JPH0472004A - Manufacture of porous metallic mold - Google Patents

Manufacture of porous metallic mold

Info

Publication number
JPH0472004A
JPH0472004A JP9898190A JP9898190A JPH0472004A JP H0472004 A JPH0472004 A JP H0472004A JP 9898190 A JP9898190 A JP 9898190A JP 9898190 A JP9898190 A JP 9898190A JP H0472004 A JPH0472004 A JP H0472004A
Authority
JP
Japan
Prior art keywords
low
stainless steel
steel powder
raw material
series stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9898190A
Other languages
Japanese (ja)
Other versions
JP2674715B2 (en
Inventor
Jiro Ichikawa
市川 二朗
Hisashi Ota
太田 久司
Yoichi Nakanishi
洋一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Daido Steel Co Ltd
Original Assignee
Sintokogio Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Daido Steel Co Ltd filed Critical Sintokogio Ltd
Priority to JP9898190A priority Critical patent/JP2674715B2/en
Publication of JPH0472004A publication Critical patent/JPH0472004A/en
Application granted granted Critical
Publication of JP2674715B2 publication Critical patent/JP2674715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a porous metallic mold having high strength and excellent durability by compacting raw material containing low C low N-Cr series stainless steel powder as essential component, sintering under vacuum, machining and heat-nitrizing at the specific temp. under nitrogen atmosphere. CONSTITUTION:The raw material containing the low C low N-Cr series stainless steel powder as the essential raw material is compacted and this green compact is sintered under vacuum or atmospheric gas and the obtd. sintered body, if necessary, after machining, is nitrized by heating in the temp. range of 800 - 1100 deg.C under nitrogen atmosphere. Then, C content and N content in the low C low N-Cr series stainless steel powder are desirable to be <=0.15 wt C and <=0.10 wt% N. Further, as Cr content in the low N-Cr series stainless steel powder, this is desirable to contain >=11 wt so as not to impair corrosion resistance of the metallic mold, and Cu and Mo may be added.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳造に用いる多孔質金型の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a porous mold used for casting.

(従来の技術) 多孔質金型は、ガス抜き性、保温性に優れ、複雑な形状
を製造する場合にも良好な品質の鋳造品を得ることがで
きるため、鋳造用金型として注目されている。
(Prior art) Porous molds are attracting attention as casting molds because they have excellent gas release properties and heat retention properties, and can produce cast products of good quality even when manufacturing complex shapes. There is.

従来、この多孔質金型の製造は、主に粉末冶金的手法で
行われている。使用する粉末には、例えば、鉄粉、フェ
ライト系またはオーステナイト系ステンレス鋼粉等が知
られているが、これらの粉末により得られる金型では、
マイクロビッカース硬さが高々Hv250程度と低く鋳
造用金型としては不充分な硬さであり寿命の短いもので
あった。
Conventionally, this porous mold has been manufactured mainly by powder metallurgy. Powders used include, for example, iron powder, ferritic or austenitic stainless steel powder, etc., but in molds obtained with these powders,
The micro-Vickers hardness was as low as about Hv250, which was insufficient hardness for use as a casting mold, and the lifespan was short.

このため、鋳造用金型として望まれるHv400以上の
高硬度の多孔質金型を得るために、■焼入れにより高硬
度が得られる高炭素の鋼、例えば、5US440C,S
KD系等の鋼種を使用して硬度を上げる方法、また、■
焼の入らないステンレス鋼粉原料に炭素粉を混合し、焼
結により一体化して硬度を上げる方法が考えられる。
For this reason, in order to obtain a porous mold with a high hardness of Hv400 or more, which is desired as a casting mold, we need to use high-carbon steel that can be hardened by quenching, such as 5US440C, S
How to increase hardness using steel types such as KD series, and ■
One possible method is to mix carbon powder with a raw material of stainless steel powder that does not undergo quenching, and integrate it through sintering to increase hardness.

(発明が解決しようとする課題) しかしながら、従来の前記■に示した焼入れにより高硬
度が得られる中高炭素の鋼を使用する方法は、焼入れ可
能な鋼種は粉末化のための噴霧段階で急冷され焼が入っ
ているため、粉末自体が高硬度になって成形性が低下し
ているので、成形性を良好にするには一度焼鈍しなけれ
ばならず、製造工程が増してしまうという問題がある。
(Problem to be Solved by the Invention) However, in the conventional method of using medium-high carbon steel that can be hardened by quenching as shown in item (3) above, the quenchable steel is rapidly cooled during the spraying stage for powderization. Because of the quenching, the powder itself becomes highly hard and has poor formability, so it must be annealed once to improve formability, which increases the number of manufacturing steps. .

また、前記■に示した焼の入らないステンレス銅粉に炭
素粉を混合する方法は、炭素粉が必ずしも均一に混合さ
れず硬さが不均一になったり、焼結体が高硬度となるた
め焼結体の加工性が低下するという問題がある。
In addition, the method of mixing carbon powder with stainless steel copper powder that does not harden, as shown in item There is a problem that the workability of the sintered body is reduced.

本発明は、このような問題点を解決するためになされた
もので、原料の成形性とともに焼結体の加工性を高め複
雑形状の金型の製造を可能とし、かつ金型を高強度で耐
久性に優れたものにする多孔質金型の製造方抹を提供す
ることを目的とする。
The present invention was made to solve these problems, and it improves the formability of raw materials and the workability of sintered bodies, makes it possible to manufacture molds with complex shapes, and makes molds with high strength. The purpose of the present invention is to provide a method for manufacturing porous molds that have excellent durability.

(課題を解決するための手段) そのために、多孔質金型の製造方法は、低C1低N−C
r系ステンレス鋼粉末を主原料とする原料を成形し、こ
の成形体を真空中または雰囲気ガス中で焼結し、得られ
た焼結体を必要に応じ機械加工した後、前記焼結体を窒
素雰囲気中、800〜1100℃の温度範囲で加熱する
ことにより窒化することを特徴とする。
(Means for solving the problem) For this purpose, the manufacturing method of the porous mold is low C1 low N-C
A raw material containing r-stainless steel powder as the main raw material is molded, this molded body is sintered in a vacuum or atmospheric gas, and the obtained sintered body is machined as necessary, and then the sintered body is It is characterized by being nitrided by heating in a nitrogen atmosphere at a temperature range of 800 to 1100°C.

主原料の低C1低N−Cr系ステンレス鋼粉末のC量お
よびN量は、C50,15wt%、N量0.10wt%
のものを用いるのが望ましい。これらの値を超えると、
粉末が高硬度となり成形性が低下するとともに、得られ
る焼結体についでも高硬度となり加工性が低下するから
である。
The C and N contents of the main raw material low C1 low N-Cr stainless steel powder are C50.15wt% and N amount 0.10wt%.
It is desirable to use one. Above these values,
This is because the powder has high hardness, resulting in reduced formability, and the resulting sintered body also has high hardness, resulting in decreased workability.

また、低N−Cr系ステンレス鋼粉末のCr量としては
、金型の耐食性を損なわせないために11wt%以上の
含まれていることが望ましい。さラニ、Cu、Moを添
加することができる。
Further, the amount of Cr in the low N-Cr stainless steel powder is preferably 11 wt% or more in order not to impair the corrosion resistance of the mold. Copper, Cu, and Mo can be added.

さらに、原料には必要に応じ、成形性向上のための潤、
lf剤、結合剤等を加えることも可能である。
Furthermore, if necessary, the raw materials are added with moisture to improve moldability.
It is also possible to add lf agents, binders, etc.

その他少量の金属粉または金属繊維、あるいはセラミッ
ク粉またはセラミック繊維等を加え成形体や焼結体の特
性(強度、気孔率)を調整することも可能である。
It is also possible to adjust the properties (strength, porosity) of the molded body or sintered body by adding a small amount of metal powder or metal fiber, ceramic powder or ceramic fiber, or the like.

成形方法については、特に限定されるものではなく、プ
レス成形、冷間静水圧プレス(CIP)、スリップキャ
ストなど各種の成形方法を使用することができる。
The molding method is not particularly limited, and various molding methods such as press molding, cold isostatic pressing (CIP), and slip casting can be used.

焼結は真空中で行うのが望ましいが、著しい酸化、窒化
、浸炭等がなければ雰囲気ガス中でもよい。焼結温度お
よび焼結時間については焼結体の強度や気孔率との兼ね
合いで選定する。例えば1lOO〜1200℃で2時間
程度行うとよい。
Sintering is preferably performed in a vacuum, but may also be performed in an atmospheric gas as long as there is no significant oxidation, nitridation, carburization, etc. The sintering temperature and sintering time are selected in consideration of the strength and porosity of the sintered body. For example, the heating may be carried out at 1100° C. to 1200° C. for about 2 hours.

焼結体の窒化は、必要に応じて機械加工した後行うが、
加工の必要がなければ、真空中または雰囲気ガス中の焼
結に引き続き行うことができる。
Nitriding of the sintered body is performed after machining if necessary.
If no processing is required, sintering in vacuum or atmospheric gas can be followed.

窒化のときの加熱温度を800℃以上としたのは、80
0℃未満では多孔質の焼結体の内部まで充分に窒化させ
ることができないからである。1100℃以下としたの
は、1100℃を超えると前工程の焼結温度域に入って
しまうからである。
The reason why the heating temperature during nitriding was set to 800℃ or higher was 80℃.
This is because if the temperature is lower than 0° C., the inside of the porous sintered body cannot be sufficiently nitrided. The reason why the temperature is set to be 1100°C or lower is that if the temperature exceeds 1100°C, the temperature falls within the sintering temperature range of the previous step.

窒化は真空炉を用いて行い、炉内に導入したN2ガスを
導入し、N、ガス圧300〜900torr程度にして
加熱するのが望ましい。この場合、窒化を促進するため
、Hz、Arガスを混合することも可能である。また、
窒化を妨害する酸化が起らなければ雰囲気炉を用いて行
ってもよい。
Nitriding is preferably carried out using a vacuum furnace, and N2 gas introduced into the furnace is heated to a N gas pressure of about 300 to 900 torr. In this case, it is also possible to mix Hz and Ar gas to promote nitriding. Also,
An atmosphere furnace may be used if oxidation that interferes with nitridation does not occur.

さらに窒化のときには同時に若干の浸炭を行うことも可
能である。
Furthermore, it is also possible to carry out some carburizing at the same time as nitriding.

また、窒化による硬化機構は、■Nの固溶硬化、■微細
窒化物の析出硬化、■窒化の増加により高温相がオース
テナイト化して焼入れ能が発生するため、急冷によりマ
ルテンサイト化して硬化する、の3つの機構が考えられ
るが、■の硬化を促進する場合にはオーステナイト化す
るため加熱温度は900℃以上であるのが望ましい。
In addition, the hardening mechanism due to nitriding is: ■ Solid solution hardening of N, ■ Precipitation hardening of fine nitrides, ■ Due to increased nitriding, the high-temperature phase becomes austenite and hardenability occurs, so it becomes martensitic and hardens by rapid cooling. Three mechanisms can be considered; however, in the case of promoting hardening in (2), it is desirable that the heating temperature be 900° C. or higher in order to form austenite.

また、窒化のときの窒素量は、0.6〜1.3wt%程
度とするのが望ましい。0.6wt%未満であると窒化
不足になり、1.3wt%を超えると脆弱になるからで
ある。
Further, the amount of nitrogen during nitriding is preferably about 0.6 to 1.3 wt%. This is because if it is less than 0.6 wt%, nitriding will be insufficient, and if it exceeds 1.3 wt%, it will become brittle.

(作用) 鋼材を硬化させる通常の窒化法は、約600’Cで行わ
れ、表面よりO,1〜0.3mm程度の表層を硬化させ
る。本発明によれば、窒化温度を800℃以上としたこ
とにより多孔質の焼結体の内部まで窒化し硬化させるこ
とができる。
(Function) The usual nitriding method for hardening steel materials is carried out at about 600'C, and hardens the surface layer about 0.1 to 0.3 mm below the surface. According to the present invention, by setting the nitriding temperature to 800° C. or higher, the inside of the porous sintered body can be nitrided and hardened.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

−100メツシユ5US430L粉末(0,01wt%
C10,02wt%N)に潤滑剤として2wt%のステ
アリン酸亜鉛を加え、圧力3t。
-100 mesh 5US430L powder (0.01wt%
2 wt % zinc stearate was added as a lubricant to C10,02 wt % N) and the pressure was 3 t.

n / c m ”で金型を用いて成形し、厚さ15m
m×直径40mmの円柱状成形体を得た。
molded using a mold with a thickness of 15 m.
A cylindrical molded body of m×40 mm in diameter was obtained.

この成形体を真空炉中で1150℃、2時間加熱し、密
度6.2g/cm”の焼結体を得た。さらに、真空炉中
にN、ガスを導入し、N2ガス圧800torr下で9
50℃、1時間加熱し焼結体を窒化した。
This molded body was heated in a vacuum furnace at 1150°C for 2 hours to obtain a sintered body with a density of 6.2 g/cm.Furthermore, N gas was introduced into the vacuum furnace, and N2 gas pressure was 800 torr. 9
The sintered body was nitrided by heating at 50° C. for 1 hour.

加熱後、炉冷により得られたものを試験例1とし、5気
圧のN2ガス下で急冷して得られたものを試験例2とし
て後述する試験に使用した。なお、冷却後の試験例1お
よび試験例2のN2含有量は、0.75%および0.7
1%であった。
After heating, the product obtained by cooling in a furnace was designated as Test Example 1, and the product obtained by rapid cooling under 5 atmospheres of N2 gas was used as Test Example 2 in the test described below. Note that the N2 content of Test Example 1 and Test Example 2 after cooling was 0.75% and 0.7%.
It was 1%.

さ; および   ; 次に、これら試験例1および試験例2についてマイクロ
ビッカース硬さ測定および耐久性試験を行った。
and ; Next, micro Vickers hardness measurement and durability test were performed on these Test Examples 1 and 2.

硬さ測定は、焼結体を試験片の大きさに切り出し、研磨
後、荷重50gの条件で行った。
The hardness was measured by cutting the sintered body into the size of a test piece, polishing it, and then applying a load of 50 g.

耐久性試験は、硬さ測定後、A℃の低圧鋳造に用いる金
型の一部として使用し、この金型の使用可能な鋳造回数
を調査した。
In the durability test, after measuring the hardness, it was used as a part of a mold for low-pressure casting at A° C., and the number of times the mold could be used was investigated.

また、試験例1および試験例2に対し、比較例1として
真空中での焼結後、窒化を行わないものを製造し、試験
例1および試験例2と同様に硬さ測定および耐久性試験
を行った。
In addition, in contrast to Test Examples 1 and 2, a comparative example 1 was produced in which nitriding was not performed after sintering in a vacuum, and the hardness measurement and durability test were carried out in the same manner as in Test Examples 1 and 2. I did it.

弐狡藍1 硬さ測定の結果、試験例1、試験例2および比較例1は
、それぞれHv430、Hv490.Hv210であっ
た。
As a result of hardness measurement, Test Example 1, Test Example 2, and Comparative Example 1 had Hv430 and Hv490, respectively. It was Hv210.

耐久性試験の結果、試験例1は、射出回数8000回、
試験例2は12000回使用でき、比較例1は5000
回で割れが発生した。
As a result of the durability test, test example 1 was injected 8000 times;
Test example 2 can be used 12,000 times, and comparative example 1 can be used 5,000 times.
Cracks occurred at times.

(発明の効果) 以上説明したように、本発明の多孔質金型の製造方法に
よれば、低C1低N−Cr系ステンレス鋼粉末を使用す
るため、成形性および加工性が良好でかつ複雑形状品を
製造可能でしかも高強度で耐久性に優れた多孔質金型を
得ることができるという効果がある。
(Effects of the Invention) As explained above, according to the method for manufacturing a porous mold of the present invention, since low C1 low N-Cr stainless steel powder is used, moldability and processability are good and complicated. This has the effect of producing a porous mold that can produce shaped products and has high strength and excellent durability.

Claims (1)

【特許請求の範囲】[Claims] (1)低C、低N−Cr系ステンレス鋼粉末を主原料と
する原料を成形し、この成形体を真空中または雰囲気ガ
ス中で焼結し、得られた焼結体を必要に応じ機械加工し
た後、前記焼結体を窒素雰囲気中、800〜1100℃
の温度範囲で加熱することにより窒化することを特徴と
する多孔質金型の製造方法。
(1) A raw material whose main raw material is low C, low N-Cr stainless steel powder is molded, this molded body is sintered in a vacuum or atmospheric gas, and the obtained sintered body is machined as required. After processing, the sintered body was heated at 800 to 1100°C in a nitrogen atmosphere.
A method for manufacturing a porous mold, characterized by nitriding by heating in a temperature range of .
JP9898190A 1990-04-13 1990-04-13 Method for manufacturing porous mold Expired - Fee Related JP2674715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9898190A JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9898190A JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Publications (2)

Publication Number Publication Date
JPH0472004A true JPH0472004A (en) 1992-03-06
JP2674715B2 JP2674715B2 (en) 1997-11-12

Family

ID=14234190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9898190A Expired - Fee Related JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Country Status (1)

Country Link
JP (1) JP2674715B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707910A2 (en) 1994-10-20 1996-04-24 Kubota Corporation Porous metal body and process for producing same
EP0764485A2 (en) * 1995-09-22 1997-03-26 Sintokogio, Ltd. A porous mold material for casting and a method of producing the same
JP2011189631A (en) * 2010-03-15 2011-09-29 Tohno Seimitsu Co Ltd Insert molding, and manufacturing method therefor
WO2012111835A3 (en) * 2011-02-14 2013-04-18 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN104439080A (en) * 2014-11-15 2015-03-25 安徽省新方尊铸造科技有限公司 Accurate forming metal mold casting method adopting porous steel and non-occupying coating
US11407029B2 (en) 2016-06-29 2022-08-09 South China University Of Technology Method for processing and manufacturing a metal structural material by a coiling, sintering and plastic working of a metal screen mesh

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707910A2 (en) 1994-10-20 1996-04-24 Kubota Corporation Porous metal body and process for producing same
EP0764485A2 (en) * 1995-09-22 1997-03-26 Sintokogio, Ltd. A porous mold material for casting and a method of producing the same
EP0764485A3 (en) * 1995-09-22 1997-06-18 Sintokogio Ltd A porous mold material for casting and a method of producing the same
US5841041A (en) * 1995-09-22 1998-11-24 Sintokogio, Ltd. Porous mold material for casting and a method of producing the same
JP2011189631A (en) * 2010-03-15 2011-09-29 Tohno Seimitsu Co Ltd Insert molding, and manufacturing method therefor
WO2012111835A3 (en) * 2011-02-14 2013-04-18 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN103492106A (en) * 2011-02-14 2014-01-01 新东工业株式会社 Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
US9545736B2 (en) 2011-02-14 2017-01-17 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN104439080A (en) * 2014-11-15 2015-03-25 安徽省新方尊铸造科技有限公司 Accurate forming metal mold casting method adopting porous steel and non-occupying coating
US11407029B2 (en) 2016-06-29 2022-08-09 South China University Of Technology Method for processing and manufacturing a metal structural material by a coiling, sintering and plastic working of a metal screen mesh

Also Published As

Publication number Publication date
JP2674715B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP4610822B2 (en) Austenitic steel with low nickel content
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
US5997805A (en) High carbon, high density forming
US20100196188A1 (en) Method of producing a steel moulding
JPH0472004A (en) Manufacture of porous metallic mold
KR0175321B1 (en) Method of producing mold material and the mold material
FI81283C (en) Process when making a mold body of an iron alloy
DE69117605T2 (en) Powder metallurgical tool steels
JP2007182593A (en) Method for manufacturing high-nitrogen sintered alloy steel
RU2287404C2 (en) Method for making iron-base sintered tool for working metal
KR101574862B1 (en) Method of manufacturing sintered product through powder metallurgy
JPH10317009A (en) Production of stainless sintered body
JPS6040505B2 (en) Manufacturing method of nitrided sintered alloy
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JP2557870B2 (en) Manufacturing method of tough sintered member
JPH07116548B2 (en) High hardness alloy steel manufacturing method
JPH07243008A (en) Steel sintered compact
JPH0578712A (en) Production of sintered part
JPH0867951A (en) Steel sintered body
JPS60169501A (en) Ferrous alloy powder for sintering and forging
JPS5938352A (en) Manufacture of high strength sintered steel
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
JPH0474406B2 (en)
JPH0512401B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees