JPS62213891A - Solar heat water maker - Google Patents

Solar heat water maker

Info

Publication number
JPS62213891A
JPS62213891A JP61056980A JP5698086A JPS62213891A JP S62213891 A JPS62213891 A JP S62213891A JP 61056980 A JP61056980 A JP 61056980A JP 5698086 A JP5698086 A JP 5698086A JP S62213891 A JPS62213891 A JP S62213891A
Authority
JP
Japan
Prior art keywords
evaporator
optical system
water
spherical mirror
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61056980A
Other languages
Japanese (ja)
Inventor
Tsurunosuke Ochiai
落合 鶴之亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61056980A priority Critical patent/JPS62213891A/en
Publication of JPS62213891A publication Critical patent/JPS62213891A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/70Waterborne solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

PURPOSE:To enhance heat efficiency, by using a Schmitt optical system and a looper in an optical system to constitute a float system bringing a spherical mirror to a semi-immersion state so as to position an evaporator under the surface of water. CONSTITUTION:A spherical mirror 2 is provided to the inner surface of a shell body 1 having a shape, wherein a cylinder is connected to a semi-spherical shell, along the spherical surface thereof and an evaporator 3 is fixed to the shell body 1 through a seawater introducing pipe 9 so that the heat receiving surface of the evaporator 3 is positioned at the focus F of a Schmitt optical system. The upper surface of the evaporator 3 is formed of an evaporator lid comprising a transparent substance to form an airtight chamber in the evaporator 3 and a water sampling pipe 8 sending evaporated steam is mounted to the upper part of the evaporator 3 and a Schmitt correction plate 5 is provided to the center of the radius of curvature of a spherical mirror at a right angle to the main axis of the optical system. Further, an altitude converting looper 6 and an azimuth converting looper 7 are mounted on the shell body 1 so as to be right-angled to each other. By this method, solar heat is efficiently collected to effectively put energy into practical use.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シュミット光学系で集光した太陽熱を少量の
海水、または、汚水に投射し、蒸発した水蒸気をこの光
学系の外部で収集し、蒸留水を得ることを特徴とする太
陽熱造水器に関する、〔従来の技術及びその問題点] 太陽熱を利用して海水等から真水を得る方法としては2
種類があり、一つはガラス屋根等を使用した温室方式の
海水淡水化装置で、広く知られた方法であるが1面積当
たりの太陽のエネルギー密度が低いため、装置の規模が
大きくなり、投射した太陽熱が外部に逃げる率が大きく
、造水のための熱効率が極めて低いという欠点があった
[Detailed Description of the Invention] [Industrial Application Field] The present invention projects solar heat collected by a Schmidt optical system onto a small amount of seawater or sewage, and collects the evaporated water vapor outside of this optical system. [Conventional technology and its problems] Regarding a solar water generator characterized by obtaining distilled water, there are 2 methods for obtaining fresh water from seawater etc. using solar heat.
There are several types of desalination equipment, one of which is a greenhouse-type seawater desalination equipment that uses a glass roof, etc. This is a widely known method, but because the solar energy density per area is low, the scale of the equipment is large, and projection The disadvantage is that the rate at which solar heat escapes to the outside is large, and the thermal efficiency for producing water is extremely low.

他の一つは、特公昭57−054190号公報に示され
るように、太陽熱で海水を沸騰させ、水蒸気を収集して
蒸留水を得る方法であるが、特公昭57−054190
号公報の場合は、フェイスプレートの製造コストが極め
て高く、普及し難い開運点があった。
The other method is to boil seawater using solar heat and collect water vapor to obtain distilled water, as shown in Japanese Patent Publication No. 57-054190.
In the case of Publication No. 1, the manufacturing cost of the face plate was extremely high, and there was a point where it was difficult to popularize it.

[問題を解決するための手段] 本発明は、特公昭57−054190号公報で採用して
いるフェイスプレートを使用することなく、太陽光の方
位の移動にも影響されず、而も、集光できるように、光
学系にシュミット光学系とルーバーを使用し、蒸留水の
原水である海水、又は、汚水の補給と濃縮した原水の排
除を無動力で出来るようにするため、蒸発器が水面下に
なるように球面鏡を半没状態にする浮上式としたことを
特徴とするものである。
[Means for Solving the Problem] The present invention does not use the face plate adopted in Japanese Patent Publication No. 57-054190, is not affected by the movement of the direction of sunlight, and is capable of concentrating light. We used a Schmidt optical system and louvers for the optical system, and in order to be able to replenish the raw water for distilled water, such as seawater or sewage, and remove concentrated raw water, the evaporator is located below the water surface. It is characterized by a levitation type in which the spherical mirror is placed in a semi-submerged state.

[実施例] この発明を図面について説明すると、第1図に示すよう
に、欠球に円筒を接続した形状の殻体(1)の内面に球
面に添って球面鏡(2)を添設し、記号Fで示すシュミ
ット光学系の焦点(シュミット光学系の焦点は球面鏡の
曲率半径の2分の1の半径を持つ球面上にあって、光源
の方位の移動によって移動する)に、蒸発器(3)の受
熱面が位置するように、海水導入管(9) を介して殻
体(1)に固定し、蒸発器(3)の上面は透明物質によ
る蒸発器蓋(4)にして気密室とし、上部に蒸発した水
蒸気を送る採水管(8)を取りつけ、更に球面鏡の曲率
中心にシュミット補正板(5)を光学系の主軸に対して
直角に設け、その上に子午線方向の太陽の位置を、鉛直
下に方向変換させる高度変換用ルーバー(以下高度変換
用ルーバー(6)という)と、シュミット光学系だけで
太陽を捕捉し得る時間を更に延長するために設けたルー
バー(以下方位変換用ルーバー(7)という)とを互い
に直角になるようにして積重した構造の造水器である。
[Example] To explain this invention with reference to the drawings, as shown in Fig. 1, a spherical mirror (2) is attached along the spherical surface on the inner surface of a shell (1) in the shape of a cylinder connected to a broken ball, An evaporator (3 ) is fixed to the shell (1) via the seawater inlet pipe (9), and the upper surface of the evaporator (3) is made of a transparent material as an evaporator lid (4) to form an airtight chamber. A water sampling pipe (8) is attached to the upper part to send the evaporated water vapor, and a Schmidt correction plate (5) is installed at the center of curvature of the spherical mirror perpendicular to the principal axis of the optical system, and the position of the sun in the meridian direction is fixed on it. , an altitude conversion louver (hereinafter referred to as altitude conversion louver (6)) that changes the direction vertically downward, and a louver (hereinafter referred to as azimuth conversion louver) provided to further extend the time that the sun can be captured by the Schmidt optical system alone. (7)) are stacked at right angles to each other.

方位変換用ルーバー(7)は、直立の位置から左右へ3
0度程度まで傾斜し得るもので1手動で。
The orientation changing louver (7) moves 3 times from the upright position to the left and right.
It can be tilted down to about 0 degrees and can be done manually.

採水準備時に傾斜角一杯、正午前に直立、午後一時頃反
対方向へ傾斜角一杯、傾斜させることによって、概ね、
正午の前後各4時間程度は造水できる。また、正午に直
立した状態になるように傾斜角を変化し得る機械式タイ
マーを使用して自動化してもよい。
By tilting to the full tilt angle when preparing for water sampling, standing upright before noon, and tilting the tilt angle to the full tilt angle in the opposite direction around 1:00 pm, approximately
Water can be produced for about 4 hours before and after noon. It may also be automated using a mechanical timer that can change the tilt angle to reach an upright position at noon.

高度変換用ルーバー(6)は、定期的に、季節の変化に
伴う太陽の正午の高度の変化に応じて、手動で直立の位
置から太陽の位置を鉛直下に方向変換させるのに適合し
た角度に傾斜させるもので、正午の前後各4時間程度の
時間内にある太陽の高度が60度以上あるような季節に
は、ルーバーを直立にしておくか、または、取り外して
運用することができる。
The altitude conversion louver (6) is periodically adjusted at an angle suitable for manually changing the direction of the sun's position from an upright position to vertically downward in response to changes in the sun's midday altitude due to seasonal changes. In seasons when the sun's altitude is 60 degrees or more during the four hours before and after noon, the louvers can be left upright or removed.

シュミット補正板(5)は、その直径が、球面鏡(2)
の開きの約60%程度の大きなものを使用するので、複
数個に分割したブロックを組み立てたものにしてもよく
1本光学系の場合は、光学機械と違い精密度は必要でな
いので、多少の球面収差や色収差が現われても性能には
影響がない。
The diameter of the Schmidt correction plate (5) is that of the spherical mirror (2).
Since a large aperture of approximately 60% is used, it may be assembled from blocks divided into multiple parts.In the case of a single optical system, unlike optical machines, precision is not required, so it may take some time. Even if spherical aberration or chromatic aberration appears, it does not affect performance.

蒸発器(3)は、その下面が球面鏡(2)の焦点に添っ
た面を持つ形状のもので、直径は球面鏡(2)の開きの
約29%程度の大きさのものであって、沸騰している箇
所の原水の拡散を防止し、水蒸気の蒸発を増成するため
に、内部に第2図に示す形状の沸騰水拡散防止器を内蔵
する。
The evaporator (3) has a bottom surface that is aligned with the focal point of the spherical mirror (2), and its diameter is about 29% of the aperture of the spherical mirror (2). In order to prevent the diffusion of raw water and increase the evaporation of water vapor, a boiling water diffusion preventer of the shape shown in Fig. 2 is built inside.

海水導入管(9)は、蒸発器(3)と球面鏡(2)の鏡
心の位置にあたる殻体(1)との間に設け、外形を円錐
形とするが、海水導入管(9)にもシュミット補正板(
5)の外側より入射し、球面鏡(2)の周辺部で反射し
た太陽光が照射されるので、この部分での表面層では原
水の上昇が起こり、一方中心層では蒸発器(3)で濃縮
された原水の下降があるので、これらの原水の流れを整
流するために、海水導入管(9)の内部には整流管(1
0)を内蔵している。
The seawater introduction pipe (9) is provided between the evaporator (3) and the shell (1) corresponding to the mirror center of the spherical mirror (2), and has a conical outer shape. Also Schmidt correction plate (
5) is irradiated with sunlight that enters from the outside and is reflected by the periphery of the spherical mirror (2), so the raw water rises in the surface layer in this area, while in the center layer it is concentrated in the evaporator (3). In order to rectify the flow of raw water, a rectifier pipe (1) is installed inside the seawater inlet pipe (9).
0) is built-in.

本発明は、上記に説明したような構造になっているが、
球面鏡(2)の曲率がこの光学系の主軸から約30程度
度まで傾斜した光を反射できるようにしているので、シ
ュミット光学系だけで造水し得る時間は正午前後各2時
間程度であるが、方位変換ルーバー(7)を使用すれば
正午の前後各4時間程度、すなわち1日8時間程度造水
できる。
Although the present invention has the structure as explained above,
The curvature of the spherical mirror (2) allows it to reflect light that is tilted up to about 30 degrees from the main axis of the optical system, so the time that water can be produced using only the Schmidt optical system is about 2 hours before and after noon. If the direction changing louver (7) is used, water can be produced for about 4 hours each before and after noon, that is, for about 8 hours a day.

[発明の効果] 本発明は、シュミット光学系とルーバーによりエネルギ
ー密度の低い太陽熱を、太陽の位置の移動に拘らず、高
密度に集めて水の蒸発に利用しているので、装置の外部
に逃げるエネルギーが少なく熱効率が極めて良く、日照
時間内に造水できること、また、蒸発器が水面下に位置
するように球面鏡を半没状態にした浮上式にしているの
で、海水等の原水の補給は自然にでき、電力等の動力は
不要であって、また、蒸発した水蒸気は自然冷却を待っ
て蒸留水を得るようにしているので、造水器から隔離し
た場所で採水できる効果があり、海浜や汚水処理場等に
設置して造水に貢献し得るものである。
[Effects of the Invention] The present invention uses a Schmidt optical system and a louver to collect solar heat with low energy density at a high density and use it for water evaporation regardless of the movement of the sun's position. It has extremely high thermal efficiency with little energy escaping, and can produce water during daylight hours.It is also a floating type with a semi-submerged spherical mirror so that the evaporator is located below the water surface, so it is not possible to replenish raw water such as seawater. It is produced naturally and does not require power such as electricity, and since the evaporated water vapor waits for natural cooling to obtain distilled water, it has the effect of allowing water to be sampled in a location isolated from the water generator. It can be installed at beaches, sewage treatment plants, etc. to contribute to water production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図であって、左半図は外
見図、左半図は本発明の構成を示す断面図である。 第2図は沸騰水拡散防止器の斜視図である。 1:殻体、2:球面鏡、3:蒸発器、4:蒸発器蓋、5
:シュミット補正板、 6:高度変換用ルーバー、7:
方位変換用ルーバー、8:採水管9:海水導入管、10
:整流管、F:焦点。 W、L、:水面
FIG. 1 is a diagram showing an embodiment of the present invention, with the left half diagram being an external view and the left half diagram being a sectional view showing the configuration of the present invention. FIG. 2 is a perspective view of the boiling water diffusion preventer. 1: shell body, 2: spherical mirror, 3: evaporator, 4: evaporator lid, 5
:Schmidt correction plate, 6: Altitude conversion louver, 7:
Orientation conversion louver, 8: Water sampling pipe 9: Seawater introduction pipe, 10
: Rectifier tube, F: Focus. W, L,: water surface

Claims (1)

【特許請求の範囲】 1、シュミット光学系において、主軸を垂直とし、下部
の球面鏡を浮上式として上部にルーバーを設け、焦点に
蒸発器を配設して、球面鏡の外側より蒸発器に導入した
海水、または、汚水に集光した太陽熱を投射して、その
熱により発生した水蒸気を収集して蒸留水を得ることを
特徴とする太陽熱造水器 2、球面鏡の焦点の近くに、受熱面が位置するようにし
、上面を透明物質による蒸発器蓋とし採水管及び海水導
入管を蒸発器に配設した特許請求の範囲第1項記載の太
陽熱造水器 3、両面を鏡面とした2組の可動式ルーバーを互いに直
角になるようにして、シュミット補正板の上面に積重し
た特許請求の範囲第1項記載の太陽熱造水器
[Claims] 1. In the Schmidt optical system, the main axis is vertical, the lower spherical mirror is a floating type, a louver is provided at the upper part, an evaporator is provided at the focal point, and the light is introduced into the evaporator from the outside of the spherical mirror. A solar water generator 2 characterized in that it projects concentrated solar heat onto seawater or sewage and collects water vapor generated by the heat to obtain distilled water. The solar water generator 3 according to claim 1 has an evaporator lid made of a transparent material on the upper surface and a water sampling pipe and a seawater inlet pipe arranged in the evaporator. The solar water generator according to claim 1, wherein the movable louvers are arranged at right angles to each other and stacked on the upper surface of the Schmidt correction plate.
JP61056980A 1986-03-17 1986-03-17 Solar heat water maker Pending JPS62213891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056980A JPS62213891A (en) 1986-03-17 1986-03-17 Solar heat water maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056980A JPS62213891A (en) 1986-03-17 1986-03-17 Solar heat water maker

Publications (1)

Publication Number Publication Date
JPS62213891A true JPS62213891A (en) 1987-09-19

Family

ID=13042651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056980A Pending JPS62213891A (en) 1986-03-17 1986-03-17 Solar heat water maker

Country Status (1)

Country Link
JP (1) JPS62213891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274004B1 (en) * 1997-02-04 2001-08-14 Pure Water Tech Ltd. As Water purification device
WO2002001119A1 (en) * 2000-06-23 2002-01-03 Richard Braun A mounting
WO2007026311A1 (en) * 2005-08-30 2007-03-08 Vanderstraeten, Luc Solar energy collector
FR2914638A1 (en) * 2007-04-06 2008-10-10 Xavier Laborie Floating device for distilling liquid e.g. seawater for the production of electricity, comprises a parabolic element whose inner surface reflects the solar radiation towards an immersed heat conducting tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331101A (en) * 1976-09-04 1978-03-24 Sasakura Eng Co Ltd Method of silencing sound
JPS577332A (en) * 1980-06-16 1982-01-14 Nissan Motor Co Ltd Die device for edge bending
JPS594794U (en) * 1982-06-30 1984-01-12 中平 智丈 A device for dividing continuously knitted sock fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331101A (en) * 1976-09-04 1978-03-24 Sasakura Eng Co Ltd Method of silencing sound
JPS577332A (en) * 1980-06-16 1982-01-14 Nissan Motor Co Ltd Die device for edge bending
JPS594794U (en) * 1982-06-30 1984-01-12 中平 智丈 A device for dividing continuously knitted sock fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274004B1 (en) * 1997-02-04 2001-08-14 Pure Water Tech Ltd. As Water purification device
WO2002001119A1 (en) * 2000-06-23 2002-01-03 Richard Braun A mounting
WO2007026311A1 (en) * 2005-08-30 2007-03-08 Vanderstraeten, Luc Solar energy collector
FR2914638A1 (en) * 2007-04-06 2008-10-10 Xavier Laborie Floating device for distilling liquid e.g. seawater for the production of electricity, comprises a parabolic element whose inner surface reflects the solar radiation towards an immersed heat conducting tube

Similar Documents

Publication Publication Date Title
US4043315A (en) Solar heat collector
US7185493B1 (en) Solar energy power plant and method of producing electricity
JP2011097083A (en) Solar electricity generating system
US8664514B2 (en) Multiplexing solar light chamber
US11820674B2 (en) Solar-powered continuous distillation assembly having efficient heat recovery
JPS587147B2 (en) The current energy level is low.
JP2005142373A (en) Condensing photovoltaic power generator
WO2009105587A2 (en) Solar radiation collection systems
US4409963A (en) Solar optical energy collector
JP2003536244A (en) Focused solar energy collector
CN105324935B (en) Device and method for high efficiency fixed-focus concentration type solar power plant
CN105257488A (en) Solar and wind power generation device
JPS62213891A (en) Solar heat water maker
WO2017133516A1 (en) Layout and structure of light condensing reflectors of tower-mounted light condensing system and tracking method therefor
KR20120123944A (en) Multi-purpose solar concentrating device
JP3610499B2 (en) Multi-purpose thermal light concentrating power generator
US4144873A (en) Apparatus for refracting, concentrating and collecting solar radiation
JPH1163684A (en) Apparatus utilizing solar energy
RU2044692C1 (en) Solar desalter
CN108469124A (en) A kind of high-gain solar energy non-imaged compound parabolic light-condensing and heat-collecting device
CN212334641U (en) Light-gathering seawater desalination device
KR20170142631A (en) Solar Multi-purpose oncentrating device
JPWO2002052204A1 (en) Solar radiation concentrator
JPS5892753A (en) Intensifying collector of solar heat
CN205536622U (en) Speculum arrangement structure and sunlight utilize device