JPS62207178A - Electrophotographic printer - Google Patents

Electrophotographic printer

Info

Publication number
JPS62207178A
JPS62207178A JP4975286A JP4975286A JPS62207178A JP S62207178 A JPS62207178 A JP S62207178A JP 4975286 A JP4975286 A JP 4975286A JP 4975286 A JP4975286 A JP 4975286A JP S62207178 A JPS62207178 A JP S62207178A
Authority
JP
Japan
Prior art keywords
contact
fibers
fiber
resistance value
conductive fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4975286A
Other languages
Japanese (ja)
Inventor
Mari Sakai
真理 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4975286A priority Critical patent/JPS62207178A/en
Publication of JPS62207178A publication Critical patent/JPS62207178A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation and extension of pinholes by selecting the resistance value of conductive fibers for a brush charger at a specific value in the brush charger used for an electrophotographic printer. CONSTITUTION:A brush charger is constituted in such a manner that a pressure sensitive adhesive double coated tape 7 is stuck to an aluminum substrate 5, conductive fibers i are arranged onto the adhesive tape 7 in density of 800 number per 1mm width and the fibers are held down by an aluminum foil 8. Carbon dispersed rayon fibers are employed as the conductive fibers 1, and a diameter per one fiber shall be three denier. The resistance value of the conductive fibers 1 brought into contact with a photosensitive body 9 shall be 100kOMEGA or more per 1mm<2> in a region in which both the photosensitive body 9 and the conductive fibers 1 are brought into contact at that time. Accordingly, a current limiting function can be given to separate fiber, thus inhibiting leakage currents flowing through pinholes at magnitude in which pinholes are not expanded by Joule heat.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接触帯電法を利用する電子写真印刷装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic printing apparatus that utilizes a contact charging method.

〔従来技術] 電子写真印刷装置において、感光体表面へ静電荷分布を
与える手段として、導電性繊維からなるブラシ状の接触
子を感光体表面へ接触させ、感光体基板と接触子との間
に屯圧全加えな力lら、感光体表面を接触子で摺擦させ
るという方法を用いたブラシit法がある。
[Prior Art] In an electrophotographic printing device, a brush-like contact made of conductive fiber is brought into contact with the surface of the photoreceptor as a means of imparting electrostatic charge distribution to the surface of the photoreceptor, and a brush-shaped contact made of conductive fiber is brought into contact with the surface of the photoreceptor, and a contact is placed between the photoreceptor substrate and the contact. There is a brush IT method that uses a method in which the surface of a photoreceptor is rubbed with a contactor by applying a total force.

第4図にブラシ帯1装置の礪造例を示す。すなわち、導
電性繊維からなる接触子1は下地−2へ繊り込1れ、導
電性ペーストからなるバンクコ−ト145によって背面
を固着てれ、導電性接触子体4を構成する。この接触子
体は金属基板5へ導電性接着材6によシ接合され、ブラ
シ帯電装置itを構成する。
FIG. 4 shows an example of the construction of the brush band 1 device. That is, the contact 1 made of conductive fibers is woven into the base 2, and the back side is fixed with a bank coat 145 made of conductive paste, thereby forming the conductive contact body 4. This contact body is bonded to a metal substrate 5 with a conductive adhesive 6 to constitute a brush charging device IT.

電子写真印刷装置で使用される感光体の表面にはピンホ
ールと呼ばれる微小面積の導電箇所または低抵抗箇所が
、感光体の製造工程あるいは電子写真印刷装置内で使用
される過程で発生することがある。ブラシ帯電装着の接
触子が前記ピンホールに接触すると、感光+fiはピア
ホールで絶縁破壊を起こしピンホールを通して過電流が
流れ、その際発生するジュール熱によってピンホール領
域の拡大や感光体表面へのトナーの融層が起シ、感光体
が使用不可能となる。
On the surface of photoreceptors used in electrophotographic printing devices, small conductive or low resistance points called pinholes can occur during the manufacturing process of the photoreceptor or during the process of using it in the electrophotographic printing device. be. When the brush charging contact comes into contact with the pinhole, the photosensitive +fi causes dielectric breakdown in the peerhole, causing an overcurrent to flow through the pinhole, and the Joule heat generated at this time causes the pinhole area to expand and toner to the photoreceptor surface. The photoreceptor becomes unusable due to the formation of a melting layer.

この問題を解決する手段として、従来、感光体の初期帯
1!電位を低くする方法、感′yt層の膜厚を厚くする
方法、電源に過負荷保護回路を組み込み出力を流を制限
する方法、wL源とブラシ;貫電装置の金S基板との間
に保護抵抗を入れる方法などがあった。
As a means to solve this problem, conventionally, the initial band 1! How to lower the potential, how to increase the thickness of the sensitive layer, how to incorporate an overload protection circuit into the power supply and limit the output flow, between the wL source and the brush; between the gold S substrate of the conductive device. There were other methods, such as adding a protective resistor.

〔発明が解決しようとする問題点] 従来技術の手段は、大きく2つの方式に分類される。1
つは、後天的に発生する感光層の絶縁破壊を無くそうと
するもので、感光体の初期帯電電位を低くする方法や感
光1−の膜厚を厚くする方法がこれに含まれる。しかし
、初期帯lt1!位を低くするとコントラスト?を位が
低下し、高画質が確保できないという問題があシ、また
膜厚を厚くする方法は、製造コストの上昇や膜厚管理の
困難の増加などの問題が生じる。更には、これらの方法
は感光体製造過程で確率的に発生するピンホールなどの
欠陥に対しては対応できず、感光体品質の同上を前提と
している点で問題の不貞的解決手段とはならないという
問題全有している。もう1つの方式は、ピンホールを通
して流れる過電流を制限することにより、ピノホールの
拡大を押え感光体の破壊を防ごうとするもので、i源に
過負荷保護回路を組み込む方法や′1!#とブラシ帝を
装置tの金属基板との間に保護抵抗を入れる方法がこれ
に含まれる。しかし、過負荷保護回路や保護抵抗におい
て電流制限機能が働くと、ブラシ帯1!@置の金属基板
の電位が低下するため、この時点でブラシ帝りt装瞳の
接触子が接触している領域全体の帯電電位が低下する 
その結果、感光体上に4光・現1逮された画像はピンホ
ールの存在する点を通るブラシ帯’I1袋晴の形状に応
じて帯状のa度低下領域又は黒ベタ領域を生じ、印刷画
質の者しい劣化を引き起こし最悪の場会画慮形成がされ
ないという間に月を有している。
[Problems to be Solved by the Invention] Conventional techniques can be broadly classified into two types. 1
The first is to eliminate the dielectric breakdown of the photosensitive layer that occurs later, and includes a method of lowering the initial charging potential of the photosensitive member and a method of increasing the thickness of the photosensitive layer 1-. However, the initial band lt1! Contrast when lowering the position? There is a problem in that the image quality decreases and high image quality cannot be ensured, and the method of increasing the film thickness causes problems such as increased manufacturing costs and increased difficulty in controlling the film thickness. Furthermore, these methods cannot deal with defects such as pinholes that occur stochastically during the photoconductor manufacturing process, and are not a foolproof means of solving the problem because they assume the same photoconductor quality. There are all these problems. Another method is to limit the overcurrent that flows through the pinhole, thereby suppressing the expansion of the pinhole and preventing damage to the photoreceptor. This includes a method of inserting a protective resistor between # and the metal substrate of device T. However, if the current limiting function works in the overload protection circuit or protection resistor, the brush band 1! At this point, the potential of the metal substrate in the holder decreases, so at this point the charged potential of the entire area in contact with the contact of the brush pupil decreases.
As a result, the image recorded on the photoreceptor with 4 lights and 1 light produces a band-like area of decreased a degree or a solid black area depending on the shape of the brush band passing through the point where the pinhole exists. This has led to significant deterioration in image quality and, in the worst case, the lack of planning.

本発明の目的は、製造過程でピンホールの存在する感光
体に対しても、ピンホール近傍を除いた領域で均一な¥
[を与え、更にピンホールの発生。
An object of the present invention is to provide uniform radiance in the area excluding the vicinity of the pinholes even for photoconductors that have pinholes during the manufacturing process.
[, and further pinholes occur.

拡大を防止する機能を持つ接触帯電装−の構成を肩する
電子写真印刷装#を提供するところにある。
An object of the present invention is to provide an electrophotographic printing device which functions as a contact charging device having a function of preventing magnification.

〔間4点を解決するための手段〕 本発明の電子写真印刷装置は、導電性繊維で形成したブ
ラシ帝を装置において、導電性繊維の抵抗値が導電性繊
維と感光体が接触している領域において1平方ミリメー
トル当り100にΩ以上で更に望ましくは1平方ミリメ
ートル当9500MΩ以下でかつ100Kf)以上であ
ることを特徴とする。
[Means for solving the four points in question] The electrophotographic printing apparatus of the present invention has a brush formed of conductive fibers, and the resistance value of the conductive fibers is such that the conductive fibers and the photoreceptor are in contact with each other. It is characterized by having a resistance of 100 Ω or more per square millimeter in the area, more preferably 9500 MΩ or less per 1 square millimeter, and 100 Kf or more.

また好ましい構成として接触子は導電性繊維に導電性繊
維を混会してなることを特徴とする〇史によシ望1しく
は繊維一本の抵抗値が50MΩ以下であるもの全室1な
いことを特徴とする。
In addition, a preferable configuration is that the contact is made of a mixture of conductive fibers.According to history, it is preferable that the resistance value of a single fiber is 50 MΩ or less. It is characterized by

〔作用〕[Effect]

本発明の上記の構成によれば、接触帯1法に利用するブ
ラシ帯電装置において、感光体と接触する4を性繊維の
抵抗値を導電性繊維と感光体が接触している領域におい
て1平方ミリメートル当夛100にΩ以上とすることで
、!、電流制限機能個々の繊維に持たせることができる
。従ってピンホールを通して流れるリーク1!流をジュ
ール熱によってピンホールが拡大しない大きさて抑えら
れる@また。ピンホールを通して流れるリーク電流によ
る電圧降下は電流制限様能を個々の繊維忙持たせである
ためピンホール周辺の導電性繊維にしか生ドー$’1l
tcI:tailr?2−#a−ノ+51+る罹/nノ
ICm4/7M4μ−丁をピンホールの周辺の小さな領
域内に留めることができる。
According to the above configuration of the present invention, in the brush charging device used in the contact zone 1 method, the resistance value of the conductive fibers in contact with the photoreceptor is adjusted to 1 square in the area where the conductive fibers and the photoreceptor are in contact. By setting the millimeter value to 100Ω or more,! , current limiting functionality can be imparted to individual fibers. Hence the leak 1 flowing through the pinhole! Also, the flow can be suppressed to a size that prevents the pinhole from expanding due to Joule heat. The voltage drop due to the leakage current flowing through the pinhole affects the current limiting function of each individual fiber, so the voltage drop only occurs in the conductive fibers around the pinhole.
tcI:tailr? The 2-#a-+51+-infected/n-ICm4/7M4μ-tin can be held within a small area around the pinhole.

〔実施例〕〔Example〕

第1図は本発明の実施例におけるブラシ帝を装#/7)
構造例で、アルず基板5に両面粘着テープ7を貼り、粘
着テープ上へ導電性繊維1を1ミリメートル鳴当980
0本の密度で並ベアルば箔8で押えである。図(a)は
平面図で(b3は断面図である。
Figure 1 shows the brush design in the embodiment of the present invention #/7)
In the structural example, a double-sided adhesive tape 7 is pasted on the Alzu substrate 5, and a conductive fiber 1 is placed on the adhesive tape to a thickness of 980 mm.
If the density is 0 and the bearing is parallel, press it with foil 8. Figure (a) is a plan view (b3 is a cross-sectional view).

アルミ基板は導電性繊4を粘着テープへ確実に固定させ
るため図に示す様に曲げられプレスされる。
The aluminum substrate is bent and pressed as shown in the figure in order to securely fix the conductive fibers 4 to the adhesive tape.

4it性繊維としてはカーボン分散レーヨン繊維を使用
し、1本当りの径は5デニールである。繊維抵抗値は温
匿・湿度によって大きく変化する之め電子写真印刷装首
内の使用環境範囲内での最低抵抗値を測定する必要があ
シ、本実施例では最低抵抗値は平均して1本の1維1ξ
リメートルで10MΩであった。アルミ基板から突出し
ている繊維の長さを5でリメートルとしたブラシ帯亀装
瞬を第2図に示す位1関係で感光体ドラム9に接触させ
ると接触領域の幅は3ミリメートルになる。従つて1接
触領域のdl、維密度は1平万イリメートル当り267
本であシ、先に述べた繊維抵抗値と繊維長さよυ、液接
触域1平方ミリメートル当り187にΩの抵抗値となる
。本実施例のブラシ帯電装置を直径200μmのピンホ
ールが存在する感光体に対して使用したところ、繊維の
最低抵抗値を与える環境においても、ピノホール部を除
き一様なV!電が得られ、−1fcピンホ一ル部の拡大
は見られなかった。
Carbon-dispersed rayon fibers are used as the 4-it fibers, and each fiber has a diameter of 5 denier. Since the fiber resistance value changes greatly depending on temperature and humidity, it is necessary to measure the minimum resistance value within the usage environment within the electrophotographic printing device.In this example, the minimum resistance value is 1 on average. 1 fiber 1ξ of a book
It was 10 MΩ in rim. When the brush band Kamiso Shun, whose length of fibers protruding from the aluminum substrate is 5 mm, is brought into contact with the photosensitive drum 9 at the position 1 shown in FIG. 2, the width of the contact area will be 3 mm. Therefore, the dl of one contact area, the fiber density is 267 per 1 million millimeters.
According to the book, the fiber resistance value and the fiber length υ mentioned earlier result in a resistance value of 187 Ω per square millimeter of liquid contact area. When the brush charging device of this example was used on a photoreceptor with pinholes with a diameter of 200 μm, even in an environment that gave the lowest resistance value of the fiber, a uniform V! was obtained except for the pinhole area. An electric current was obtained, and no enlargement of the -1fc pinhole was observed.

これに対して、上記実施例で繊維抵抗値が1本の鷹維1
ばリメートルで6MΩである繊維に変えた場合には、ピ
ンホール部は時間経過とともに拡大し、それに伴なうト
ナーの付層現象による画像欠陥部の拡大が見られた。こ
の場合は接触領域1千万ミリメートル当、956にΩと
なる。
On the other hand, in the above example, the fiber resistance value is 1
When the fiber was changed to a fiber having a resistance of 6 MΩ, the pinhole area expanded over time, and the resulting image defect area was observed to expand due to the toner layering phenomenon. In this case, the contact area is 956 Ω per 10 million mm.

第5図は導電性繊維と絶縁性繊維とを脱会することによ
シ、感光体との接触部での単位面積当υの抵抗イ直を1
0OKΩ以上にし友実施例である。
Figure 5 shows that by separating the conductive fibers and the insulating fibers, the resistance per unit area υ at the contact area with the photoreceptor can be reduced by 1.
This is an example in which the resistance is set to 0OKΩ or more.

絶縁性繊維11bは繊維1ミリメートルで161O00
以上の抵抗値を有するアクリル繊維を用い念が、他の絶
縁性繊維も同様に利用できる。導電性繊維11aと絶縁
性繊維は100本単位で交互に並べられ、1ミリメート
ル幅当シ800本の密度の帯電ブラシを構成する。導電
性繊維は先の実施例同様カーボン分散レーヨン繊維で、
最低抵抗値は1本の繊維で1ミリメートル当j55MΩ
である。
1 mm of insulating fiber 11b is 161000
Although acrylic fibers having the above resistance values are used, other insulating fibers can be used as well. The conductive fibers 11a and the insulating fibers are arranged alternately in units of 100 to form a charging brush with a density of 800 fibers per millimeter width. The conductive fibers are carbon-dispersed rayon fibers as in the previous example.
The minimum resistance value is j55MΩ per millimeter for one fiber.
It is.

繊維長さも先の実施例同様5ミリメートルで、従って感
光体との接触領域1平方ミリメートル当シの抵抗値fi
115 KΩとなる。本実施例のブラシ帯電Vcll#
を直径200μ愕のピンホールが存在する感光体に対し
て使用したところ、繊維の最低抵抗値を与える環境にお
いても、ピンホール部ヲ除き一様な帯?2tが得られ、
またピンホール部の拡大は見られなかつto 不実!!JIは固有抵抗1011Ω・鋸の絶縁性繊維を
用いたが繊維抵抗が1ミリ当り500GΩf:超えると
実質上放電に寄与しないから単位長さ当りの抵抗値の死
力ロ116以止具ると上記目的は達成される。
The fiber length is also 5 mm as in the previous example, so the resistance value fi per 1 square mm of contact area with the photoreceptor is
It becomes 115 KΩ. Brush charging Vcll# of this embodiment
When used on a photoconductor with a pinhole of 200 μm in diameter, even in an environment that gives the lowest resistance value of the fiber, a uniform band was obtained except for the pinhole area. 2t is obtained,
Also, no enlargement of the pinhole area was observed, which is a shame! ! JI uses insulating fibers with a specific resistance of 1011 Ω, but the fiber resistance is 500 GΩf per millimeter: If it exceeds, it will not substantially contribute to discharge, so the dead force of the resistance value per unit length is 116 or above. The purpose is achieved.

以上の実施例においては、導電性繊維としてカーボン分
散レーヨン繊維を用いたが、他の導電性繊維であっても
抵抗値を上記実施例同様に管理することにより同様の効
果が得られる。
In the above embodiments, carbon-dispersed rayon fibers were used as the conductive fibers, but similar effects can be obtained using other conductive fibers by controlling the resistance value in the same manner as in the above embodiments.

通常入手できる導電性繊維の抵抗1直は数10倍のばら
つきが存在する。従って上記実施例に示した抵抗管理を
行っても、感光体が静止した状態で電圧を印加した場合
などでは、低抵抗繊維全通して過電流が流れることが稀
にある。従って極低い抵抗値を持つ繊維を無くせば更に
確実なブラシ帯電装置が構成できる。感光体との接触領
域において抵抗値が1平万ぼりメートル当、910OK
Ω以上となる様管理されたブラシ帯電装置に対して繊維
1本の抵抗値が50MΩ以下のものが含1れない様、注
意深く繊維抵抗値を管理した結果、ピンホール上に接触
子を接触させた状態で電圧を〃口見放肯しても、ピンホ
ールを拡大させないブラシ帝1!裟置が構成された・ ブラシ帝[fcvlに使用する導電性繊維の抵抗値は高
い程、電流制限機能は高い。しかし、抵抗値が高くなる
と帯電がブラシ先端部で生ずる族1現像によっているた
めに放電が起りにくくなシ、帯電の均一性の低下や帯電
不能など帯xi能の低下刃3起こる。そこで、先の実施
例に示される様な抵抗値の下限を管理するのと会わせて
、抵抗値の上限を管理する実施例を述べる。ブラシ帯電
装置は第1図と同じで、繊維密度け1ξリメートル幅当
り800本、繊維長さは5だりメートルである。
The resistance of normally available conductive fibers varies by several tens of times. Therefore, even if the resistance management shown in the above embodiments is carried out, if a voltage is applied while the photoreceptor is stationary, an overcurrent may rarely flow through the entire low resistance fiber. Therefore, by eliminating fibers with extremely low resistance values, a more reliable brush charging device can be constructed. The resistance value in the contact area with the photoreceptor is 910 OK per 10,000 meters.
As a result of carefully controlling the fiber resistance value to ensure that the resistance value of a single fiber is not less than 50MΩ for the brush charging device that was controlled to be Ω or more, the contactor was brought into contact with the pinhole. Brush emperor 1 that will not enlarge the pinhole even if you ignore the voltage under the condition! The device is configured with a brush impeller [The higher the resistance value of the conductive fiber used in FCVL, the higher the current limiting function. However, when the resistance value becomes high, charging occurs at the tip of the brush due to group 1 development, so discharge is less likely to occur, and the charging performance deteriorates, such as a decrease in the uniformity of charging and an inability to charge. Therefore, an embodiment will be described in which the upper limit of the resistance value is managed in addition to the lower limit of the resistance value as shown in the previous embodiment. The brush charging device was the same as that shown in FIG. 1, with a fiber density of 800 fibers per 1ξ meter width and a fiber length of 5 meters.

このとき、接触領域の繊維密度は1平万だりメートル当
り267不である。繊維抵抗値を変えて帯電の均一性を
調べたところ、繊維抵抗を接触領域1平方ごリメートル
当り500MΩ以下の場会に均一な帯t75+得られた
ー なお繊維抵抗は温湿度によって変化する◎上述の抵抗値
条件Fi動作状態において満足すべきであシ、特定の測
定環境における抵抗値ではない。
At this time, the fiber density in the contact area is 267 per square meter. When we investigated the uniformity of charging by changing the fiber resistance value, we found that a uniform band t75+ was obtained when the fiber resistance was 500 MΩ or less per square meter of contact area.Fiber resistance changes depending on temperature and humidity.◎As mentioned above. The resistance value condition Fi should be satisfied in the operating state, and is not the resistance value in a specific measurement environment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ピンホールが存在す
る感光体に対して、帯電の不良がビンポールノコく近傍
に限定され、ピンホールの拡大現象も生じないブラシ帯
屯装ばが構成されるため。
As described above, according to the present invention, for a photoreceptor in which pinholes exist, a brush band mounting is constructed in which charging defects are limited to the vicinity of the vinyl pole saw and the pinhole expansion phenomenon does not occur. For.

ピンホールが本質的に存在する感光体を使用した電子写
真印刷装買や感光体にピンホール金発生させ易いプロセ
スを肩する電子写真印刷湊晴において、感光体やプロセ
スの特性を変更すること無しにブラシ帯電装置を用いて
均一な帝tを行うことができるという効果金有する。
There is no need to change the characteristics of the photoreceptor or process in electrophotographic printing equipment that uses a photoreceptor that inherently has pinholes, or in electrophotographic printing Minatoharu, which handles processes that tend to generate pinholes on the photoreceptor. This has the advantage that uniform charging can be performed using a brush charging device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用したブラシ帯電装置の概
略ツ1で(已)は平面図、(b)は断面図、第2図は、
第1図のブラシ帯電装置と感光体ドラムの接触関係を示
す概略断面図、第6図は導電性繊維と絶縁性繊維を混ぜ
た本発明実施例のブラシ帯電装置の概略図、第4図は従
来のブラシ帯電装置の概略断面図である。 図において 1.11a・・・導電性繊維、1.1. 
b・・・絶に*性繊維、5・・・帯電ブラシ基板 を表
わす。 以   上 出願人 セイコーエブンン昧式会社 I:尊電性叢維 (α)(b) 第1図 第2図
Fig. 1 is a schematic diagram of the brush charging device used in the embodiment of the present invention.
FIG. 1 is a schematic cross-sectional view showing the contact relationship between the brush charging device and the photoreceptor drum, FIG. 6 is a schematic view of the brush charging device of the present invention in which conductive fibers and insulating fibers are mixed, and FIG. FIG. 2 is a schematic cross-sectional view of a conventional brush charging device. In the figure 1.11a... conductive fiber, 1.1.
b... Denotes absolutely *sexual fiber, 5... Represents a charged brush substrate. Applicant: SEIKO EVEN MAJI SHIKI COMPANY I: SOUND ELECTRIC PLACE FIBER (α) (b) Fig. 1 Fig. 2

Claims (4)

【特許請求の範囲】[Claims] (1)導電性の繊維からなる接触子を基板上にブラシ状
の起毛となるように形成したブラシ帯電装置による接触
帯電法を利用する電子写真印刷装置において、前記導電
性繊維の抵抗値が導電性繊維と感光体が接触している領
域1平方ミリメートル当り100KΩ以上であることを
特徴とする電子写真印刷装置。
(1) In an electrophotographic printing device that uses a contact charging method using a brush charging device in which contacts made of conductive fibers are formed on a substrate in a brush-like raised manner, the resistance value of the conductive fibers is An electrophotographic printing device characterized in that the resistance is 100 KΩ or more per square millimeter of the contact area between the photoreceptor and the photoreceptor.
(2)前記ブラシ帯電装置において、導電性繊維の抵抗
値が導電性繊維と感光体が接触している領域1平方ミリ
メートル当り500MΩ以下であることを特徴とする特
許請求の範囲第1項記載の電子写真印刷装置。
(2) In the brush charging device, the resistance value of the conductive fiber is 500 MΩ or less per square millimeter of the area where the conductive fiber and the photoreceptor are in contact. Electrophotographic printing equipment.
(3)前記ブラシ帯電装置において、接触子は単位長さ
当り抵抗が比で10^3以上異る複数の種類の繊維を混
合したものであることを特徴とする特許請求の範囲第1
項記載の電子写真印刷装置。
(3) In the brush charging device, the contact is made of a mixture of a plurality of types of fibers each having a resistance per unit length of 10^3 or more different in ratio.
The electrophotographic printing device described in Section 1.
(4)前記ブラシ帯電装置において、接触子は繊維1本
の抵抗値が50MΩ以下であるものを含まないことを特
徴とする特許請求の範囲第1項記載の電子写真印刷装置
(4) The electrophotographic printing apparatus according to claim 1, wherein the brush charging device does not include a contact in which a single fiber has a resistance value of 50 MΩ or less.
JP4975286A 1986-03-07 1986-03-07 Electrophotographic printer Pending JPS62207178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4975286A JPS62207178A (en) 1986-03-07 1986-03-07 Electrophotographic printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4975286A JPS62207178A (en) 1986-03-07 1986-03-07 Electrophotographic printer

Publications (1)

Publication Number Publication Date
JPS62207178A true JPS62207178A (en) 1987-09-11

Family

ID=12839915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4975286A Pending JPS62207178A (en) 1986-03-07 1986-03-07 Electrophotographic printer

Country Status (1)

Country Link
JP (1) JPS62207178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424264A (en) * 1987-07-21 1989-01-26 Fujitsu Ltd Conductive brush electrifying device
JP2007041543A (en) * 2005-06-30 2007-02-15 Ricoh Co Ltd Brush member, transfer device using the same, and image forming apparatus
CN109747268A (en) * 2017-11-01 2019-05-14 北京纳米能源与***研究所 Driving printer certainly based on friction nanometer power generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424264A (en) * 1987-07-21 1989-01-26 Fujitsu Ltd Conductive brush electrifying device
JP2007041543A (en) * 2005-06-30 2007-02-15 Ricoh Co Ltd Brush member, transfer device using the same, and image forming apparatus
CN109747268A (en) * 2017-11-01 2019-05-14 北京纳米能源与***研究所 Driving printer certainly based on friction nanometer power generator
CN109747268B (en) * 2017-11-01 2020-06-16 北京纳米能源与***研究所 Self-driven printer based on friction nano generator

Similar Documents

Publication Publication Date Title
JPS62207178A (en) Electrophotographic printer
JP5205744B2 (en) Image forming apparatus
JP2595976B2 (en) Conductive brush charging device
JP2002202702A (en) Image forming device
PL70053B1 (en)
JPH05281834A (en) Solid electrifying device
JPH06222649A (en) Electrostatic charging device
US6070033A (en) Charging device for an electrophotographic imaging forming system utilizing thin film conducting members
JP2992183B2 (en) Corona discharge device
JP2997386B2 (en) Corona discharge device
JP4619041B2 (en) Fuel cell electrode manufacturing apparatus and method
JPS58147757A (en) Electrophotographing method
TWI403865B (en) Screen-controlled scorotron charging device
JP2000137368A (en) Device and method for electrifying photoreceptor
JPS6157954A (en) Brush electrifier
JPH07114273A (en) Image forming device
JPH07281503A (en) Brush type electrostatic charger
JPH01312563A (en) Electrostatic charging method for image forming device
SU1061100A1 (en) Device for electrographic medium charging
JPS607266B2 (en) Self-auto bias development method
JP2000019809A (en) Image forming device
JPH05297683A (en) Electrostatic charge device
JP2006097146A (en) Conductive conjugate fiber and contact charging brush made thereof
JP2002108105A (en) Image forming method
JPS59204050A (en) Method for extending life of magnetic brush developer