JPS62206780A - Manufacture of ceramic heater - Google Patents

Manufacture of ceramic heater

Info

Publication number
JPS62206780A
JPS62206780A JP4761286A JP4761286A JPS62206780A JP S62206780 A JPS62206780 A JP S62206780A JP 4761286 A JP4761286 A JP 4761286A JP 4761286 A JP4761286 A JP 4761286A JP S62206780 A JPS62206780 A JP S62206780A
Authority
JP
Japan
Prior art keywords
conductor
green sheet
ceramic
ceramic heater
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4761286A
Other languages
Japanese (ja)
Other versions
JPH0719644B2 (en
Inventor
勉 西村
治 牧野
誠一 中谷
聖 祐伯
寛敏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4761286A priority Critical patent/JPH0719644B2/en
Publication of JPS62206780A publication Critical patent/JPS62206780A/en
Publication of JPH0719644B2 publication Critical patent/JPH0719644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミック基板内に抵抗発熱体が内臓された
セラミックヒータの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a ceramic heater in which a resistance heating element is built into a ceramic substrate.

従来の技術 セラミックヒータは家庭用発熱器具をはじめ広く使われ
てきている。これらのセラミックヒータは、高純度アル
ミナセラミック基板内に、タングステン(W)やモリブ
デン(Mo )などの高融点金属を発熱体として一体化
したものであり、高品質で高効率なセラミックヒータと
して知られている。
BACKGROUND OF THE INVENTION Ceramic heaters have been widely used in home heating appliances and other applications. These ceramic heaters integrate high-melting point metals such as tungsten (W) and molybdenum (Mo) as heating elements in a high-purity alumina ceramic substrate, and are known as high-quality and highly efficient ceramic heaters. ing.

しかし、従来のこのセラミックヒータは、アルミナを完
全に焼結するには、1500℃以上の高温で、しかも途
中でのWやMoの酸化を防ぐため水素を含む還元性の雰
囲気ガス中で焼成する必要がある。
However, in order to completely sinter alumina, this conventional ceramic heater requires firing at a high temperature of 1500°C or higher, and in a reducing atmosphere gas containing hydrogen to prevent oxidation of W and Mo during the process. There is a need.

このため、セラミックヒータをつくるのに大型の電気炉
が必要となり容易につくる事ができなかった。さらに、
アルミナのセラミック基板の焼成時に、セラミックシー
ト内に含まれる有機パインダを還元雰囲気中で完全に除
去するのは難しく、どうしても炭化されたカーボンによ
って緻密であるべき基板内に大きなポアーやふくれを生
じてしまう。このポアーによって基板の発熱体部が使用
時に酸化したり腐食したりして寿命が著しく低下する場
合があった。
For this reason, making a ceramic heater required a large electric furnace and was not easy to make. moreover,
When firing an alumina ceramic substrate, it is difficult to completely remove the organic binder contained within the ceramic sheet in a reducing atmosphere, and the carbonized carbon inevitably creates large pores and blisters within the substrate, which should be dense. . These pores may cause the heating element portion of the substrate to oxidize or corrode during use, resulting in a significant reduction in service life.

さらにもう1つの例として、コーディエライトを主体と
するセラミ・7り中に、パラジウム(Pd)金属または
パラジウム金属(Pd)と白金(pt)との合金を埋没
した抵抗発熱体としたものがある。
Yet another example is a resistance heating element in which palladium (Pd) metal or an alloy of palladium metal (Pd) and platinum (pt) is embedded in a ceramic material mainly made of cordierite. be.

(特開昭57−187885号公報)これは、使用して
いるセラミック材料が1300℃程度で焼結し、又、使
用している発熱体の材料がPd、 Ptの様な貴金属で
あるため、空気中で焼成する事が可能である。
(Japanese Unexamined Patent Publication No. 57-187885) This is because the ceramic material used is sintered at about 1300°C, and the material of the heating element used is a noble metal such as Pd or Pt. It is possible to bake in air.

しかし、上記の様に発熱体材料としてPd、 Pt等の
貴金属を用いているために材料コストが高くなる。
However, as mentioned above, since noble metals such as Pd and Pt are used as the heating element material, the material cost increases.

発明が解決しようとする問題点 上述した様に従来のアルミナセラミック基板内にWやM
oを発熱体として用いる場合、その製造方法のために必
要な設備が大型化することによるコストアップを生じる
。また、焼成においてWやMoが酸化されずに有機バイ
ンダ等の有機成分を完全に燃焼除去する雰囲気をコント
ロールするのが困難で、ひいては緻密な基板が得られず
、発熱体部の酸化や腐食を生じ、発熱体部とセラミック
間の接着強度が充分に得られず剥離等を生ずるという問
題を有している。一方、発熱体としてPd。
Problems to be Solved by the Invention As mentioned above, there is no W or M in the conventional alumina ceramic substrate.
When O is used as a heating element, the manufacturing method requires an increase in the size of equipment, resulting in an increase in cost. Additionally, it is difficult to control an atmosphere that completely burns off organic components such as organic binders without oxidizing W or Mo during firing, which makes it impossible to obtain a dense substrate and causes oxidation and corrosion of the heating element. This causes a problem in that sufficient adhesive strength between the heating element and the ceramic cannot be obtained, resulting in peeling and the like. On the other hand, Pd is used as a heating element.

ptを用いた場合、貴金属であるため、材料コストが高
くなるという問題がある。    ′本発明は上記問題
点に鑑み、低温で焼結し、低コストで、焼成時の雰囲気
制御が極めて容易で、かつ発熱体部とセラミック間の接
着強度が充分にあり、発熱体層の剥離を生じない緻密な
セラミックヒータの製造方法を提供するものである。
When pt is used, there is a problem in that the material cost is high because it is a noble metal. 'In view of the above-mentioned problems, the present invention is sintered at a low temperature, is low in cost, is extremely easy to control the atmosphere during firing, has sufficient adhesive strength between the heating element part and the ceramic, and has no peeling of the heating element layer. The purpose of the present invention is to provide a method for manufacturing a dense ceramic heater that does not cause

問題点を解決するための手段 上記問題点を解決するために、本発明のセラミックヒー
タの製造方法においては、Cu070〜98重量%に、
添加物として、耐熱性絶縁材料を2〜30重景%加えた
無機成分に有機ビヒクルを加えた導体ペーストをホウケ
イ酸ガラスとアルミナを主成分とする無機成分に有機ビ
ヒクルを加えたグリーンシート上に印刷し、導体配線を
形成し、乾燥の後、前記グリーンシートとは別のグリー
ンシートを加熱、圧力によりラミネートし積層し、前記
導体配線を電気的に取り出す端子を形成した後、この様
にして作製した未焼結体を炭素に対して充分な酸化雰囲
気中で脱バインダし、さらに還元雰囲気中でCuOをC
uOをCuに還元し、最後に窒素雰囲気中で焼成し基板
を焼結させるというものである。
Means for Solving the Problems In order to solve the above problems, in the method for manufacturing a ceramic heater of the present invention, Cu070 to 98% by weight is
A conductive paste consisting of an inorganic component containing 2 to 30% heat-resistant insulating material as an additive and an organic vehicle is placed on a green sheet consisting of an inorganic component mainly composed of borosilicate glass and alumina plus an organic vehicle. After printing, forming conductor wiring, drying, laminating and laminating a green sheet other than the green sheet by heating and pressure, and forming a terminal for electrically taking out the conductor wiring, in this way. The produced unsintered body is debindered in an oxidizing atmosphere sufficient for carbon, and then CuO is removed from carbon in a reducing atmosphere.
The process involves reducing uO to Cu and finally firing in a nitrogen atmosphere to sinter the substrate.

作用 本発明は、上記した様に、グリーンシートの無機成分と
してホウケイ酸ガラスとアルミナを生成分としたものを
用いるため、Cuの融点以下の温度で焼結する。また導
体配線の出発原料として酸化物を用いるため、脱パイン
ダニ程を炭素に対して充分な酸化雰囲気で行えるため、
グリーンシートや導体ペースト中の有機成分を完全に除
去する事が出来、還元、焼成の両工程における雰囲気制
御が極めて容易となる。さらに、導体ペーストの無機成
分にセラミックまたはガラス等の耐熱性絶縁材料を加え
る事により、導体配線とセラミック間に充分な接着強度
が得られ、極めて緻密なセラミックヒータが得られる。
Function: As described above, the present invention uses borosilicate glass and alumina as the inorganic components of the green sheet, so it is sintered at a temperature below the melting point of Cu. In addition, since oxides are used as the starting material for conductor wiring, the depinemization process can be performed in an oxidizing atmosphere sufficient for carbon.
Organic components in the green sheet and conductor paste can be completely removed, making it extremely easy to control the atmosphere in both the reduction and firing steps. Furthermore, by adding a heat-resistant insulating material such as ceramic or glass to the inorganic component of the conductor paste, sufficient adhesive strength can be obtained between the conductor wiring and the ceramic, and an extremely dense ceramic heater can be obtained.

実施例 以下に本発明の実施例を示す。Example Examples of the present invention are shown below.

まず導体ペーストの無機成分としては、第1表に示した
組成になる様にCuOと添加物(ホウケイ酸ガラスとア
ルミナを重量比1対1に混合したもの)を混合したもの
を用いた。これらの無機粉体に、有機バインダーである
エチルセルロースをテレピン油に溶かした有機ビヒクル
を加えたものを三段ロールにより適度な粘度に混練して
作製したものを導体ペーストとした。
First, as the inorganic component of the conductor paste, a mixture of CuO and an additive (a mixture of borosilicate glass and alumina in a weight ratio of 1:1) was used so as to have the composition shown in Table 1. A conductive paste was prepared by adding an organic vehicle in which an organic binder, ethyl cellulose, was dissolved in turpentine oil to these inorganic powders, and kneading the mixture to an appropriate viscosity using a three-stage roll.

(第1表) 一方グリーンシートは、ホウケイ酸ガラスにアルミナを
重量比で1対1に混合した無機成分に、有機バインダー
であるポリビニルブチラールをトルエンに溶かした有機
溶剤に、可塑剤であるデーブチルフタレートを加え、ボ
ールミルで混合し、これを脱泡後、ドクターブレード法
で造膜、乾燥し、約1.2fl厚となるようにした。そ
してその後、所定のサイズに切断した。この様にして作
製したグリーンシート上に、前記の導体ペーストを20
0メソシユのスクリーンで印刷し、乾燥< 120℃で
10分間)させ導体層を形成した。その後、その上にさ
らに導体ペーストの印刷されていない前記のグリーンシ
ートを重ね、70℃、200kg/cmの圧力でラミネ
ートし、積層化した。この様にして作製した未焼結体の
斜視図を第1図に示す。次に第1図の30が示す部分に
、前記の導体ペーストをぬり端子部分とした。乾燥(1
20℃で10分間)、未焼結体を第3図の特性曲線aで
示す温度プロファイルで、空気中で脱バインダし、その
後、第3図の特性曲線すで示す温度プロファイルで、N
Z +l(。
(Table 1) On the other hand, green sheets are made of an inorganic component consisting of borosilicate glass and alumina mixed at a weight ratio of 1:1, an organic binder polyvinyl butyral dissolved in toluene in an organic solvent, and a plasticizer debutyl. Phthalate was added and mixed using a ball mill. After defoaming, a film was formed using a doctor blade method and dried to a thickness of about 1.2 fl. Then, it was cut into a predetermined size. Apply the above conductive paste for 20 minutes on the green sheet prepared in this way.
A conductive layer was formed by printing with a screen of 0.0 viscosity and drying at <120° C. for 10 minutes). Thereafter, the above-mentioned green sheet on which no conductor paste was printed was further placed on top of the green sheet, and laminated at 70° C. and a pressure of 200 kg/cm to form a layer. A perspective view of the green body produced in this manner is shown in FIG. Next, the above-mentioned conductor paste was applied to the part indicated by 30 in FIG. 1 to form a terminal part. Drying (1
20° C. for 10 minutes), the unsintered body was debindered in air with the temperature profile shown by the characteristic curve a in FIG. 3, and then N
Z +l(.

中(Hz / Nz =20/80 :流量21 /w
in )で還元し、最後に第4図に示す温度プロファイ
ルでN2中で焼成した。この様にして作製したセラミッ
クヒータの断面図を第2図に示す。
Medium (Hz / Nz = 20/80: flow rate 21 /w
in) and finally calcined in N2 with the temperature profile shown in FIG. A cross-sectional view of the ceramic heater manufactured in this manner is shown in FIG.

次に、導体層とセラミック間の接着強度を測定するため
に、第5図に示す様なテストピースを作製した。なお、
内層の導体層22は出来るだけ厳しい条件で測定するた
めに、広い面積を有する様にした。なお、上層の導体バ
ンド21層は内層と同じペーストを用いた。テストピー
ス作製の際のペースト組成、グリーンシート組成、印刷
条件、乾燥条件、脱バインダ条件、還元条件、焼成条件
は、前述したとおりであパる。この様にして作製したテ
ストピースの上層部の導体パッド(はぼ211X2n+
)に垂直に0.8++nφの銅線をハンダ付けし、その
銅線を垂直に引上げた際の引張強度を測定し、導体層の
接着強度とした。その結果を第1表に示した。なお、導
体ペーストF、G、Hを用いた場合、添加物量が多くハ
ンダ付けが不可能であったため接着強度の測定は出来な
かった。そこで導体ペーストF、G、Hを内層の導体層
とするものに対しては、上層の導体層としてハンダ付は
性の良好な導体ペーストDを用いて作製したテストピー
スで接着強度の測定を行った。その結果、導体ベース)
F、G、Hを用いた場合、破壊が、セラミック間 ック強度は導体ペーストDの場合よりも強いと思われる
Next, in order to measure the adhesive strength between the conductor layer and the ceramic, a test piece as shown in FIG. 5 was prepared. In addition,
The inner conductor layer 22 was designed to have a large area in order to perform measurements under as severe conditions as possible. Note that the same paste as the inner layer was used for the upper conductor band 21 layer. The paste composition, green sheet composition, printing conditions, drying conditions, binder removal conditions, reduction conditions, and firing conditions used in preparing the test piece were as described above. The conductor pad on the upper layer of the test piece prepared in this way (211X2n+
) was vertically soldered with a copper wire of 0.8++nφ, and the tensile strength when the copper wire was pulled up vertically was measured and used as the adhesive strength of the conductor layer. The results are shown in Table 1. Note that when conductor pastes F, G, and H were used, the adhesive strength could not be measured because the amount of additives was large and soldering was impossible. Therefore, for those with conductor pastes F, G, and H as the inner conductor layer, the adhesive strength was measured using a test piece made using conductor paste D, which has good solderability, as the upper conductor layer. Ta. As a result, conductor base)
When F, G, and H are used, the fracture and inter-ceramic adhesive strength are thought to be stronger than when using conductor paste D.

以上の結果より、添加物を2%以上加えて作製した導体
ペーストを用いた場合非常に良好な接着強度が得られ、
剥離等の問題はほとんどない。しかしながら、導体ベー
ス)Hの場合、導体層配線に導通がまったく得られなか
った。これは添加物量があまりに多すぎるためだと思わ
れる。そのため発熱体として用いるには不適当だと思わ
れます。
From the above results, very good adhesive strength was obtained when using a conductor paste made with 2% or more of additives added.
There are almost no problems such as peeling. However, in the case of conductor base) H, no continuity was obtained in the conductor layer wiring. This is probably due to the amount of additives being too large. Therefore, it is considered unsuitable for use as a heating element.

次に導体ペーストC,D、E、F、Gを用いて作製した
セラミックヒータの抵抗変化率の測定および断面の32
M観察を行った。抵抗変化率は、その結果、TH試験(
85℃、85%)後500時間後においてもすべてのサ
ンプルが20%以下という、従来のW、Moを発熱体と
した場合と比べて橿めて良好な結果を示した。また、S
2M観察により、すべてのサンプルが極めて緻密な構造
を有している事が観察された。
Next, we measured the resistance change rate of ceramic heaters made using conductor pastes C, D, E, F, and G, and
M observations were made. As a result, the resistance change rate is determined by the TH test (
Even after 500 hours after heating at 85° C. and 85%, all the samples showed less than 20%, which was a much better result than when conventional W and Mo were used as heating elements. Also, S
Through 2M observation, it was observed that all samples had extremely dense structures.

なお、本実験においては、導体ペースト用のバインダと
してエチルセルロースを、グリーンシート用のバインダ
としてポリビニルブチラールを用いたが、これに限るも
のではなく、本発明においては脱パインダニ程を空気中
で行うためもっと広い範囲から適当なバインダを選べる
のは言うまでもない。
In this experiment, ethyl cellulose was used as the binder for the conductor paste, and polyvinyl butyral was used as the binder for the green sheet, but the present invention is not limited to these. Needless to say, you can choose a suitable binder from a wide range.

発明の効果 以上述べた様に、本発明のセラミックヒータの製造方法
は、従来のものと比較して、安価な卑金属酸化物を出発
原料としており、かつ低温で作製する事が出来るため低
コスト化がはがれ、また、焼成雰囲気の制御が容易で、
さよに、発熱体とセラミック間に充分な接着強度が得ら
れ、緻密で、寿命が数段向上したセラミックヒータの作
製を可能にするものであり、工業上有用な発明である。
Effects of the Invention As described above, the method for manufacturing a ceramic heater of the present invention uses an inexpensive base metal oxide as a starting material and can be manufactured at low temperatures, resulting in lower costs compared to conventional methods. It peels off easily, and the firing atmosphere is easy to control.
This is an industrially useful invention, as it enables the production of a ceramic heater that has sufficient adhesive strength between the heating element and the ceramic, is dense, and has a significantly improved lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の未焼結積層体の斜視図、第
2図は、焼結剤のセラミックヒータの断面図、第3図は
、本発明の一実施例の製造プロセスにおける温度特性図
、第4図は、本発明の一実施例として示した焼成工程の
温度特性図、第5図は、本発明の製造方法により得られ
るセラミックヒータの導体とセラミック接着強度を評価
するためのテストピースを示す斜視図である。 10・・・・・・絶縁基板、20・・・・・・導体配線
、30・・・・・・端子。 代理人の氏名 弁理士 中尾敏男 はか1名10−一一
絶橡基収2 20−一一汽−1イ本勇己赤 第2図 第3図 曙Tm (厭η) 第4図 時 閲 (飯n) 10−一一絶縁基扱 21−−一停体ベッド 2z−稗体漕 第5図
FIG. 1 is a perspective view of an unsintered laminate according to an embodiment of the present invention, FIG. 2 is a sectional view of a ceramic heater using a sintering agent, and FIG. 3 is a diagram showing a manufacturing process according to an embodiment of the present invention. FIG. 4 is a temperature characteristic diagram of the firing process shown as an example of the present invention, and FIG. 5 is a temperature characteristic diagram for evaluating the adhesive strength between the conductor and ceramic of the ceramic heater obtained by the manufacturing method of the present invention. FIG. 2 is a perspective view showing a test piece of FIG. 10... Insulated substrate, 20... Conductor wiring, 30... Terminal. Name of agent Patent attorney Toshio Nakao Haka 1 person 10-11 Zetsumoto Kiyoshi 2 20-Eleven-1 Imoto Yuki Red Figure 2 Figure 3 Akebono Tm (厭η) Figure 4 Time review ( Meal n) 10-11 Insulating base treatment 21--One stop bed 2z-Bed row Figure 5

Claims (1)

【特許請求の範囲】[Claims] CuO70〜98重量%に、添加物として耐熱性絶縁材
料を2〜30重量%加えた無機成分に有機ビヒクルを加
えた導体ペーストを、ホウケイ酸ガラスとアルミナを生
成分とする無機成分に有機ビヒクルを加えたグリーンシ
ート上に印刷し、導体配線を形成する工程と、乾燥の後
、前記グリーンシートとは別のグリーンシートを加熱、
圧力によりラミネートし、積層する工程と、積層後、前
記導体配線を電気的に取り出す端子を形成する工程と、
該未焼結体を炭素に対して充分な酸化雰囲気で、かつ内
部の有機成分を熱分解させるに充分な温度で脱バインダ
する工程と、さらに、これを還元雰囲気中で熱処理する
工程と、その後、窒素雰囲気中で焼成し、焼結させる工
程を有することを特徴とするセラミックヒータの製造方
法。
A conductor paste is prepared by adding an organic vehicle to an inorganic component of 70 to 98 wt. % CuO and 2 to 30 wt. % of a heat-resistant insulating material as an additive. A process of printing on the added green sheet to form a conductor wiring, and after drying, heating a green sheet other than the green sheet,
a step of laminating and stacking layers by pressure, and a step of forming a terminal for electrically taking out the conductor wiring after lamination;
a step of debinding the unsintered body in an oxidizing atmosphere sufficient for carbon and at a temperature sufficient to thermally decompose the organic components therein; further, a step of heat-treating the unsintered body in a reducing atmosphere; A method for manufacturing a ceramic heater, comprising the steps of firing and sintering in a nitrogen atmosphere.
JP4761286A 1986-03-05 1986-03-05 Method for manufacturing ceramic heater Expired - Lifetime JPH0719644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4761286A JPH0719644B2 (en) 1986-03-05 1986-03-05 Method for manufacturing ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4761286A JPH0719644B2 (en) 1986-03-05 1986-03-05 Method for manufacturing ceramic heater

Publications (2)

Publication Number Publication Date
JPS62206780A true JPS62206780A (en) 1987-09-11
JPH0719644B2 JPH0719644B2 (en) 1995-03-06

Family

ID=12780047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4761286A Expired - Lifetime JPH0719644B2 (en) 1986-03-05 1986-03-05 Method for manufacturing ceramic heater

Country Status (1)

Country Link
JP (1) JPH0719644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158079A (en) * 1988-12-12 1990-06-18 Chubu Electric Power Co Inc Panel heater for quick electrical boiler and quick electrical boiler using panel heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158079A (en) * 1988-12-12 1990-06-18 Chubu Electric Power Co Inc Panel heater for quick electrical boiler and quick electrical boiler using panel heater

Also Published As

Publication number Publication date
JPH0719644B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
EP0163478B1 (en) Process of manufacturing ceramic circuit board
EP0120243B1 (en) Process for the removal of carbon residues during sintering of ceramics
JP2003168619A (en) Conductive paste for terminal electrode of laminated ceramic electronic part, method for manufacturing the laminated ceramic electronic part, and the laminated ceramic electronic part
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JPS62206780A (en) Manufacture of ceramic heater
JPH06223621A (en) Conductor paste composition
JPS62211890A (en) Heater element and manufacture of the same
JPH0650703B2 (en) Paste composition and method for manufacturing laminated ceramic capacitor
JP3216260B2 (en) Low temperature fired ceramic multilayer substrate and method of manufacturing the same
JPH01230214A (en) Manufacture of laminated ceramic capacitor
JPH0225094A (en) Manufacture of ceramic multilayer wiring board
JPH066038A (en) Manufacturing method of low temperature baking multilayer ceramic board
JPS62205692A (en) Manufacture of ceramic multilayer interconnecting board
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPH0320914B2 (en)
JPS6315408A (en) Manufacture of laminated ceramic capacitor
JPH0321108B2 (en)
JPH0289387A (en) Copper conductor paste and multilayer ceramic substrate
JPH0554718B2 (en)
JPS6315407A (en) Manufacture of laminated ceramic capacitor
JPH10341067A (en) Inorganic multilayered substrate and conductor paste for via holes
JPS61170094A (en) Manufacture of ceramic multilayer interconnection circuit board
JPS6253960B2 (en)
JPS6126292A (en) Ceramic multilayer circuit board and method of producing same
JPH0650702B2 (en) Paste composition and method for manufacturing laminated ceramic capacitor