JPS6220810B2 - - Google Patents

Info

Publication number
JPS6220810B2
JPS6220810B2 JP57089083A JP8908382A JPS6220810B2 JP S6220810 B2 JPS6220810 B2 JP S6220810B2 JP 57089083 A JP57089083 A JP 57089083A JP 8908382 A JP8908382 A JP 8908382A JP S6220810 B2 JPS6220810 B2 JP S6220810B2
Authority
JP
Japan
Prior art keywords
laser
optical fiber
point
laser beam
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57089083A
Other languages
Japanese (ja)
Other versions
JPS58206718A (en
Inventor
Koji Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP57089083A priority Critical patent/JPS58206718A/en
Publication of JPS58206718A publication Critical patent/JPS58206718A/en
Publication of JPS6220810B2 publication Critical patent/JPS6220810B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は眼疾患である白内障いわゆる“そこ
ひ”等の眼球混濁の早期診断に供するレーザー散
乱光を利用した眼球混濁診断装置に関するもので
ある。眼球には、角膜・水晶体、硝子体の透明体
があるが、これら透明体内には微小なタンパク質
が浮遊してブラウン運動をしている。このタンパ
ク質は、正常眼の場合には直径0.1μm以下であ
るが、眼球混濁が生じている場合には0.数μm以
上になる。本発明は、レーザー散乱光によつてそ
のタンパク質の直径を求める眼球混濁診断装置に
関するものであり、以下眼球混濁の代表的なもの
として水晶体の混濁すなわち白内障を例にとつて
説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ocular opacity diagnostic device using laser scattered light for early diagnosis of ocular opacity such as cataract, which is an eye disease. The eyeball has transparent bodies such as the cornea, crystalline lens, and vitreous body, and minute proteins float within these transparent bodies and perform Brownian motion. This protein has a diameter of 0.1 μm or less in a normal eye, but a diameter of several μm or more when ocular opacity occurs. The present invention relates to an ocular opacity diagnostic device that determines the diameter of a protein using laser scattered light, and will be described below using opacity of the crystalline lens, that is, cataract, as a typical type of ocular opacity.

眼球混濁診断装置は、水晶体内の1点にレーザ
ー光線を集光させ、ブラウン運動をするタンパク
質がその点を通過するときにそのタンパク質によ
つて散乱される散乱光の強度を検出し、この散乱
光強度が時間とともにどうゆらぐかの時間相関関
数を時間相関計により求め、その時間相関関数よ
り散乱光強度のゆらぎの緩和時間を計算して、こ
れによりタンパク質の拡散係数を求めて、そのタ
ンパク質の直径を得ようとするものである。従
来、この眼球混濁診断装置は、第1図に示すよう
に、レーザー管A、エキスパンダーBおよび集光
レンズCが一体となつたレーザー光線投光装置D
と、光電子増倍管Eが一体となつた顕微鏡部F
と、光電子増倍管Eと接続される時間相関計G
と、この時間相関計Gに接続されるアナライザー
Hとから構成され、診断の際には患者の眼前にレ
ーザー光線投光装置Eと顕微鏡部Gが配置され
る。したがつて患者の眼前には大きな装置があつ
て患者を威圧し、さらに検者にとつては操作性の
悪いものとなつている。
Ocular opacity diagnostic equipment focuses a laser beam on a point inside the crystalline lens, detects the intensity of scattered light scattered by proteins that undergo Brownian motion as they pass through that point, and detects the intensity of the scattered light. The time correlation function of how the intensity fluctuates over time is determined using a time correlator, the relaxation time of the fluctuation of the scattered light intensity is calculated from the time correlation function, the diffusion coefficient of the protein is determined from this, and the diameter of the protein is calculated. It is an attempt to obtain. Conventionally, this eyeball opacity diagnostic device has a laser beam projection device D, which integrates a laser tube A, an expander B, and a condensing lens C, as shown in FIG.
Microscope section F that integrates a photomultiplier tube E and a photomultiplier tube E.
and a time correlator G connected to the photomultiplier tube E.
and an analyzer H connected to this time correlator G. During diagnosis, a laser beam projection device E and a microscope section G are placed in front of the patient's eyes. Therefore, a large device is placed in front of the patient's eyes, which intimidates the patient, and furthermore, it is difficult for the examiner to operate.

本発明は上記従来欠点を排除して構成が極めて
コンパクトで取扱いの容易なレーザー散乱光を利
用した眼球混濁診断装置を提供することを目的と
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ocular opacity diagnostic device utilizing laser scattered light that is extremely compact in structure and easy to handle, eliminating the above-mentioned conventional drawbacks.

次に、本発明の実施例を図面にしたがつて説明
する。第2図はレーザー散乱光を利用した眼球混
濁診断装置であつて、レーザー装置部1、レーザ
ー投光部2、顕微鏡部3、光電子増倍管部4、時
間相関計5およびアナライザー6から構成されて
いる。レーザー装置部1はレーザー管11と集光
器12とからなり、同集光器12は有底円筒形状
に形成され、底部には光フアイバー7(光略内径
数μm程度)が取付けられ、開口側にはレーザー
管11から発せられたレーザー光Lを光フアイバ
ー7の端面に集光するコンデンサーレンズ13が
取付けられている。レーザー投光部2は有底円筒
形状に形成され、底部には前記光フアイバー7の
他端面が取付けられ、開口部側には投光レンズ2
1が取付けられ光フアイバー7の端面の像が水晶
体10内の1点Pに結像するようになつている。
顕微鏡部3は、鏡筒31の先端部に対物レンズ3
2、後端部に接眼レンズ33が配置された通常の
顕微鏡を構成しており、この顕微鏡と前記投光レ
ンズ21の光軸は水晶体10内の1点Pで調整可
能な角度をもつて交わるように配置されている。
さらに、鏡筒31の対物レンズ32と接眼レンズ
33の間の光軸上には、端面を対物レンズ32側
に向けた光フアイバー8が配置されている。そし
て、この光フアイバー8の端面と前記水晶体10
内の1点Pとは対物レンズ32に関して共役関係
にあるようにしてある。そして、レーザー投光部
2と顕微鏡部3は測定し易い位置に移動可能にな
つている。第3図には別の顕微鏡部の実施例が示
してある。この場合には、対物レンズ32′の後
方にハーフミラー34が配置され光軸を90゜直角
方向に曲げ、対物レンズ32およびハーフミラー
34に関して水晶体10内の1点Pの共役位置に
光フアイバー8′の端面が配置されている。この
ハーフミラー34の代りに可動ミラーを配置し
て、接眼レンズ33′側と光フアイバー8′側とを
切換可能にしてもよい。第2図に戻つて、光フア
イバー8の他端面は光電子増倍管部4の受光面に
対向しており、光電子増倍管部4は時間相関計5
に接続され、光電子増倍管部4からの電気信号よ
り時間相関関数が求められる。時間相関計5はア
ナライザー6に接続され、時間相関関数よりタン
パク質の直径が得られるようになつている。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows an eyeball opacity diagnostic device using laser scattered light, which is composed of a laser device section 1, a laser projecting section 2, a microscope section 3, a photomultiplier section 4, a time correlator 5, and an analyzer 6. ing. The laser device section 1 consists of a laser tube 11 and a condenser 12. The condenser 12 is formed into a cylindrical shape with a bottom, an optical fiber 7 (with an optical inner diameter of approximately several μm) is attached to the bottom, and an aperture is formed. A condenser lens 13 is attached to the side for condensing the laser beam L emitted from the laser tube 11 onto the end face of the optical fiber 7. The laser projector 2 is formed into a cylindrical shape with a bottom, the other end surface of the optical fiber 7 is attached to the bottom, and the projector lens 2 is attached to the opening side.
1 is attached so that the image of the end face of the optical fiber 7 is focused on one point P in the crystalline lens 10.
The microscope section 3 includes an objective lens 3 at the tip of a lens barrel 31.
2. It constitutes a normal microscope with an eyepiece lens 33 disposed at the rear end, and the optical axes of this microscope and the light projection lens 21 intersect at a point P in the crystalline lens 10 at an adjustable angle. It is arranged like this.
Further, on the optical axis between the objective lens 32 and the eyepiece lens 33 of the lens barrel 31, an optical fiber 8 is arranged with its end face facing the objective lens 32 side. Then, the end face of this optical fiber 8 and the crystalline lens 10
It is arranged to have a conjugate relationship with one point P within the objective lens 32. The laser projecting section 2 and the microscope section 3 are movable to positions where measurements can be easily made. FIG. 3 shows another embodiment of the microscope section. In this case, a half mirror 34 is arranged behind the objective lens 32', the optical axis is bent at a right angle of 90 degrees, and an optical fiber 8 is placed at a conjugate position of a point P in the crystalline lens 10 with respect to the objective lens 32 and the half mirror 34. The end face of ′ is arranged. A movable mirror may be arranged in place of the half mirror 34 to enable switching between the eyepiece lens 33' side and the optical fiber 8' side. Returning to FIG. 2, the other end surface of the optical fiber 8 faces the light receiving surface of the photomultiplier tube section 4, and the photomultiplier tube section 4 is connected to the time correlator 5.
The time correlation function is determined from the electric signal from the photomultiplier tube section 4. The time correlator 5 is connected to the analyzer 6, so that the diameter of the protein can be obtained from the time correlation function.

次に、上記のように構成された本実施例の作用
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

さて、本例装置は、レーザー光を発し該レーザ
ー光を光フアイバー端面に導くレーザー装置部
と、該光フアイバーの他端面から放射されるレー
ザー光を眼球内の1点に集光させるレーザー投光
部と、該眼球内の1点を観察可能で対物レンズに
関して該1点と共役位置に別の光フアイバーの端
面を配し該1点からのレーザー散乱光を該フアイ
バーに導きうる顕微鏡部と、該光フアイバーの他
端面から放射されるレーザー散乱光を受光する光
電変換素子と、該光電変換素子からの電気信号よ
り時間相関関数を求める時間相関計と、該時間相
関関数より前記眼球内の1点を横切るタンパク質
の直径を演算しうるアナライザーとから構成され
るものである。したがつて、レーザー管11から
発せられたレーザー光Lはコンデンサーレンズ1
3によつて光フアイバー7の端面に入射させられ
る。そしてレーザー光Lは光フアイバー7を介し
て他端より放射される。この放射されたレーザー
光は投光レンズ21によつて水晶体10の1点P
に集光する。水晶体10内においてブラウン運動
するタンパク質がこの点Pを通過するとレーザー
散乱光l1が発せられ、このレーザー散乱光l1は顕
微鏡部3の対物レンズ32を介して光フアイバー
8の端面に入射する。このとき、点Pに集光する
レーザー光の大きさと光フアイバー8の端面の大
きさと対物レンズ32に関する点Pと該端面の位
置の倍率を適当に選べば、点P以外からの散乱光
は光フアイバー8の端面には入射しない。この光
フアイバー8に入射した散乱光l1は光電子増倍管
部4に導かれ、該光電子増倍管4からの電気信号
により時間相関計5で時間相関関数が求められ
る。そして、アナライザー6において、時間相関
関数より散乱光強度のゆらぎの緩和時間を計算
し、この緩和時間からタンパク質の拡散係数を求
めてタンパク質の直径が得られる。
Now, this example device includes a laser unit that emits a laser beam and guides the laser beam to an end face of an optical fiber, and a laser projection unit that focuses the laser beam emitted from the other end face of the optical fiber onto one point in the eyeball. a microscope section that is capable of observing one point within the eyeball and that has an end face of another optical fiber arranged at a position conjugate with the one point with respect to the objective lens, and that can guide laser scattered light from the one point to the fiber; a photoelectric conversion element that receives laser scattered light emitted from the other end surface of the optical fiber; a time correlator that determines a time correlation function from an electrical signal from the photoelectric conversion element; It consists of an analyzer that can calculate the diameter of a protein that crosses a point. Therefore, the laser beam L emitted from the laser tube 11 passes through the condenser lens 1.
3 to the end face of the optical fiber 7. The laser beam L is then emitted from the other end via the optical fiber 7. This emitted laser light is transmitted to one point P of the crystalline lens 10 by the projection lens 21.
The light is focused on. When a protein undergoing Brownian motion within the crystalline lens 10 passes through this point P, laser scattered light l 1 is emitted, and this laser scattered light l 1 enters the end face of the optical fiber 8 via the objective lens 32 of the microscope section 3. At this time, if the size of the laser beam focused on the point P, the size of the end face of the optical fiber 8, and the magnification of the point P and the position of the end face with respect to the objective lens 32 are appropriately selected, the scattered light from other than the point P is It does not enter the end face of the fiber 8. The scattered light l 1 incident on the optical fiber 8 is guided to the photomultiplier section 4, and a time correlation function is determined by the time correlator 5 based on the electric signal from the photomultiplier tube 4. Then, in the analyzer 6, the relaxation time of fluctuations in the intensity of the scattered light is calculated from the time correlation function, and the diffusion coefficient of the protein is determined from this relaxation time to obtain the diameter of the protein.

上述したように、本装置においては、レーザー
管等のレーザー装置部および光電子増倍管部を患
者の眼前から離して配置できるため、レーザー投
光部および顕微鏡部をコンパクトにでき、患者に
威圧感を与えることもなく、さらにレーザー投光
部および顕微鏡部の取扱いが容易になる。
As mentioned above, in this device, the laser device section such as a laser tube and the photomultiplier tube section can be placed away from in front of the patient's eyes, so the laser projecting section and the microscope section can be made compact and the patient will not feel intimidated. Furthermore, the laser projecting section and the microscope section can be easily handled.

なお、光電子増倍管は半導体の光電素子に代え
ることは可能である。また、水晶体以外の角膜、
硝子体についても有効である。
Note that the photomultiplier tube can be replaced with a semiconductor photoelectric element. In addition, the cornea other than the crystalline lens,
It is also effective for the vitreous body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の略体図、第2図は本発明の1
実施例の略体図、第3図は顕微鏡部の他の1実施
例である。 1……レーザー装置部、2……レーザー投光
部、3……顕微鏡部、4……光電子増倍管部、5
……時間相関計、6……アナライザー、7,8…
…光フアイバー、10……水晶体。
FIG. 1 is a schematic diagram of a conventional example, and FIG. 2 is a schematic diagram of a conventional example.
A schematic diagram of the embodiment, FIG. 3 shows another embodiment of the microscope section. 1... Laser device section, 2... Laser projection section, 3... Microscope section, 4... Photomultiplier tube section, 5
...Time correlator, 6...Analyzer, 7,8...
...Optical fiber, 10...Crystalline lens.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザー光を発し該レーザー光を光フアイバ
ー端面に導くレーザー装置部と、該光フアイバー
の他端面から放射されるレーザー光を眼球内の1
点に集光させるレーザー投光部と、該眼球内の1
点を観察可能で対物レンズに関して該1点と共役
位置に別の光フアイバーの端面を配し該1点から
のレーザー散乱光を該光フアイバーに導きうる顕
微鏡部と、該光フアイバーの他端面から放射され
るレーザー散乱光を受光する光電変換素子と、該
光電変換素子からの電気信号より時間相関関数を
求める時間相関計と、該時間相関関数より前記眼
球内の1点を通過するタンパク質の直径を演算し
うるアナライザーとから構成されるレーザー散乱
光を利用した眼球混濁診断装置。
1 A laser device section that emits a laser beam and guides the laser beam to the end surface of the optical fiber, and a laser device section that emits a laser beam and guides the laser beam to the end surface of the optical fiber, and a laser device section that directs the laser beam to the end surface of the optical fiber.
A laser projector that focuses the light on a point, and a point inside the eyeball.
a microscope section capable of observing a point and arranging an end surface of another optical fiber at a position conjugate with the one point with respect to an objective lens and guiding laser scattered light from the one point to the optical fiber; A photoelectric conversion element that receives emitted laser scattered light, a time correlator that calculates a time correlation function from the electrical signal from the photoelectric conversion element, and a diameter of a protein that passes through one point in the eyeball based on the time correlation function. An eyeball opacity diagnostic device that uses laser scattered light and consists of an analyzer that can calculate
JP57089083A 1982-05-25 1982-05-25 Eye ball turbidity diagnostic apparatus utilizing laser scattered beams Granted JPS58206718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089083A JPS58206718A (en) 1982-05-25 1982-05-25 Eye ball turbidity diagnostic apparatus utilizing laser scattered beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089083A JPS58206718A (en) 1982-05-25 1982-05-25 Eye ball turbidity diagnostic apparatus utilizing laser scattered beams

Publications (2)

Publication Number Publication Date
JPS58206718A JPS58206718A (en) 1983-12-02
JPS6220810B2 true JPS6220810B2 (en) 1987-05-08

Family

ID=13960966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089083A Granted JPS58206718A (en) 1982-05-25 1982-05-25 Eye ball turbidity diagnostic apparatus utilizing laser scattered beams

Country Status (1)

Country Link
JP (1) JPS58206718A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122538A (en) * 1983-12-07 1985-07-01 キヤノン株式会社 Eyeground observing and photographing apparatus
JPS60137345A (en) * 1983-12-27 1985-07-20 興和株式会社 Ophthalimic measuring apparatus by laser scattering spectraldiffraction
JPS60148537A (en) * 1984-01-12 1985-08-05 興和株式会社 Opththalimic measuring apparatus utilizing laser beam
JPS6399836A (en) * 1986-05-19 1988-05-02 興和株式会社 Opthalmic measuring method and apparatus
JP6143289B2 (en) 2013-07-16 2017-06-07 国立研究開発法人理化学研究所 Lens elasticity measurement method, lens elasticity measurement device, and lens presbyopia determination device

Also Published As

Publication number Publication date
JPS58206718A (en) 1983-12-02

Similar Documents

Publication Publication Date Title
US6741359B2 (en) Optical coherence tomography optical scanner
US5841509A (en) Electro-optic binocular indirect ophthalmoscope
US3944341A (en) Wide-angle ophthalmoscope and fundus camera
US4728183A (en) Ophthalmic lens for observing the fundus of the eye
US4682866A (en) Head-borne binocular indirect ophthalmoscope with integrated telescope
JP4167979B2 (en) Device for measuring ocular organ aberrations
EP0555367A1 (en) A diagnostic indirect ophthalmoscopy contact lens system
US4657357A (en) Illumination system for single objective lens binocular microscope
JPH05142479A (en) Stereomicroscope
US4209225A (en) Adjustable microscope for following axial displacement of an object
US4396260A (en) Slit lamp having replaceable objective lens unit for observation of cornea
JPS6220810B2 (en)
US4988184A (en) Ophthalmic disease detection apparatus
JPS5985646A (en) Eyebottom camera
US4699480A (en) Surgical ophthalmoscopes
JPS6125762Y2 (en)
JPH07171105A (en) Auxiliary lens for eyeground observation
JPH06245909A (en) Ophthalmorefractometer
JPS632010Y2 (en)
JPS627291Y2 (en)
SU950306A1 (en) Apparatus for tindalemetry of eye optical media
WO1997013453A1 (en) High magnification indirect ophthalmoscopy lens device
JPS6130641Y2 (en)
CN113703151A (en) Low-illumination focusing indirect ophthalmoscope
JPS6322823B2 (en)