JPS62213252A - Formation of sic semiconductor film - Google Patents

Formation of sic semiconductor film

Info

Publication number
JPS62213252A
JPS62213252A JP5502886A JP5502886A JPS62213252A JP S62213252 A JPS62213252 A JP S62213252A JP 5502886 A JP5502886 A JP 5502886A JP 5502886 A JP5502886 A JP 5502886A JP S62213252 A JPS62213252 A JP S62213252A
Authority
JP
Japan
Prior art keywords
plasma
substrate
sic film
gas
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502886A
Other languages
Japanese (ja)
Inventor
Fumitake Mieno
文健 三重野
Yuji Furumura
雄二 古村
Masahiko Toki
雅彦 土岐
Tsutomu Nakazawa
中沢 努
Kikuo Ito
伊藤 喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5502886A priority Critical patent/JPS62213252A/en
Publication of JPS62213252A publication Critical patent/JPS62213252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the epitaxial growth temperature (CVD reaction temperature) significantly and facilitate formation of semiconductor device with excellent characteristics by a method wherein a beta-SiC film is formed on a single crystal substrate by plasma CVD by using silicon containing gas and carbon containing gas. CONSTITUTION:After a plasma CVD apparatus is evacuated by a vacuum pump, propane gas is introduced to keep the pressure in the apparatus less then 1Torr (0.5Torr). As Si substrate is heated to the temperature of 900 deg.C and, at the same time, a radio frequency power (50kHz, 200W) is applied to generate a plasma. At that time, C3H8 gas is decomposed by the plasma energy and highly active carbon radicals are created and have reaction with Si of the Ci substrate to form a beta-SiC film of 40nm Thickness on the substrate surface (cementation treatment). Then silane gas is introduced into the apparatus and, while the pressure in the apparatus is maintained at 0.5Torr and the applied power is also maintained at a certain value, the plasma is continuously generated. As a result, a beta-SiC film is formed at the growth temperature of 900 deg.C and with a growing rate of about 50nm/min. by plasma CVD.

Description

【発明の詳細な説明】 〔概 要〕 単結晶基板上にプラズマCVD法によってβ−SiC半
導体膜を形成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A β-SiC semiconductor film is formed on a single crystal substrate by plasma CVD.

〔産業上の利用分野〕[Industrial application field]

本発明は、β−SiC(立方晶炭化ケイ素)のエピタキ
シャル膜形成に関するものである。
The present invention relates to the formation of an epitaxial film of β-SiC (cubic silicon carbide).

β−SiCは半導体であり、これを利用して半導体装置
を製造する場合にはシリコン半導体装置よりも高温動作
が良い(800℃でも動作する)ので、耐環境デバイス
として期待されている。
β-SiC is a semiconductor, and when a semiconductor device is manufactured using it, it has better high-temperature operation than a silicon semiconductor device (operates even at 800° C.), so it is expected to be an environmentally resistant device.

〔従来の技術〕[Conventional technology]

β−SiC半導体膜を単結晶基板(例えばSiウェハ)
上にエピタキシャル成長させるには化学的気相成長(C
V D)法で行なわれており、常圧で1360℃の高温
条件であった。そのために、反応管および単結晶基板に
負荷がかかり、大面積の単結晶成長がむずかしい。また
、このような高温で基板(Siウェイ1)上に直接にS
iC膜を形成すると、格子不整合も原因となってはがれ
やすいので、基板の浸炭(炭化)処理を行なってからS
iC膜の工ピタキシャル成長を行なっている。
β-SiC semiconductor film on a single crystal substrate (e.g. Si wafer)
Chemical vapor deposition (C
VD) method, and the conditions were normal pressure and high temperature of 1360°C. Therefore, a load is placed on the reaction tube and the single crystal substrate, making it difficult to grow a single crystal over a large area. In addition, S is directly deposited on the substrate (Si way 1) at such high temperatures.
When an iC film is formed, it easily peels off due to lattice mismatch, so the S
We are conducting epitaxial growth of iC films.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

β−SiC膜のエピタキシャル成長温度(CVD反応温
度)を大幅に下げることが本発明の目的である。
It is an object of the present invention to significantly lower the epitaxial growth temperature (CVD reaction temperature) of a β-SiC film.

形成したβ−SiC膜が11結晶基板からはがれること
のないように成膜することも本発明の目的である。
Another object of the present invention is to form the β-SiC film so that it will not peel off from the 11 crystal substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上述した問題点が、ケイ素含有ガスおよび炭素含有ガス
を用いてプラズマCVD法によって単結晶基板上にβ−
SiCM!を形成することを特徴とするSiC半導体膜
の形成方法によって達成される。
The above-mentioned problems have been solved by the plasma CVD method using silicon-containing gas and carbon-containing gas.
SiCM! This is achieved by a method of forming a SiC semiconductor film characterized by forming.

CVDに必要な熱エネルギをプラズマの作用によって供
給するので、常圧CVDでの成長温度をプラズマCVD
では大幅に低い成長温度(800〜1000℃)にする
ことができる。
Since the thermal energy required for CVD is supplied by the action of plasma, the growth temperature in normal pressure CVD is lower than that in plasma CVD.
In this case, the growth temperature can be significantly lower (800 to 1000°C).

このようなエピタキシャル成長温度(800〜1000
℃)であるので、SiC1]!2はかれに影響を与える
熱的トラブルが大幅に小さくなりそれだけはがれ防止が
できる。
Such epitaxial growth temperature (800-1000
℃), so SiC1]! 2) Thermal troubles that affect it are greatly reduced, and peeling can be prevented accordingly.

さらに、β−SiCのプラズマCVD0前に、炭素含有
ガス雰囲気中でプラズマを発生させて単結晶基板の表面
部に浸炭(炭化)による薄いβ−SiC膜を形成するこ
とは好ましい。このプラズマ浸炭処理によってβ−Si
C膜のはがれがほぼ完全に防【ヒできるようになる。
Furthermore, before β-SiC plasma CVD0, it is preferable to generate plasma in a carbon-containing gas atmosphere to form a thin β-SiC film by carburizing (carbonization) on the surface of the single crystal substrate. By this plasma carburizing treatment, β-Si
Peeling of the C film can be almost completely prevented.

プラズマCVD法で形成するSiCのSi源はケイ素化
合物でよく、例えば5iHa、 5iJ6.5illz
C1t。
The Si source of SiC formed by the plasma CVD method may be a silicon compound, for example, 5iHa, 5iJ6.5illz
C1t.

5iHC1,、SiC1nなどであり、また、C源は有
機化合物で、特に、炭化水素が好ましく、例えばC1,
5iHC1, SiC1n, etc., and the C source is an organic compound, particularly preferably a hydrocarbon, for example C1,
.

Czllt、 CJ*、 C4H111+ CzHa、
 Czlltなどである。さらに、プラズマ浸炭処理で
のC源には同じ有機化合物が使用でき、特に、C,11
,、(プロパン)ガスが好ましい。
Czllt, CJ*, C4H111+ CzHa,
Czllt et al. Furthermore, the same organic compounds can be used as the C source in the plasma carburizing process, especially C,
, (propane) gas is preferred.

〔実施例〕〔Example〕

以下、本発明の好ましい実施態様例によって本発明の詳
細な説明する。
Hereinafter, the present invention will be explained in detail with reference to preferred embodiments of the present invention.

±土 Si単結晶基板(Siウェハ)を平行平板型プラズマC
VD装置内の基板支持用サセプタ上に搭載する。サセプ
タはそれに取付けられたヒータによって加熱され、サセ
プタ上の基板が所定温度に加熱されるようになっている
。まず、プラズマCVD装置内を真空ポンプで排気し、
プロパン(C3H□)ガスを流し装置内圧力をl To
rr以下(例えば、0.5 Torr)に維持する。S
i基板を900℃に加熱するとともに高周波電力(50
w Hz、200W)を印加してプラズマを発生させる
。このときに、C3H1lガスがプラズマエネルギによ
って分解して活性度高い炭素ラジカルとなりSi基板の
Siと反応して基板表面にβ−SiC膜を40IIIl
厚さを形成する(浸炭処理を行なう)0次に、シラン(
Sil14)ガスを装置内へ流し、装置内圧力を0.5
Torrに維持したままで、印加電力も一定に維持して
プラズマを維続して発生させる。この結果として、プラ
ズマCVDによりβ−SiC膜が900℃の成長温度に
て約50nm/分の成長速度で形成される。
± Soil Si single crystal substrate (Si wafer) is parallel plate plasma C
It is mounted on a susceptor for supporting a substrate in a VD device. The susceptor is heated by a heater attached to it, and the substrate on the susceptor is heated to a predetermined temperature. First, the inside of the plasma CVD equipment is evacuated with a vacuum pump,
Flow propane (C3H□) gas and reduce the pressure inside the device.
rr or less (eg, 0.5 Torr). S
The i-board is heated to 900°C and high-frequency power (50°C
w Hz, 200 W) to generate plasma. At this time, the C3H1l gas is decomposed by the plasma energy and becomes highly active carbon radicals that react with the Si of the Si substrate to form a β-SiC film on the substrate surface.
Next, silane (carburizing treatment) is applied.
Sil14) Flow the gas into the device and reduce the pressure inside the device to 0.5
Torr is maintained, and the applied power is also kept constant to continue generating plasma. As a result, a β-SiC film is formed by plasma CVD at a growth temperature of 900° C. and a growth rate of about 50 nm/min.

■1 例1でのプラズマ浸炭処理を行なわずに、例1と同じ条
件でSi基板上にプラズマCVDでβ−SiCllを直
接に形成する。
(1) β-SiCl is directly formed on a Si substrate by plasma CVD under the same conditions as in Example 1 without performing the plasma carburizing treatment in Example 1.

例1および例2で得たβ−SiClliはSi基板から
はがれることもなく、その膜質(結晶性)も良い。
The β-SiClli obtained in Examples 1 and 2 does not peel off from the Si substrate and has good film quality (crystallinity).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマCVD法でβ−SiC半導体
膜を形成することができ、その成長温度を常圧CVD法
の場合よりも大幅に低くすることができる。この低温化
はβ−SiC膜の形成を従来よりも容易にする。形成し
たβ−SiCエビタギシヤル半導体膜を利用して特性の
良い半導体素子(例えば、MOSFET 、バイポーラ
トランジスタでの耐環境デバイス、発光ダイオードなど
)を製作することが可能となる。
According to the present invention, a β-SiC semiconductor film can be formed by plasma CVD, and the growth temperature can be made significantly lower than in the case of normal pressure CVD. This lower temperature makes it easier to form a β-SiC film than before. It becomes possible to manufacture semiconductor elements with good characteristics (for example, MOSFETs, environmentally resistant devices such as bipolar transistors, light emitting diodes, etc.) by using the formed β-SiC evitaginal semiconductor film.

Claims (1)

【特許請求の範囲】 1、単結晶基板上にエピタキシャル成長でβ−SiC膜
を形成する方法において、ケイ素含有ガスおよび炭素含
有ガスを用いてプラズマ化学的気相成長法によって前記
単結晶基板上にβ−SiC膜を形成することを特徴とす
るSiC半導体膜の形成方法。 2、単結晶基板上にエピタキシャル成長でβ−SiC膜
を形成する方法において、炭素含有ガス雰囲気中でプラ
ズマを発生させて前記単結晶基板の表面部に浸炭による
β−SiC膜を形成し、次にケイ素含有ガスおよび炭素
含有ガスを用いてプラズマ化学的気相成長法によってβ
−SiC膜を形成することを特徴とするSiC半導体膜
の形成方法。
[Claims] 1. In a method of forming a β-SiC film on a single crystal substrate by epitaxial growth, a β-SiC film is formed on the single crystal substrate by plasma chemical vapor deposition using a silicon-containing gas and a carbon-containing gas. - A method for forming a SiC semiconductor film, comprising forming a SiC film. 2. In a method of forming a β-SiC film by epitaxial growth on a single crystal substrate, plasma is generated in a carbon-containing gas atmosphere to form a β-SiC film by carburization on the surface of the single crystal substrate, and then β by plasma chemical vapor deposition using silicon-containing gas and carbon-containing gas.
- A method for forming a SiC semiconductor film, comprising forming a SiC film.
JP5502886A 1986-03-14 1986-03-14 Formation of sic semiconductor film Pending JPS62213252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502886A JPS62213252A (en) 1986-03-14 1986-03-14 Formation of sic semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502886A JPS62213252A (en) 1986-03-14 1986-03-14 Formation of sic semiconductor film

Publications (1)

Publication Number Publication Date
JPS62213252A true JPS62213252A (en) 1987-09-19

Family

ID=12987212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502886A Pending JPS62213252A (en) 1986-03-14 1986-03-14 Formation of sic semiconductor film

Country Status (1)

Country Link
JP (1) JPS62213252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade
JP2004148494A (en) * 2002-10-24 2004-05-27 Hewlett-Packard Development Co Lp Hardening nano-imprinting stamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225032A (en) * 1991-08-09 1993-07-06 Allied-Signal Inc. Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade
JP2004148494A (en) * 2002-10-24 2004-05-27 Hewlett-Packard Development Co Lp Hardening nano-imprinting stamp

Similar Documents

Publication Publication Date Title
KR100284374B1 (en) Method of Forming Crystalline Silicon Carbide Film
KR920004173B1 (en) Method of growing a single crystalline beta-sic layer on a silicon substrate
KR100287489B1 (en) How to form crystalline silicon carbide film at low temperature
US5759908A (en) Method for forming SiC-SOI structures
JP2003086518A (en) Cvd method of silicon carbide film, cvd unit and susceptor for cvd unit
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP2000001398A (en) Production of silicon carbide semiconductor substrate
JPS62213252A (en) Formation of sic semiconductor film
CN115074825A (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
JPS6114726A (en) Treatment of semiconductor substrate
KR20180063715A (en) Epitaxial wafer and method for fabricating the same
US6500256B2 (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JPH07183231A (en) Semiconductor substrate and its manufacture
JP2006036613A (en) Method for forming cubic silicon carbide crystal film on silicon substrate
Golecki et al. Epitaxial monocrystalline SiC films grown on Si by low-pressure chemical vapor deposition at 750 C
JPS6115150B2 (en)
JPS6233422A (en) Epitaxial growth method of silicon carbide
JPS62213251A (en) Formation of sic semiconductor film
JPH06216043A (en) Formation of semiconductor thin film
JP2739469B2 (en) Method for growing SiC film
JPS62214613A (en) Formation of sio buffer layer
JPH06334171A (en) Diamond thin film element and manufacture thereof
Hashim et al. Carbonization Layer Grown By Acetylene Reaction On Si (100) And (111) Surface Using Low Pressure Chemical Vapor Deposition
TW202400841A (en) Method for producing heteroepitaxial wafer
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor