JPS62213556A - Rotor of superconducting rotary electric machine - Google Patents

Rotor of superconducting rotary electric machine

Info

Publication number
JPS62213556A
JPS62213556A JP61056321A JP5632186A JPS62213556A JP S62213556 A JPS62213556 A JP S62213556A JP 61056321 A JP61056321 A JP 61056321A JP 5632186 A JP5632186 A JP 5632186A JP S62213556 A JPS62213556 A JP S62213556A
Authority
JP
Japan
Prior art keywords
coil
field coil
helium
superconducting
superconducting field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61056321A
Other languages
Japanese (ja)
Other versions
JPH0524746B2 (en
Inventor
Koichi Oshita
幸一 大下
Akinori Ueda
明紀 上田
Hidenao Hatanaka
畑中 英直
Susumu Maeda
進 前田
Toshiki Hirao
平尾 俊樹
Mitsuhiro Uchida
内田 満広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61056321A priority Critical patent/JPS62213556A/en
Priority to US07/009,920 priority patent/US4739202A/en
Priority to FR8702094A priority patent/FR2598045B1/en
Priority to DE19873706437 priority patent/DE3706437A1/en
Publication of JPS62213556A publication Critical patent/JPS62213556A/en
Priority to FR8713725A priority patent/FR2603430B1/en
Publication of JPH0524746B2 publication Critical patent/JPH0524746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To smoothly remove the heat of a superconducting field coil by forming first flowing slot and a small hole in an upper filler and second flowing slot and a small hole similarly in lower filler. CONSTITUTION:The rotor of a superconductive rotary electric machine is composed of a coil mounting shaft 2 having a helium flowing hole 23, a superconducting field coil 3, a helium outer cylinder 6, and a wedge 19. In this case, an upper filler 24 in contact with the outer periphery of the coil 3 and a lower filler 27 in contact with the inner periphery are provided, a first flowing slot 25 and a plurality of first small holes 26 are formed axially and laterally on the surface of the filler 24 in contact with the coil 3 and laterally of the coil 3, and a second flowing slot 28 and a second small hole 29 are formed similarly in the surface of the filler 27 similarly in contact with the coil 3. Thus, the helium is preferably fed axially and laterally to smoothly remove the heat of the coil 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は超電導回転電機の回転子の構造6ζ関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rotor structure 6ζ of a superconducting rotating electric machine.

(従来の技術) 従来この種の回転子として例えば特開昭57−2237
2号公報に開示されたものがあり、その構成を@8図に
示す。第8図において、(1)はトルクチューブ、(2
)はトルクチューブ(1)の中央部を形成するコイル取
付軸、(3)はコイル取付軸(2)に固定されている超
電導界磁コイル、(4)はトルクチューブ(1)とコイ
ル取付軸(2)を囲繞する常温ダンパ、(5)はこの常
温ダンパ(4)とコイル取付軸(2)の間に配設されて
いる低温ダンパ、(6)及び(7)はコイル取付軸(2
)の夫々外周部及び側面部に取り付けられたヘリウム外
筒、ヘリウム端板、(8)及び(9)は夫々駆動側、反
駆動側端部軸、αQはこれらの端部軸(8) 、 (9
)を軸支する軸受、σηは界磁電流供給用のスリップリ
ング。
(Prior art) Conventionally, as a rotor of this type, for example, Japanese Patent Application Laid-Open No. 57-2237
There is one disclosed in Publication No. 2, and its configuration is shown in Figure @8. In Figure 8, (1) is the torque tube, (2
) is the coil mounting shaft that forms the center of the torque tube (1), (3) is the superconducting field coil fixed to the coil mounting shaft (2), and (4) is the torque tube (1) and the coil mounting shaft. (2) is a room temperature damper that surrounds the coil mounting shaft (2), (5) is a low temperature damper that is disposed between this room temperature damper (4) and the coil mounting shaft (2), and (6) and (7) are the coil mounting shaft (2).
), a helium outer cylinder and a helium end plate are attached to the outer periphery and the side surface of each, (8) and (9) are drive side and non-drive side end shafts, respectively, αQ is these end shafts (8), (9
), and ση is a slip ring for supplying field current.

□□□はトルクチューブ(1)に形成或いは配置されて
いる熱交換器、口は側部輻射シールド、Q41は真空部
である。
□□□ is a heat exchanger formed or placed in the torque tube (1), the mouth is a side radiation shield, and Q41 is a vacuum part.

上記構成からなる超電導回転機の回転子においては、コ
イル取付軸(2)に配設されている超電導界磁コイル(
3)を極低温に冷却することにより、電気抵抗を零の状
態とし、励磁損失をなくすことによリ、この超電導界磁
コイル(3)に強力な磁界を発生させ、固定子(図示せ
ず]に交流電力を発生させる。この超電導界磁コイル(
3)を極低温に冷却、保持するために液体ヘリウムを反
駆動側端部軸(9)の中央部から導入管(図示せず〕を
通じ、ヘリウム外筒(6)、ヘリウム端板(7)により
形成される液体ヘリウム容器部に供給する一方、回転子
内部を真空部α4により高真空に保つと共に、極低温の
超電導界磁コイル(3)及びコイル取付軸(2)に回転
トルクを伝えるトルクチューブ(1)を薄肉円筒とし、
且つ熱交換器側を設け、このトルクチューブ(1)を通
じ極低温度に侵入する熱を極力減らす構造が最も一般的
である。さらに、側面からの輻射により侵入する熱を低
減するため、側部輻射シールド醤が設けられている。
In the rotor of the superconducting rotating machine having the above configuration, the superconducting field coil (
By cooling the superconducting field coil (3) to an extremely low temperature, the electrical resistance becomes zero and excitation loss is eliminated, thereby generating a strong magnetic field in the superconducting field coil (3), which connects the stator (not shown). ] to generate AC power.This superconducting field coil (
3) In order to cool and maintain the liquid helium at an extremely low temperature, liquid helium is introduced from the center of the non-drive side end shaft (9) through an introduction pipe (not shown) to the helium outer cylinder (6) and the helium end plate (7). While supplying liquid helium to the liquid helium container formed by The tube (1) is a thin-walled cylinder,
The most common structure is to provide a heat exchanger side and reduce as much as possible the heat that enters the extremely low temperature through the torque tube (1). Additionally, side radiation shields are provided to reduce heat entering due to radiation from the sides.

一方、常温ダンパ(4)及び低温ダンパ(5)は、固定
子からの高調波磁界をシールドし、超電導界磁コイル(
3)を保護すると共lこ、電力系統のしよう乱による回
転子振動を減衰させる機能を有する一方、常温ダンパ(
4)は真空外筒としての機能、低温ダンパはヘリウム容
器部への輻射シールドとしての機能を兼ねる方式が一般
的である。なお第3図においては、回転子内部のヘリウ
ム導入、排出系を4成する配管類及び回転子に接続され
ているヘリウム導入、排出装置は省略しTこ。
On the other hand, the normal temperature damper (4) and the low temperature damper (5) shield the harmonic magnetic field from the stator, and the superconducting field coil (
3) and has the function of damping rotor vibrations caused by disturbances in the power system, while the room-temperature damper (
4) generally functions as a vacuum outer cylinder, and the low-temperature damper also functions as a radiation shield for the helium container. In FIG. 3, the piping that constitutes the helium introduction and discharge system inside the rotor and the helium introduction and discharge device connected to the rotor are omitted.

第4図は第3図IY−IV線におけろ断面図、即ち。FIG. 4 is a sectional view taken along line IY-IV in FIG. 3, ie.

特開昭57−202852号公報に示されたものであり
、(2)はコイル取付軸、(3)は超電導界磁コイル、
(6)はヘリウム外筒、(至)は液体ヘリウムの液溜め
部、aQはヘリウム蒸気空間、q7)はコイル取付軸(
2)に形成された超電導界磁コイル(3)を収納するス
ロット。
This is shown in Japanese Patent Application Laid-open No. 57-202852, in which (2) is a coil mounting shaft, (3) is a superconducting field coil,
(6) is the helium outer cylinder, (to) is the liquid helium reservoir, aQ is the helium vapor space, and q7) is the coil mounting shaft (
A slot for housing the superconducting field coil (3) formed in 2).

aQはスロットση内の両サイドに配設され1ニサイド
つめもの、 Q’Jは超電導界磁コイル(3)を固定す
るウェッジ、(1)、2]Jは超電導界磁コイル(3)
の外周面、内周面にそれぞれ接する上部つめもの、下部
つめものであり、それぞれ例えば円形状の貫通孔(20
a)。
aQ is a one-sided clamp placed on both sides of the slot ση, Q'J is a wedge that fixes the superconducting field coil (3), (1), 2] J is a superconducting field coil (3)
The upper pawl and the lower pawl are in contact with the outer peripheral surface and the inner peripheral surface, respectively, and each has a circular through hole (20
a).

(21a)を有している。@はコイル取付軸(2)とヘ
リウム外筒(6)との間に設けられたヘリウム流路、2
3は液溜め部(イ)とスロットαηの底部とに連通して
設けられたコイル取付軸ヘリウム流通孔である。
(21a). @ is a helium flow path provided between the coil mounting shaft (2) and the helium outer cylinder (6), 2
Reference numeral 3 designates a coil mounting shaft helium flow hole provided in communication with the liquid reservoir (a) and the bottom of the slot αη.

一般的に超電導回転電機においては、超電導界磁コイル
の極低温冷却をいかにして行なうかという点に重要な技
術問題がある。超電導界磁コイルを超電導状態にするた
めには、超電導遷移温度以下に冷却することが必要であ
り、現在ではヘリウムを冷却媒体として絶対温度IKな
いし20K lこ保持することが行なわれている。一方
、このような極低温状態においては超電導界磁コイルの
比熱が極めて小さくなっているため、超電導界磁コイル
内の微少な発熱あるいは超電導界磁コイルへの僅かな侵
入熱量によって超電導界磁コイルの温度が上昇し超電導
遷移温度を越える恐れが常に存在する。
Generally speaking, in superconducting rotating electric machines, there is an important technical problem in how to cool the superconducting field coil to a cryogenic temperature. In order to bring a superconducting field coil into a superconducting state, it is necessary to cool it to below the superconducting transition temperature, and currently, helium is used as a cooling medium to maintain an absolute temperature of IK to 20 Kl. On the other hand, in such extremely low temperature conditions, the specific heat of the superconducting field coil is extremely small, so the superconducting field coil may be damaged due to minute heat generation within the superconducting field coil or a small amount of heat entering the superconducting field coil. There is always a risk that the temperature will rise and exceed the superconducting transition temperature.

従って、超電導界磁コイル内の微少な発熱あるいは超電
導界磁コイルへの僅かな侵入熱量をいかに速かに除去し
て超電導界磁コイルの温度上昇をおさえるかが超電導回
転電機の設計上の重要なポイントとなる。
Therefore, it is important in the design of superconducting rotating electric machines how to quickly remove the minute amount of heat generated within the superconducting field coil or the slight amount of heat entering the superconducting field coil to suppress the temperature rise of the superconducting field coil. This is the point.

次に冷却動作を第5図に基づいて説明する、超電導界磁
コイル(3)内の微少発熱、あるいは超電導界磁コイル
(3)への僅かな熱侵入によって生じた熱は、超電導異
母コイル(3)の周囲の僅かな間隙に存在しているヘリ
ウムに吸収される。吸熱により膨張し密度が小さくなっ
たヘリウムは、遠心力場の自然対流によって下部つめも
の同の貫通孔(21a)を通り抜け、コイル取付軸(2
)のヘリウム流通孔■を経て液溜め6四に出る。−万、
超電導界磁コイル(3)回りで生ずるヘリウム不足は、
ヘリウム流路@からウェッジ四の隙間及び上部つめもの
(4)の貫通孔(20a)を通って超電導界磁コイル(
3)回りに流入するヘリウムによって補われる。吸熱膨
張し1こヘリウムは、液溜め6四において、その一部が
蒸発することによって冷却される。冷却され1こヘリウ
ムは、別のコイル取付軸ヘリウム流通孔4から下部つめ
もの(財)の貫通孔(21aJを経て超電導外出コイル
(3)の周囲に入り込み、さらに上部つめもの(7)の
貫通孔(20a)及びウェッジα9の隙間を通りヘリウ
ム流路(1)に出る。
Next, the cooling operation will be explained based on FIG. 3) It is absorbed by the helium that exists in the small gap around it. The helium, which expands due to heat absorption and has a lower density, passes through the same through hole (21a) in the lower pawl due to the natural convection of the centrifugal force field, and passes through the same through hole (21a) in the coil mounting shaft (21a).
) exits to the liquid reservoir 64 through the helium flow hole ■. Ten thousand,
The helium shortage that occurs around the superconducting field coil (3) is
The superconducting field coil (
3) Supplemented by helium flowing into the surrounding area. The endothermically expanded helium is cooled in the liquid reservoir 64 by partially evaporating it. The cooled helium enters around the superconducting outer coil (3) through the helium flow hole 4 of the other coil mounting shaft through the through hole (21aJ) of the lower pawl, and then passes through the through hole of the upper pawl (7). It passes through the hole (20a) and the gap between the wedge α9 and exits to the helium channel (1).

以上のように円滑な自然循環を行なうことにより、超電
導界磁コイル(3)の冷却が行なわれ、超電導界磁コイ
ル(3)を超電導遷移温度以下に保っている。
By performing the smooth natural circulation as described above, the superconducting field coil (3) is cooled, and the superconducting field coil (3) is kept below the superconducting transition temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超電導回転電機の回転子では、上部つめもの善、
下部つめもの(至)の貫通孔(la)、(21a)が半
径方向のみで、それらの軸方向の間隔も広いため、超電
導界磁コイル(3)上のこれら貫通孔(20a)。
In the rotor of conventional superconducting rotating electric machines, the upper part of the rotor is
The through-holes (la) and (21a) in the lower part (to) are only in the radial direction, and the distance between them in the axial direction is wide, so these through-holes (20a) on the superconducting field coil (3).

(21a )近傍と、これら貫通孔(20a)、(21
a)から遠く離れた場所とでは、第5図1ζ示すようf
こヘリウム流路の長さに大きな差が生じ、る。従って、
もし貫通孔(20a)、(21a)から遠く離れた場所
において、微少発熱又は僅かな熱侵入が生じた場合は、
熱を吸収したヘリウムはコイル取付軸ヘリウム流通孔口
へ逃げにくくなり、この場所の超電導界磁コイル(3)
の温度が上昇し、容易に超電導臨界温度を越えて、クエ
ンチに至るという問題点があった。
(21a) and these through holes (20a), (21
In a place far away from a), f
This causes a large difference in the length of the helium flow path. Therefore,
If slight heat generation or slight heat intrusion occurs in a place far away from the through holes (20a) and (21a),
The helium that absorbed the heat becomes difficult to escape to the helium flow hole of the coil installation shaft, and the superconducting field coil (3) at this location
There was a problem in that the temperature of the superconductor rose and easily exceeded the superconducting critical temperature, leading to quenching.

この発明は上記のような問題点を解消するためになされ
たもので、超電導界磁コイルの熱除去を円滑に行ない、
超電導界磁コイルの性能を向上できる超電導回転電機の
回転子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it smoothly removes heat from the superconducting field coil.
The objective is to obtain a rotor for a superconducting rotating electrical machine that can improve the performance of a superconducting field coil.

L問題点を解決するための手段〕 この発明に係る超電導回転電機の回転子は、と部つめも
のの超電導界磁コイルに接する面に軸方向及び幅方向の
第1の流路溝を形成し、この第1の流路溝に第1の小孔
を複数形成し、下部つめものの超電導界磁コイルに接す
る面に軸方向及び幅方向の第2の流路溝を形成し、この
第2の流路溝に第2の小孔を複数形成したものである。
Means for Solving Problem L] The rotor of the superconducting rotating electric machine according to the present invention has first flow grooves in the axial direction and the width direction formed on the surface of the tomato part that is in contact with the superconducting field coil, A plurality of first small holes are formed in the first flow groove, and second flow grooves in the axial direction and the width direction are formed in the surface of the lower packing that is in contact with the superconducting field coil. A plurality of second small holes are formed in the groove.

(作用〕 この発明における超電導回転電機の回転子は。(effect) The rotor of the superconducting rotating electric machine in this invention is:

と部つめものに形成した第1の流路溝・第1の小孔及び
下部つめものCζ形成した第2の流路溝、第2の小孔に
より、ヘリウムの流通が軸方向1幅方向において良くな
り超電導界磁コイルの熱除去を円滑に行え、超電導界磁
コイルの性能が向上する。
The first passage groove and first small hole formed in the upper part pawl and the second passage groove and second small hole formed in the lower part pawl allow helium to flow in the axial direction and the first width direction. As a result, heat can be removed smoothly from the superconducting field coil, improving the performance of the superconducting field coil.

【実施例〕【Example〕

以下、この発明の一実施例を図について説明する。第1
図、第2図において、 (2) s (3) 、 (a
) 、(至)。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figure 2, (2) s (3) , (a
), (to).

αQ、α1,0.cAは上述した従来の回転子の構成と
同様である。(財)は超電導界磁コイル(3)の外周面
に接する上部つめもの、@は上部つめもの■の超電導界
磁コイル(3)と接する面に軸方向及び超電導界磁コイ
ル(3)の幅方向に形成された@lの流路溝。
αQ, α1,0. cA has the same structure as the conventional rotor described above. (Incorporated) is the upper pawl in contact with the outer peripheral surface of the superconducting field coil (3), @ is the axial direction and width of the superconducting field coil (3) on the surface of the upper pawl ■ in contact with the superconducting field coil (3). Channel grooves of @l formed in the direction.

(至)は第1の流路溝(7)に複数形成された第1の小
孔であり、ウェッジ曲間の隙間に相対向する部分にも形
成されている。(2)は超電導界磁コイル(3)の内周
面に接する下部つめもの、@は下部つめもの(5)の超
電導界磁コイル(3)と接する面に軸方向及び幅方向に
形成された第2の流路溝、@は第2の流路n(至)に複
数形成された第2の小孔であり、コイル取付軸ヘリウム
流通孔峙と相対向する部分にも形成されている。
(to) is a plurality of first small holes formed in the first channel groove (7), and is also formed in a portion facing the gap between the wedge curves. (2) is a lower pawl in contact with the inner circumferential surface of the superconducting field coil (3), and @ is formed in the axial and width directions on the surface of the lower pawl (5) in contact with the superconducting field coil (3). The second flow groove @ is a plurality of second small holes formed in the second flow path n (to), and is also formed in a portion facing the coil mounting axis facing the helium flow hole.

次に動作について説明する。超電導界磁コイル(3)内
の微少発熱、あるいは超電導界磁コイル(3)への僅か
な熱侵入によって生じた熱は、超電導界磁コイル(3)
の周囲の僅かな間隙に存在しているヘリウムに吸収され
る。吸熱により膨張し密反が小さくなったヘリウムは、
遠心力場の自然対流によって下部つめもの勾の第2の流
路溝(ト)に入り、下部つめもの弼の第2の小孔■を通
ってコイル取付軸ヘリウム流通孔Qを経て液溜め部(ト
)をこ出る。一方。
Next, the operation will be explained. The heat generated by slight heat generation within the superconducting field coil (3) or by slight heat intrusion into the superconducting field coil (3) is transferred to the superconducting field coil (3).
is absorbed by the helium that exists in the small gap around it. Helium expands due to heat absorption and its tightness becomes smaller.
Due to the natural convection of the centrifugal force field, it enters the second flow channel groove (G) in the lower part of the lower part, passes through the second small hole (2) in the lower part of the part, passes through the helium flow hole Q of the coil mounting shaft, and enters the liquid reservoir. (g) to get out. on the other hand.

超電導界磁コイル(3)回りで生ずるヘリウム不足は、
ヘリウム流路口からウェッジα9の隙間及び上部つめも
の(財)の第1の小孔に)を通り、上部つめもの(至)
の第1の流路溝に)を経て超電導界磁コイル(3)回り
に流入するヘリウムによって補われる。吸熱膨張したヘ
リウムは、液溜め部(ト)において、その一部が蒸発す
ることによって冷却される。冷却されたヘリウムは、別
のコイル取付軸ヘリウム流通孔(イ)から下部つめもの
弼の第2の小孔@を通り、下部つめもの勿の第2の流路
溝■を経て超電導界磁コイル(3)の周囲に入り込み、
さらに上部つめもの−の第1の流路溝(至)、@1の小
孔(至)及びウェッジ四の隙間を通りヘリウム流路−に
出る。このように円滑な自然循環を行うことにより、超
電導界磁コイル(3)の冷却が行なわれ、超電導界磁コ
イル(3)を超電導遷移温度以下に保っている。
The helium shortage that occurs around the superconducting field coil (3) is
Pass through the helium channel opening (to the gap in wedge α9 and the first small hole in the upper part), and then to the upper part.
The superconducting field coil (3) is supplemented by helium flowing around the superconducting field coil (3) through the first flow groove of the superconducting field coil (3). The endothermically expanded helium is cooled by partially evaporating in the liquid reservoir (g). The cooled helium passes through the helium flow hole (A) on the other coil mounting shaft, through the second small hole @ in the lower part, and passes through the second flow groove (■) in the lower part to the superconducting field coil. Get into the surroundings of (3),
Furthermore, it exits the helium flow path through the first flow channel groove (end) of the upper pawl, the small hole (end) @1, and the gap between wedge 4. By performing such smooth natural circulation, the superconducting field coil (3) is cooled, and the superconducting field coil (3) is kept below the superconducting transition temperature.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、上部つめものの超電導界
磁コイルに接する面に軸方向及び幅方向の第1の流路溝
を形成し、この第1の流路溝に第1の小孔を複数形成し
、下部つめものの超電導界磁コイルに接する面に軸方向
及び幅方向の第2の流路溝を形成し、この第2の流路溝
に第2の小孔を複数形成したことにより、ヘリウムの流
通が軸方向、幅方向において良くなり超電導界磁コイル
の熱除去を円滑に行え、超電導界磁コイルの性能向上が
図れる超電導回転電機の回転子を得ることができる。
As explained above, the present invention includes forming first channel grooves in the axial and width directions on the surface of the upper nail that is in contact with the superconducting field coil, and forming a plurality of first small holes in the first channel grooves. By forming second channel grooves in the axial and width directions on the surface of the lower pawl that is in contact with the superconducting field coil, and forming a plurality of second small holes in the second channel grooves, It is possible to obtain a rotor for a superconducting rotating electric machine in which the flow of helium is improved in the axial direction and the width direction, heat can be smoothly removed from the superconducting field coil, and the performance of the superconducting field coil can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による超電導回転電機の回
転子におけるヘリウムの流れを示す断面図、第2図はこ
の発明に係わる上部つめもの、下部つめものを示す平面
図、第8図は一般的な超電導回転電機の回転子の全体概
念を示す断面間、第4図は第3図IY−IV線における
断面図、第5図は従来の超電導回転電機の回転子におけ
るヘリウムの流れを示す断面図である。 図において、(2)はコイル取付軸、(3)は超電導界
磁コイル、αηはスロット、(至)は上部つめもの、W
は第1の流路溝、(4)は第1の小孔、(イ)は下部つ
めもの、@は第2の流路溝、四は第2の小孔である。 尚1図中同一行号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing the flow of helium in the rotor of a superconducting rotating electric machine according to an embodiment of the present invention, FIG. 2 is a plan view showing an upper part and a lower part according to the present invention, and FIG. Figure 4 is a cross-sectional view taken along line IY-IV in Figure 3, and Figure 5 shows the flow of helium in the rotor of a conventional superconducting rotating electric machine. FIG. In the figure, (2) is the coil mounting shaft, (3) is the superconducting field coil, αη is the slot, (to) is the upper pawl, and W
is the first channel groove, (4) is the first small hole, (a) is the lower pawl, @ is the second channel groove, and 4 is the second small hole. Note that the same line numbers in Figure 1 indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] コイル取付軸に設けられたスロット内に収納される超電
導界磁コイル、この超電導界磁コイルの外周面、内周面
にそれぞれ接する上部つめもの、下部つめものを備えた
ものにおいて、上記上部つめものの上記超電導界磁コイ
ルに接する面に軸方向及び幅方向に形成された第1の流
路溝、この第1の流路溝に複数形成された第1の小孔、
上記下部つめものの上部超電導界磁コイルに接する面に
軸方向及び幅方向に形成された第2の流路溝、この第2
の流路溝に複数形成された第2の小孔を備えたことを特
徴とする超電導回転電機の回転子。
A superconducting field coil housed in a slot provided in a coil mounting shaft, and an upper claw and a lower claw that are in contact with the outer circumferential surface and inner circumferential surface of the superconducting field coil, respectively, wherein the upper claw is a first channel groove formed in the axial direction and the width direction on the surface in contact with the superconducting field coil; a plurality of first small holes formed in the first channel groove;
a second channel groove formed in the axial direction and the width direction on the surface of the lower pawl that is in contact with the upper superconducting field coil;
A rotor for a superconducting rotating electrical machine, comprising a plurality of second small holes formed in a flow channel groove.
JP61056321A 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine Granted JPS62213556A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61056321A JPS62213556A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine
US07/009,920 US4739202A (en) 1986-03-12 1987-02-02 Superconducting electric rotary machine having grooved insulation for carrying coolant
FR8702094A FR2598045B1 (en) 1986-03-12 1987-02-18 SUPERCONDUCTING ELECTRIC ROTATING MACHINE
DE19873706437 DE3706437A1 (en) 1986-03-12 1987-02-27 SUPRALINE, ROTATING ELECTRICAL MACHINE
FR8713725A FR2603430B1 (en) 1986-03-12 1987-10-05 SUPERCONDUCTING ELECTRIC ROTATING MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056321A JPS62213556A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Publications (2)

Publication Number Publication Date
JPS62213556A true JPS62213556A (en) 1987-09-19
JPH0524746B2 JPH0524746B2 (en) 1993-04-08

Family

ID=13023904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056321A Granted JPS62213556A (en) 1986-03-12 1986-03-12 Rotor of superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS62213556A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656168A (en) * 1979-09-25 1981-05-18 Westinghouse Electric Corp Rotary electric machine
JPS57162945A (en) * 1981-03-31 1982-10-06 Mitsubishi Electric Corp Rotor for superconductive rotary electric machine
JPS57202851A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Rotor for superconductive rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656168A (en) * 1979-09-25 1981-05-18 Westinghouse Electric Corp Rotary electric machine
JPS57162945A (en) * 1981-03-31 1982-10-06 Mitsubishi Electric Corp Rotor for superconductive rotary electric machine
JPS57202851A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Rotor for superconductive rotary electric machine

Also Published As

Publication number Publication date
JPH0524746B2 (en) 1993-04-08

Similar Documents

Publication Publication Date Title
US3891875A (en) Superconducting rotor
US4152609A (en) Rotor member for superconducting generator
JPS6118349A (en) Rotor of superconductive rotary electric machine
JPS62213556A (en) Rotor of superconducting rotary electric machine
US4649303A (en) Rotor for a superconducting rotating electric machine
JPH01129766A (en) Superconducting rotor
JPS62213555A (en) Rotor of superconducting rotary electric machine
JPS62213553A (en) Rotor of superconducting rotary electric machine
JPS62213557A (en) Rotor of superconducting rotary electric machine
JPS62213554A (en) Rotor of superconducting rotary electric machine
JPS62213562A (en) Rotor of superconducting rotary electric machine
JPS62213558A (en) Rotor of superconducting rotary electric machine
JPS61196762A (en) Rotor of superconductive rotary machine
JPS62213546A (en) Rotor of superconducting rotary electric machine
JPS62213565A (en) Rotor of superconducting rotary electric machine
JPS62250866A (en) Rotor of superconducting rotary electric machine
JPH083171Y2 (en) Rotating electric machine
JPS63228961A (en) Rotor for superconducting rotary electric machine
JP2779398B2 (en) Rotor for superconducting rotating electric machine
JPS589567A (en) Rotor for superconducting rotary electric machine
JPS63228957A (en) Rotor for superconducting rotary electric machine
JPS62213561A (en) Rotor of superconducting rotary electric machine
JPH0561869B2 (en)
JPS63228964A (en) Rotor for superconducting rotary electric machine
JPS62250865A (en) Rotor of superconducting rotary electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees