (dew point -30°C) After carburizing and quenching, the distribution of hardness (micropinkers hardness) from the surface layer to the center of each test piece cross section was investigated.

結果は、添付図面にグラフで示す。The results are shown graphically in the accompanying drawings.

添付図面に示す結果からも、本発明によれば、従来法に
比較して本発明法ではかなり高い表面硬さが、得られて
おり、本発明の効果は明らかである。また、従来のMn
 −Cr系合金鋼の焼結後の硬度がHR,B 80−1
00であることを考えれば、本発明によればサイジング
処理は極めて容易となり、寸法精度も著しく改善される
のがわかる。
Also from the results shown in the accompanying drawings, according to the present invention, considerably higher surface hardness was obtained with the method of the present invention than with the conventional method, and the effects of the present invention are clear. In addition, conventional Mn
-Hardness of Cr-based alloy steel after sintering is HR, B 80-1
00, it can be seen that according to the present invention, the sizing process is extremely easy and the dimensional accuracy is also significantly improved.

また、浸炭時の焼結品の内部酸化は全く生じなかった。Moreover, no internal oxidation occurred in the sintered product during carburization.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、本発明の実施例の結果を示すグラフである
The accompanying drawings are graphs showing the results of examples of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)Mn:0.4〜2.0重量%およびCr:0.3
〜3.0重量%の少なくとも1種以上を含むMn−Cr
系合金鋼粉を原料とした焼結品を、炭化水素ガス2〜1
0容積%、H_220容積%以下、露点−10℃以下、
残りN_2から成る混合雰囲気中で浸炭焼入れすること
を特徴とするMn−Cr鋼焼結品の製造方法。
(1) Mn: 0.4-2.0% by weight and Cr: 0.3
~3.0% by weight of at least one Mn-Cr
A sintered product made from alloy steel powder is heated with hydrocarbon gas 2 to 1
0 volume%, H_220 volume% or less, dew point -10℃ or less,
A method for manufacturing a sintered Mn-Cr steel product, characterized by carburizing and quenching in a mixed atmosphere consisting of the remaining N_2.
(2)前記焼結品の密度を6.6g/cm^3以上とし
た、特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the density of the sintered product is 6.6 g/cm^3 or more.
JP6160086A 1986-03-19 1986-03-19 Manufacture of sintered mn-cr steel product Pending JPS62218501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160086A JPS62218501A (en) 1986-03-19 1986-03-19 Manufacture of sintered mn-cr steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160086A JPS62218501A (en) 1986-03-19 1986-03-19 Manufacture of sintered mn-cr steel product

Publications (1)

Publication Number Publication Date
JPS62218501A true JPS62218501A (en) 1987-09-25

Family

ID=13175813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160086A Pending JPS62218501A (en) 1986-03-19 1986-03-19 Manufacture of sintered mn-cr steel product

Country Status (1)

Country Link
JP (1) JPS62218501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030290A1 (en) * 2007-09-03 2009-03-12 Miba Sinter Austria Gmbh Method of producing a sinter-hardened component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030290A1 (en) * 2007-09-03 2009-03-12 Miba Sinter Austria Gmbh Method of producing a sinter-hardened component
JP2010538156A (en) * 2007-09-03 2010-12-09 ミーバ ジンター オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of sintered hardened parts
US8535605B2 (en) 2007-09-03 2013-09-17 Miba Sinter Austria Gmbh Method of producing a sinter-hardened component

Similar Documents

Publication Publication Date Title
JPH11117059A (en) Carburized member, its production, and carburizing treatment system
JPH0234766A (en) Carburizing and hardening method
US5666634A (en) Alloy steel powders for sintered bodies having high strength, high fatigue strength and high toughness, sintered bodies, and method for manufacturing such sintered bodies
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JPS62218501A (en) Manufacture of sintered mn-cr steel product
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JPS6318001A (en) Alloy steel powder for powder metallurgy
US2295334A (en) Metallurgy of ferrous metals
JPS62278206A (en) Heat treatment of sintered mn-cr steel product
JPS61276949A (en) Manufacture of sintered parts
JPH0472004A (en) Manufacture of porous metallic mold
JPS6233756A (en) Carburizing and nitriding method
JPS6372821A (en) Treatment of metal
JPS58107469A (en) Preparation of high strength sintered machine parts
US1736921A (en) Case nitrification of steel
JPH02310343A (en) Wear-resistant parts
JPS62164850A (en) Wear resistant ferrous sintered alloy and its production
JPH03219040A (en) High strength sintered steel and its manufacture
Engstrom et al. Efficient Low-Alloy Steels for High-Performance Structural Applications
JPS5850308B2 (en) High strength sintered steel and its manufacturing method
JP2008523250A (en) Method and process for thermochemical treatment of high strength and toughness alloys
JPH03229852A (en) Production of high strength parts
JPS61163246A (en) Steel for carbonitriding
JPS5938352A (en) Manufacture of high strength sintered steel
JPS6320433A (en) Production of high strength sintered material