JPS62210630A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62210630A
JPS62210630A JP61052525A JP5252586A JPS62210630A JP S62210630 A JPS62210630 A JP S62210630A JP 61052525 A JP61052525 A JP 61052525A JP 5252586 A JP5252586 A JP 5252586A JP S62210630 A JPS62210630 A JP S62210630A
Authority
JP
Japan
Prior art keywords
pellet
thermal expansion
resin
cracks
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052525A
Other languages
Japanese (ja)
Inventor
Kunihiro Tsubosaki
邦宏 坪崎
Kazunari Suzuki
一成 鈴木
Tomoko Tono
朋子 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP61052525A priority Critical patent/JPS62210630A/en
Publication of JPS62210630A publication Critical patent/JPS62210630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To prevent the generation of pellet cracks and resin cracks by bonding a pellet to a lead frame via a rubberlike resilient substance formed thereon and using the lead frame with the coefficient of thermal expansion of 10X10<-6>/ deg.C or above. CONSTITUTION:A semiconductor pellet 2 is bonded to a pellet bonding substrate 1 with the coefficient of thermal expansion of 10X10<-6>/ deg.C or above via a rubberlike resilient substance 3. Thus, in a resin seal type semiconductor device wherein the pellet is bonded via the rubberlike resilient substance, a balance is secured in the coefficient of thermal expansion of a molded resin, the Young's modulus and the breaking elongation percentage of the rubberlike resilient substance, the coefficients of thermal expansion of the pellet and a lead frame, the generation of pellet cracks and resin cracks are prevented, the device characteristics of the pellet are not adversely affect and therefore the highly reliable resin sealing type semiconductor device can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特に、樹脂封止型半導体装置に関
し、ペレットクラックやレジンクランクを防止し、ペレ
ットの素子特性の変動を防止し、信頼性の高い半導体装
置を得ることができるペレット付技術に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to semiconductor devices, particularly resin-sealed semiconductor devices, which prevents pellet cracks and resin cranks, prevents fluctuations in pellet element characteristics, and improves reliability. The present invention relates to a pellet attaching technique that allows semiconductor devices with high performance to be obtained.

〔従来の技術〕[Conventional technology]

半導体装置は各種の構成材料により構成されている。樹
脂封止型半導体装置は、例えば金属製のリードフレーム
に、シリコン結晶より成る半導体ペレットを、接着剤な
どによる各種接合方法により、固着取付し、エポキシ樹
脂などの封止樹脂によりモールドして成る。このように
、パッケージは各棟各様の素材により組立てられており
、金属や樹脂などではその熱膨張係数などが異なり、熱
によりリードフレームやペレットなどが反ったときに機
械的応力圧よりモールド樹脂や半導体ペレットなどにク
ラックを生じ、ペレットにおける素子等の特性に変動を
きたし、信頼性を欠如することになる。
Semiconductor devices are constructed from various constituent materials. A resin-sealed semiconductor device is made by firmly attaching semiconductor pellets made of silicon crystal to, for example, a metal lead frame using various bonding methods such as adhesives, and molding the semiconductor pellets with a sealing resin such as epoxy resin. In this way, packages are assembled from various materials in each building, and metals and resins have different thermal expansion coefficients, so when lead frames or pellets warp due to heat, the mold resin Cracks occur in semiconductor pellets, etc., and the characteristics of elements in the pellets change, resulting in a lack of reliability.

一方、半導体集積回路装置の果槓度JP実装密度の同上
により、ペレットは増々大型化する傾向にあり、素子の
温度上昇に伴うパッケージ材料の熱膨張の差や内部歪の
増大による上記ペレットなどの機械的応力(ストレス)
に基因する破壊(クラツク)も増々増加する傾向にある
On the other hand, due to the same increase in the implementation density of semiconductor integrated circuit devices, pellets tend to become larger and larger. mechanical stress
Cracks caused by this trend are also on the rise.

また、リードフレーム材料においても、従来のNi−F
e系合金よりなるものから、コスト低減の要訪などから
Cu系合金に移行する傾向にある。
Also, in lead frame materials, conventional Ni-F
There is a tendency to shift from E-based alloys to Cu-based alloys due to the need for cost reduction.

かかる場合において、大型ペレットを、従来のいわゆる
Agペーストと称される、Ag粉末を含むエポキシ樹脂
系又はポリイミド樹脂系導電性接着剤により、Cu系リ
ードフレームにペレット付すると、該Cu系リードフレ
ームとsi系ベレットとの大なる熱膨張差により、ペレ
ットの反りが大となり、ペレットクラックやレジンクラ
ックの発生も大となり、ペレットの素子特性の変動も大
となり、信頼性を欠如することが大となってきた。
In such a case, if a large pellet is attached to a Cu-based lead frame using a conventional epoxy resin-based or polyimide resin-based conductive adhesive containing Ag powder, which is called Ag paste, the Cu-based lead frame and Due to the large difference in thermal expansion from the Si-based pellet, the pellet becomes more warped, more pellet cracks and resin cracks occur, and the element characteristics of the pellet vary greatly, resulting in a serious lack of reliability. It's here.

なお、リードフレームタペレットサイズの大型化に伴な
う上記問題点を述べた文献の例として、(株)工業調査
会発行[電子材料J1982年9月号p49〜54、同
1982年8月号p69〜74および、同1984年8
月号p68〜73があげられる。
An example of a document describing the above-mentioned problems associated with the increase in lead frame taperet size is published by Industrial Research Institute Co., Ltd. [Electronic Materials J September 1982 issue p49-54, August 1982 issue p69-74 and 1984 8
Monthly issue pages 68-73 are listed.

〔発明が解決しようとする問題点〕 (11本発明は、かかる技術的背景の下、大型ペレット
を搭載した場合にあっても、ペレットクラックやレジン
クラックを防止し、ペレットの素子特性への変動を低減
し、高信頼度の半導体装置を供することのできる技術を
提供することを目的とする。
[Problems to be solved by the invention] (11) Based on this technical background, the present invention prevents pellet cracks and resin cracks even when large pellets are mounted, and prevents changes in pellet device characteristics. The purpose of the present invention is to provide a technology that can provide a highly reliable semiconductor device.

(2)本発明は、また、Cu系リードフレームなどの、
ペレットとの間の熱膨張係数差が大なるペレット取付基
体を使用した場合にあっても上記した問題点を解消でき
るとともに、当該基体上に前記大型ペレットを搭載した
場合にあっても上記した問題点を解消できるペレット付
技術を提供することを目的とする。
(2) The present invention also provides Cu-based lead frames, etc.
Even when using a pellet mounting base with a large difference in thermal expansion coefficient between the pellet and the pellet, the above-mentioned problems can be solved, and even when the large pellet is mounted on the base, the above-mentioned problem can be solved. The purpose of the present invention is to provide a pellet attaching technique that can solve the problem.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および糸付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the attached drawings.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、本発明では、ペレットをリードフレームに、
シリコン系ゴム接着剤などによりゴム状の弾性体を形成
してペレット付けするとともに、当該リードフレームと
して熱膨張係数がl0X10−6/”C以上のものを使
用する。
That is, in the present invention, pellets are used as a lead frame,
A rubber-like elastic body is formed using a silicone rubber adhesive or the like and pellets are attached, and a lead frame having a coefficient of thermal expansion of 10×10 −6 /″C or more is used.

〔作 用〕[For production]

上記のようにすることにより、ゴム状の弾性体を介して
ペレット付して成る樹脂封止型半導体装置において、モ
ールド樹脂の熱膨張係数やゴム状の弾性体のヤング率、
破断伸び率やペレットの熱膨張係数やリードフレームの
熱膨張係数においてバランスがとれ、ペレットクラック
やレジンクラックを防止し、ペレットの素子特性にも悪
影響を与えることがな(なり、高信頼性の樹脂封止型半
導体装置を得ろことに成功した。
By doing the above, in a resin-sealed semiconductor device formed by attaching pellets through a rubber-like elastic body, the coefficient of thermal expansion of the molding resin, the Young's modulus of the rubber-like elastic body,
The elongation at break, the thermal expansion coefficient of the pellet, and the thermal expansion coefficient of the lead frame are well-balanced, preventing pellet cracks and resin cracks, and does not adversely affect the element properties of the pellet. We succeeded in obtaining a sealed semiconductor device.

〔実施例〕〔Example〕

次に、本発明を、適宜図面を参照しつつまたその実施例
を示しつつ、更に詳述する。
Next, the present invention will be described in further detail with reference to the drawings as appropriate and showing examples thereof.

第3図はリードフレーム上にペレットを固着させたとき
の、熱により当該フレームなどが反る様子を模式的に示
したもので、同図にて、1はり−ドフレームのタブ部(
ペレット取付部)、2は半導体ペレット、Xは反り(i
t)、Yは応力方向、Zはペレットの一辺(長辺)のサ
イズヲ示ス。
Figure 3 schematically shows how the lead frame warps due to heat when a pellet is fixed on the lead frame.
2 is the semiconductor pellet, X is the warp (i
t), Y indicates the stress direction, and Z indicates the size of one side (long side) of the pellet.

また、第1図は、同様に、リードフレームのタブ部1に
半導体ペレット2を、ペレット付剤3により固着してな
る様子を示すものであるが、当該ペレット付剤を用い、
熱により適宜温度下で当該ペレット付剤をキュア(硬化
)させその後、室温迄冷却したときには、ペレット2と
タブ1との間には、同図で例示するようにずれΔ看を生
ずることをも示しである。なお、同図にて人はペレット
付剤3の厚みである。
Further, FIG. 1 similarly shows how a semiconductor pellet 2 is fixed to a tab portion 1 of a lead frame with a pellet adhesive 3, but using the pellet adhesive 3,
When the pellet adhesive is cured (hardened) by heat at an appropriate temperature and then cooled to room temperature, a deviation Δ may occur between the pellet 2 and the tab 1 as illustrated in the figure. This is an indication. In addition, in the same figure, the thickness of the pellet adhesive 3 is indicated by the figure.

本発明においては、かかるペレット付において、ペレッ
ト付剤として、ペレットとリードフレームとの間に介在
される当該ペレット付剤の硬化層がゴム状の弾性体を形
成し得るものを使用することを特徴とする。従来からペ
レット付方法としては、Au−8i共晶法や半田接続法
や前記したAgペーストなどの導電性樹脂接着法などが
あるが、本発明では、当該ペレット付剤としては、ゴム
状の弾性体を形成し得る弾性材料が良いことが判り、さ
らに、当該弾性材料としてシリコン系ゴム接着剤が好ま
しいことも判った。シリコン系ゴム接着剤の例としては
、ポリメチルシロキサンやポリフェニルシロキサンなど
があげられ、当該接着剤中に充填剤や架偕剤、硬化触媒
、安定剤などの各種添加剤や顔料などを添加fろことが
できろ。また、Ag粉やカーボン粉末やアルミナ粉末な
どを含有させることにより、熱伝導性JP電気伝導性を
向上させることができる。
The present invention is characterized in that, in such pellet attaching, a cured layer of the pellet attaching agent interposed between the pellet and the lead frame is capable of forming a rubber-like elastic body. shall be. Conventional methods for attaching pellets include the Au-8i eutectic method, soldering method, and conductive resin adhesion method such as the above-mentioned Ag paste, but in the present invention, the pellet attaching agent is a rubber-like elastic It has been found that an elastic material that can form a body is good, and it has also been found that a silicone rubber adhesive is preferable as the elastic material. Examples of silicone rubber adhesives include polymethylsiloxane and polyphenylsiloxane, and various additives such as fillers, crosslinking agents, curing catalysts, stabilizers, and pigments are added to the adhesive. Be able to do things. Further, by containing Ag powder, carbon powder, alumina powder, etc., thermal conductivity and electrical conductivity can be improved.

前記のごとく、ペレッ)Zを、タブ−に、ペレット付剤
3により、適宜温度下で硬化させ、室温に戻した時には
、ずれを生じる。すなわち、ペレット2とタブ−が互い
に拘束されず自由に熱収縮したと仮定した場合、これ等
の熱収縮の差(ムL)は、このペレット20片側(ペレ
ットサイズの半分)当り、次のようになる。
As mentioned above, when the pellets Z are cured on the tab with the pellet attaching agent 3 at an appropriate temperature and returned to room temperature, displacement occurs. In other words, assuming that the pellet 2 and the tab are not constrained by each other and are freely heat-shrinked, the difference in heat shrinkage (μL) for one side of the pellet 20 (half the pellet size) is as follows: become.

ム2−!(α2−α、)K(T2  TI)但し、 2:ペレットサイズ α、:ペレ/ト取付基体の熱膨張係数(1/”C)α、
:ベレットの熱膨張係数(16/℃)T、:硬化温度(
C) TI:室温(°C) 今、 ff1=1.351)I! α、=17X10−67”C α、=  4 X 10′6/℃ T、=150℃ T、−25℃ とすると。
Mu2-! (α2-α,) K(T2 TI) However, 2: Pellet size α,: Coefficient of thermal expansion of pellet/t mounting base (1/”C) α,
: Thermal expansion coefficient of pellet (16/℃) T, : Curing temperature (
C) TI: Room temperature (°C) Now, ff1=1.351) I! α, = 17X10-67"C α, = 4 X 10'6/℃ T, = 150℃ T, -25℃.

t−J3−一二’−5!!−X (17−4> < l
o刊6/℃K(150−25)℃ =0.675に13に10  K125=11110−
’(1)Ill) =11μm となる。
t-J3-12'-5! ! -X (17-4>< l
o publication 6/℃K(150-25)℃=0.675 to 13 to 10 K125=11110-
'(1) Ill) = 11 μm.

ペレット付剤の硬化層3の厚さくA)を25μmにした
とすると、次のような伸び率で、この硬化層3が第1図
に示すB部分で伸びなければ、ペレット2とタブ1は上
に凸方向に反り、この反りが大きい場合にはクラックを
生じてしまう。
Assuming that the thickness A) of the hardened layer 3 of the pellet adhesive is 25 μm, if the hardened layer 3 does not stretch at the part B shown in Figure 1 at the following elongation rate, the pellets 2 and tab 1 will It warps upward in a convex direction, and if this warp is large, cracks will occur.

27.3−25 −      1<100 −9.2(%) 一般的にはペレット付剤の硬化層3の破断伸び率が次式
の関係を満足していることが必要である。
27.3-25-1<100-9.2 (%) Generally, it is necessary that the elongation at break of the cured layer 3 of the pellet adhesive satisfies the following relationship.

硬化層3の破断伸び率(%) 本発明者の検討によれは、この破断伸び率は、硬化時の
温度などで異なり一概に言えないが、109以上である
ことが好ましいことが判っている。
Elongation at break (%) of cured layer 3 According to the inventor's study, it has been found that the elongation at break is preferably 109 or more, although it cannot be definitively stated as it varies depending on the temperature during curing, etc. .

また、その際の硬化層3のヤング率も第2図に図示のグ
ラフに示すように30 kg f /F11以下である
ことが好ましいことも判明している。上記のごとくシリ
コン系ゴム接着剤などにより、ゴム状の弾性体3を形成
すれば、当該接着剤の硬化RI3が伸びるので、前記熱
歪を吸収することができ、ペレットクラックなどを防止
できるのであるが、本発明者らの鋭意検討によればこの
ような接着剤の硬化層3が伸び、熱歪を吸収するのに有
効な範囲は、リードフレームなどのペレット取付基体に
おいて、その熱膨張係数が10 X 10−67”C以
上であることも判った。
It has also been found that the Young's modulus of the hardened layer 3 at this time is preferably 30 kg f /F11 or less, as shown in the graph shown in FIG. If the rubber-like elastic body 3 is formed using a silicone rubber adhesive or the like as described above, the cured RI 3 of the adhesive will stretch, so the thermal strain can be absorbed and pellet cracks can be prevented. However, according to the inventors' extensive studies, the effective range for the cured layer 3 of the adhesive to stretch and absorb thermal strain is determined by the thermal expansion coefficient of the pellet mounting substrate such as a lead frame. It was also found that it was greater than 10×10-67”C.

例えば、42A目oy (Ni 42 Fe残)はその
熱膨張係数が4.3 X 10”/”Cであり、Sl系
ペレットの熱膨張係数4 X 10−6/℃に近いもの
で、本発明に係るゴム状の弾性体を形成する接着剤を使
用できないことはないが、その熱膨張係数が10×10
−66/℃以上のペレット取付基体に適用すると有効に
働(。
For example, the coefficient of thermal expansion of the 42A oy (remaining Ni 42 Fe) is 4.3 X 10"/"C, which is close to the coefficient of thermal expansion of 4 X 10-6/"C of Sl-based pellets, and the present invention Although it is not impossible to use adhesives that form rubber-like elastic bodies, the coefficient of thermal expansion is 10 × 10
It works effectively when applied to pellet mounting substrates with temperatures of -66/℃ or higher (.

また、モールド樹脂の熱膨張係数は一般に17〜24)
<10−67’Cであり、この熱膨張係数にマツチング
させると、モールドレジンとペレット取付基体との熱膨
張係数差がなくなってくるので好ましい。しかし、先の
従来例で述べたように、従来のエポキシ系またはポリイ
ミド系Agペーストによる接合方法ではA、gペースト
が熱歪を吸収できず、ペレットクラックなどを生じてし
まう。本発明では、これらモールド樹脂の熱膨張係数や
ペレットの熱膨張係数や前記した伸び率による熱歪を吸
収できろ限度などを考慮すると、ペレット取付基体の熱
膨張係数は10 K 10−6g6/℃以上であること
が適白であることが判った。
In addition, the thermal expansion coefficient of mold resin is generally 17 to 24)
<10-67'C, and matching this coefficient of thermal expansion eliminates the difference in coefficient of thermal expansion between the mold resin and the pellet mounting base, which is preferable. However, as described in the prior art example, in the conventional bonding method using epoxy-based or polyimide-based Ag paste, the A and G pastes cannot absorb thermal strain, resulting in pellet cracks and the like. In the present invention, the thermal expansion coefficient of the pellet mounting base is 10 K 10-6 g6/°C, considering the thermal expansion coefficient of the molding resin, the thermal expansion coefficient of the pellet, and the limit of absorbing thermal strain due to the elongation rate described above. The above was found to be appropriate.

熱膨張係数が10に10−6g/”C以上のリードフレ
ームは一般にCu系のリードフレームに多いが、必ずし
もCu系のものに限定されず、例えば、50AIloy
(Ni 50 Fe Bat  (熱膨張係数10に1
0−6/”C)のようなNi−Fe系のリードフレーム
であっても、その熱膨張係数が10xlO−67”C以
上であれば使用することができる。
Lead frames with a thermal expansion coefficient of 10 to 10-6 g/''C or more are generally Cu-based lead frames, but are not necessarily limited to Cu-based lead frames, such as 50AIloy.
(Ni 50 Fe Bat (thermal expansion coefficient 1 to 10)
Even a Ni-Fe based lead frame such as 0-6/''C) can be used as long as its coefficient of thermal expansion is 10xlO-67''C or more.

第4図に樹脂封止型半導体装置の一例断面構成図を示す
。この装置は、例えは、リードフレーム4のタブ1に、
前記接着剤3により、ペレット2をダイボンディングし
、該ペレット2の電極5とリードフレーム4のリード6
とをコネクタ用ワイヤ7によりワイヤボンディングし、
樹弓旨をモールド8し、リード6の切断、折曲などの主
要工程を経て製造されろ。
FIG. 4 shows a cross-sectional configuration diagram of an example of a resin-sealed semiconductor device. This device has, for example, tab 1 of lead frame 4.
The pellet 2 is die-bonded using the adhesive 3, and the electrode 5 of the pellet 2 and the lead 6 of the lead frame 4 are bonded.
and wire bonded with the connector wire 7,
It is manufactured by molding the tree trunk 8 and going through the main steps of cutting and bending the lead 6.

ペレソトク半導体素子)2は、例えばシリコン単結晶基
板から成り、周知の技術によってこのペレット(チップ
)内には多数の回路素子が形成され、1つの回路機能が
与えられて(・る。回路素子の具体例は、例えばMOS
)ランジスタから成り、これらの回路素子によって、例
えばメモリー?論理回路の回路機能が形成されている。
The pellet (chip) 2 is made of, for example, a silicon single crystal substrate, and a large number of circuit elements are formed within this pellet (chip) using a well-known technique, and a single circuit function is provided. A specific example is MOS
) consists of transistors, and these circuit elements create, for example, memory? The circuit function of the logic circuit is formed.

本発明は大型のペレットに適用して有効であり、例えば
7mm以上角の大型ペレットを搭載する場合に有効であ
る。
The present invention is effective when applied to large pellets, for example, when mounting large pellets of 7 mm or more square.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 長辺が13.51111で短辺が4.51111角のペ
レット(α+ = 4 X 10−6/”c 、  0
.4關厚)を、α2が17X10−6/”CのCu系リ
ードフレーム(厚さ0.2511m)に、シリコンゴム
接着剤を使用してペレット付した。当該接着剤の硬化層
の厚味が25μmとなるように、当該接着剤を塗布し、
150°Cで、ぺ−り炉中で、熱硬化後、室温まで冷却
した。当該硬化層の破断伸び率は100%、ヤング率は
1 kg /rxts”である。
Example Pellets with long sides of 13.51111 squares and short sides of 4.51111 squares (α+ = 4 x 10-6/”c, 0
.. A silicone rubber adhesive was used to attach pellets to a Cu-based lead frame (thickness: 0.2511 m) with α2 of 17×10-6/”C.The thickness of the cured layer of the adhesive Apply the adhesive to a thickness of 25 μm,
After heat curing in a Pai oven at 150°C, it was cooled to room temperature. The elongation at break of the cured layer was 100%, and the Young's modulus was 1 kg/rxts''.

このものについて、ペレットクラックの発生割合、およ
びペレットの反り量について測定したところ、次の第1
表に示す通りであり、ペレットクラックの発生もなく、
また、ペレットの反りを著しくおさえろことができた。
Regarding this product, when we measured the rate of occurrence of pellet cracks and the amount of pellet warpage, we found that the following
As shown in the table, there was no pellet cracking.
In addition, it was possible to significantly suppress the warpage of the pellets.

比較例 エポキシ系のAgペーストを使用した以外は実施例と同
様にしてペレット付を行なった。結果を第2表に示す。
Comparative Example Pelleting was carried out in the same manner as in the example except that epoxy-based Ag paste was used. The results are shown in Table 2.

第2表 上記のごと〈従来の、Agペーストによる接合ではペレ
ットの反りが大で、また、ペレットサイズが7m鳳を越
えろとペレットクラックが発生してくる。
As shown in Table 2 above, conventional bonding using Ag paste causes large pellet warpage, and pellet cracks occur when the pellet size exceeds 7 m.

本発明によれば、ゴム状の弾性体3を介してペレット2
をペレット取付基体1に固着しており、この弾性体3の
硬化から冷却に除し、ペレット取付基体1とペレット2
の熱膨張係数の差に基づきそれぞれ熱収縮し、ずれ(Δ
2)を生じるが、この弾性体3は伸びることができるの
で、かかる熱歪を容易に吸収でき、また、本発明によれ
は当訊ペレット取付基体1の熱膨張係数をIOX:10
’/’°C以上とすることにより、かかるゴム状の弾性
体3を使用する場合の、ベレ・ノドクラックなどの防止
を有効に機能させることができろ。
According to the present invention, the pellets 2 are
is fixed to the pellet mounting base 1, and the elastic body 3 is hardened and cooled to separate the pellet mounting base 1 and the pellet 2.
Thermal contraction occurs based on the difference in the thermal expansion coefficients, and the deviation (Δ
2), but since this elastic body 3 can be stretched, it can easily absorb such thermal strain, and according to the present invention, the thermal expansion coefficient of the pellet mounting base 1 can be reduced to IOX: 10.
By setting the temperature to be above '/'°C, it is possible to effectively prevent verves, throat cracks, etc. when using such a rubber-like elastic body 3.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で補々変更口
」能であるごとはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, the present invention is not limited to the above Examples, and may be modified in any way without departing from the gist thereof. Needless to say.

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である樹脂封止型半導体装
置に適用した場合について説明したが、それに限定され
ろものではなく、種々の形式の半導体装置について適用
しても有効な発明である。
In the above explanation, the invention made by the present inventor was mainly applied to a resin-sealed semiconductor device, which is the background field of application, but it is not limited thereto, and can be applied to various types of semiconductor This invention is also effective when applied to devices.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、本発明によれば、大型ペレットが搭載でき、
Cu系リードフレームを使用することができ、ペレット
クラックが防止され、レジン(パッケージ)クラックが
防止され、ペレットの電気特性の変動を緩和でき、高信
頼性の半導体装置を得ることができた。
That is, according to the present invention, large pellets can be loaded,
A Cu-based lead frame could be used, pellet cracks could be prevented, resin (package) cracks could be prevented, fluctuations in the electrical properties of the pellets could be alleviated, and a highly reliable semiconductor device could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はペレットとリードフレームとのずれを説明する
断面図、 第2図はペレット表面の引張応力と接着剤硬化層とのヤ
ング率とペレットの反り債との関係を示すグラフ、 第;3図はペレットの反りの様子の説明図、第4図は本
発明の一実施例を示す半導体装置の断面図である。 1・・・メプ、2・・・ペレット、3・・・接着剤の硬
化層、4・・・リードフレーム、5・・・電極、6・・
・リード、7・・・コネクタ用ワイヤ、8・・・モール
ドaJ 脂。 代理人 弁理士  小 川 勝 男 第  1  図 第  2  図 へ゛し・yトA寸1のイ〕ソ゛宰rf:ii/オり第 
 3  図 第  4  起
Figure 1 is a cross-sectional view illustrating the misalignment between the pellet and the lead frame. Figure 2 is a graph showing the relationship between the tensile stress on the pellet surface, the Young's modulus of the adhesive cured layer, and the warpage of the pellet. The figure is an explanatory diagram of how the pellet warps, and FIG. 4 is a sectional view of a semiconductor device showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... MEP, 2... Pellet, 3... Cured layer of adhesive, 4... Lead frame, 5... Electrode, 6...
・Lead, 7...Wire for connector, 8...Mold aJ fat. Agent: Patent Attorney Katsutoshi Ogawa Please refer to Figure 1 and Figure 2.
3 Figure 4

Claims (1)

【特許請求の範囲】 1、熱膨張係数が10×10^−^6/℃以上のペレッ
ト取付基体にゴム状の弾性体を介して半導体ペレットを
取付して成ることを特徴とする半導体装置。 2、ペレット取付基体がCu系合金より成るリードフレ
ームにより構成され、半導体ペレットがシリコン結晶よ
り成り、ゴム状の弾性体がシリコン系ゴム接着剤より成
る樹脂封止型半導体装置である、特許請求の範囲第1項
記載の半導体装置。
[Scope of Claims] 1. A semiconductor device comprising a semiconductor pellet attached to a pellet attachment base having a coefficient of thermal expansion of 10×10^-^6/°C or more via a rubber-like elastic body. 2. A resin-sealed semiconductor device in which the pellet mounting base is composed of a lead frame made of a Cu-based alloy, the semiconductor pellet is made of silicon crystal, and the rubber-like elastic body is made of a silicon-based rubber adhesive. A semiconductor device according to scope 1.
JP61052525A 1986-03-12 1986-03-12 Semiconductor device Pending JPS62210630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052525A JPS62210630A (en) 1986-03-12 1986-03-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052525A JPS62210630A (en) 1986-03-12 1986-03-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62210630A true JPS62210630A (en) 1987-09-16

Family

ID=12917162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052525A Pending JPS62210630A (en) 1986-03-12 1986-03-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62210630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120840U (en) * 1989-03-15 1990-09-28
EP0504669B1 (en) * 1991-03-18 1997-05-07 Japan Gore-Tex, Inc. Semiconductor device comprising a substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120840U (en) * 1989-03-15 1990-09-28
EP0504669B1 (en) * 1991-03-18 1997-05-07 Japan Gore-Tex, Inc. Semiconductor device comprising a substrate

Similar Documents

Publication Publication Date Title
JP4319591B2 (en) Semiconductor power module
JP4492448B2 (en) Semiconductor power module
JP2010010301A (en) Semiconductor device and method of manufacturing the same
JP3724954B2 (en) Electronic device and semiconductor package
JP2006179538A (en) Semiconductor power module
JP2927982B2 (en) Semiconductor device
JPH10107190A (en) Semiconductor package
EP0469614B1 (en) Flip-chip semiconductor device
JP4878813B2 (en) Semiconductor mounting equipment
US6707167B2 (en) Semiconductor package with crack-preventing member
JPS62210630A (en) Semiconductor device
KR900007302B1 (en) Semiconductor device
JP3568402B2 (en) Semiconductor device
JP2006179732A (en) Semiconductor power module
JPH0344040A (en) Semiconductor device and its manufacture
JPS63107156A (en) Resin packaged type semiconductor device
JPS62210651A (en) Resin sealed type semiconductor device
JPS62210631A (en) Semiconductor device
JPH02105446A (en) Hybrid integrated circuit
JPS62210632A (en) Semiconductor device
JPH0239443A (en) Semiconductor device
JPS6352451A (en) Resin-sealed semiconductor device
JPH06204264A (en) Resin-sealed semiconductor device
JP2009010437A (en) Semiconductor device and manufacturing method therefor
JPH11340385A (en) Resin-sealed semiconductor device